压电式传感器解析PPT教学课件
合集下载
《解析压电式传感器》课件

通过与已知振动信号比对,校准传感器输 出的振动信号,确保测量结果的可靠性。
3 加速度校准
4 维护方法
使用加速度标准源对传感器进行校准,以 获得准确的加速度测量结果。
定期清洁传感器表面,保持机械结构的正 常运转,及时更换损坏的部件。
压电式传感器的发展趋势
1
纳米技术在压力传感器中的应
用
智能化压力传感器的发展
压电效应是指某些物质在受力作用下产生电极化现象,从而产生电荷或电势差。
2 压电式传感器原理
压电式传感器利用压电晶体的压电效应,将外力转换为电荷或电势差输出。
3 压电晶体的种类
常见的压电晶体包括石英、陶瓷和聚合物等,每种晶体都有其特定的应用领域。
压电式传感器的特点
准确性高
压电式传感器具有高度的 测量准确性,能够提供精 确的测量结果。
灵敏度高
由于压电效应的特性,压 电式传感器对信号的小幅 度变化能够产生较大的响 应。
响应时间快
压电式传感器能够快速响 应外部力的变化,适用于 高频率的信号检测。
压电式传感器的应用
力,压力传感器
压电式传感器可广泛应用于 力学、机械和材料科学领域 中的力和压力测量。
振动传感器
压电式传感器可以用于振动 分析、结构监测和故障诊断 等领域,实现精确的振动测 量。
加速度传感器
压电式传感器可用于测量加 速度和震动信号,广泛应用 于汽车、航空和工业领域。
压电式传感器的优缺点
优点
- 精度高 - 非线性小 - 节能
缺点
- 适用范围受限 - 温度影响大
压电式传感器的校准与维护
为确保压电式传感器的准确性和可靠性,需要进行定期的校准和维护。
1 压力校准
《压电式传感器》课件

汽车领域
压电式传感器在汽车中用于测量和 控制关键系统的压力,如制动系统、 供油系统和排放系统,提高车辆的 性能和安全性。
与其他传感器的比较
1 压力传感器 vs. 光传感器
压力传感器可以检测和测量物体的压力,而光传感器可以用于检测光线的强度和频率。
2 压力传感器 vs. 温度传感器
压力传感器可以测量物体的压力变化,而温度传感器可以测量环境的温度变化。
续的信号处理和分析。
3
输出信号
经过处理和转换,压电式传感器将输出电压 信号转化为可读取的压力数值或其他形式的 信号。
应用领域
工业领域
压电式传感器在工业生产过程中用 于检测和测量压力、压力变化,广 泛应用于制造业、自动化系统和控 制系统。
医疗领域
压电式传感器在医学设备中用于监 测生命体征、药物输送系统、手术 器械等,确保医疗过程的安全和有 效性。
压电式传感器
欢迎来到《压电式传感器》的PPT课件!本课程将深入探讨压电式传感器的定 义、原理、种类、工作原理、应用领域、与其他传感器的比较,以及未来发 展方向。
定义
什么是压电式传感器?
压电式传感器是一种根据压电 效应原理制作的传感器,能够 将压力转化为电信号,实现压 力的检测和测量。
压电效应的原理
压电效应是指某些晶体材料在 受到压力或振动作用下,会产 生电荷分离和极化现象,从而 产生电压。
压电材料的种类
常用的压电材料包括石英、陶 瓷、聚合物等,每种压电材料 都具有不同的特性和应用领域。
工作ห้องสมุดไป่ตู้理
1
压电效应
当压电材料受到压力时,产生电荷分离和极
信号放大
2
化,从而产生电压信号。
传感器将微弱的电压信号放大,以便进行后
传感器原理与应用压电传感器ppt课件

压电元件在承受沿敏感轴方向的外力作用时,将产生电荷,因此它相当 于一个电荷源。当压电元件表面聚集电荷时,它又相当于一个以压电材料为
介质的电容器,两电极板间的电容Ca为
Ca
r0 A
式中
A——压电元件电极面积;
——压电元件厚度; r——压电材料的相对介电常数; 0——真空介电常数。
压电元件的等效电路
第一节 压电传感器的概述
压电式传感器的特点:
是一种自发电式传感器。它以某些电介质的压 电效应为基础,在外力作用下,在电介质表面产 生电荷,从而实现电量电测的目的。
压电传感元件是力敏感元件,它可以测量最终 能变换为力的那些非电物理量,例如动态力、动 态压力、振动加速度等,但不能用于静态参数的 测量。
压电效应
压力时的情况相同
无论是沿x轴方向施加力,还是沿y轴方向施加力,电荷只产生在x面上。 光轴(z轴)方向受力时,由于晶格的变形不会引起正负电荷中心的分离, 所以不会产生压电效应。
对压电元件施加交变力,产生交变电荷
交变外力作用在压电元件上,可以产生交变的电
荷Q,在上下镀银的表面上产生交变电压。
产生的交变电荷的变化频率与交变力的频率相同, 等效于交变电荷源。
由于压电传感器的输出电压与压电片的极间电容Ca以及传输线的对地分布电 容Cc有关,如果接入普通的电压放大电路,将受到很多外界因素的影响。
现在多采用“电荷放大器”来将压电传感器输出的电荷转换为电压,属 于Q/U转换器,但并无放大电荷的作用,只是一种习惯叫法。
第三节 压电传感器的测量转换电路
压电元件的极间电容
无铅压电陶瓷
锆钛酸钡钙的压电系数达到600pC/N,压电性 能已超过了世界上已使用半个世纪、但对人体和环境 有害的核心压电材料锆钛酸铅陶瓷(250pC/N)。无 铅压电陶瓷取代铅基压电陶瓷已成为必然的趋势。
介质的电容器,两电极板间的电容Ca为
Ca
r0 A
式中
A——压电元件电极面积;
——压电元件厚度; r——压电材料的相对介电常数; 0——真空介电常数。
压电元件的等效电路
第一节 压电传感器的概述
压电式传感器的特点:
是一种自发电式传感器。它以某些电介质的压 电效应为基础,在外力作用下,在电介质表面产 生电荷,从而实现电量电测的目的。
压电传感元件是力敏感元件,它可以测量最终 能变换为力的那些非电物理量,例如动态力、动 态压力、振动加速度等,但不能用于静态参数的 测量。
压电效应
压力时的情况相同
无论是沿x轴方向施加力,还是沿y轴方向施加力,电荷只产生在x面上。 光轴(z轴)方向受力时,由于晶格的变形不会引起正负电荷中心的分离, 所以不会产生压电效应。
对压电元件施加交变力,产生交变电荷
交变外力作用在压电元件上,可以产生交变的电
荷Q,在上下镀银的表面上产生交变电压。
产生的交变电荷的变化频率与交变力的频率相同, 等效于交变电荷源。
由于压电传感器的输出电压与压电片的极间电容Ca以及传输线的对地分布电 容Cc有关,如果接入普通的电压放大电路,将受到很多外界因素的影响。
现在多采用“电荷放大器”来将压电传感器输出的电荷转换为电压,属 于Q/U转换器,但并无放大电荷的作用,只是一种习惯叫法。
第三节 压电传感器的测量转换电路
压电元件的极间电容
无铅压电陶瓷
锆钛酸钡钙的压电系数达到600pC/N,压电性 能已超过了世界上已使用半个世纪、但对人体和环境 有害的核心压电材料锆钛酸铅陶瓷(250pC/N)。无 铅压电陶瓷取代铅基压电陶瓷已成为必然的趋势。
【精品】传感器原理8压电式传感器ppt课件

•j(j=1,2,3,4,5,6):1,2,3表示沿x,y,z方向作用的单 向正应力;4,5,6表示在yz,zx,xy平面上承受的剪 切应力
24.02.2021
17
压电特性的矩阵表示
1
1 d11
2
d21
3 d31
d12 d22 d32
d13 d23 d33
d14 d24 d34
d15 d25 d35
极化面 F Q
F
机械能{
压电效应及可逆性
逆压电效应 压电介质 正压电效应
}电能
24.02.2021
2
受到X方向的力—纵向压电效应
X
-
Y
+ P2 P1 +
- P3
-
+
(p p p ) 0 1 2 3x
✓晶体沿x方向将产生压缩变形, 正负离子的相对 位置也随之变动。 此时正负电荷重心不再重合。
24.02.2021
11
受到三向等压力—没有压电效应产生
X
-
Y
+ P2 P1 +
- P3
-
+
如果沿x、y、z轴方向施加相同的作用力, 只有体积变化,没有形变, 正负电荷重心保持重合, 电偶极矩矢量和等于零, 晶体不会产生压电效 应,即没有体积变形的压电效应。
24.02.2021
12
二、压电陶瓷的压电效应
(p p p )0 1 2 3y
✓电偶极矩在x方向上的分量由于P3的减小和P1、 P2的增加而不等于零, 在x轴的正方向出现正电荷,
电偶极矩在y方向上的分量仍为零, 不出现电荷。
(ppp) 0 1 2 3z
✓当作用力方向相反时, 电荷的极性也随之改变。
传感器第4章压电式ppt课件(共79张PPT)

τ一定,ω越高,压高力频变送响器应部越件 好
压电传感器的外形
块、振膜、下塑料块传递到压电
1 石英晶体的压电效应
2 压电陶瓷的压电效应
压电材料开始丧失压电性能的温度
εr ——压电材料的相对介电常数。
电荷放大器是一种输出电压与输入电荷量成正比的前置放大器。
为此,通常把传感器信号先输到高输入阻抗的前置放大器。
第27页,共79页。
第4章 压电式传感器
4.2.2 压电陶瓷的压电效应 ❖压电陶瓷是人工制造的多晶体压电材料。 ❖材料内部的晶粒有许多自发极化的电畴, 它有一定的极化方向, 从而 存在电场。
❖在无外电场作用时, 电畴在晶体中杂乱分布, 它们的极化效 应被相互抵消, 压电陶瓷内极化强度为零。因此原始的压电 陶瓷呈中性, 不具有压电性质。
第28页,共79页。
压电陶瓷极化处理
第4章 压电式传感E器
✓在陶瓷上施加外电场时, 电畴的极化方向发生转动, 趋向于按外电场 方向的排列, 从而使材料得到极化。外电场愈强, 就有更多的电畴更完 全地转向外电场方向。
✓让外电场强度大到使材料的极化达到饱和的程度, 即所有电畴极化方向都整齐 地与外电场方向一致时, 外电场去掉后, 电畴的极化方向基本不变, 即剩余极 化强度很大, 这时的材料才具有压电特性。
✓极化方向即外加电场方向,取为Z轴方向。
第29页,共79页。
第4章 压电式传感器
1) 压电陶瓷的正压电效应 2) 如果在陶瓷片上施加一个与极化方向平行的压缩力,压电片
3) 产生压缩变形,使内部束缚电荷的间距变小,电畴发生偏转, 4) 极化强度变小,致使内部的束缚电荷变少,导致被吸附在外面
5) 电极上的自由电荷有一部分被释放,呈现放电状态。 6) 当外力消失后,陶瓷片恢复原状,使极化强度增大,内部束缚 7) 电荷增加,导致电极的吸附自由电荷增加,呈现充电状态。
《压电式传感器》课件

结构简单
压电式传感器结构简单,易于加工和 集成。
压电式传感器的优缺点
响应速度快
由于压电效应的快速响应特性,压电式传感器具有较快的响 应速度。
无热干扰
由于压电式传感器不需要加热元件,因此不会受到热干扰的 影响。
压电式传感器的优缺点
易受环境影响
压电式传感器容易受到环境温度、湿度等因素的影响,需要进行温度补偿和湿 度补偿。
水声探测
在水下环境中,压电式传感器可用于水声探测和声呐系统,实现 水下目标的定位和识别。
05
压电式传感器的校准与维护
压电式传感器的校准方法
压电式传感器的校准是确保测量准确性的重要步骤,通常包括零点校准和灵敏度校 准。
零点校准是将传感器的输出读数调整到零或一个已知的基准值,以消除任何偏差。
灵敏度校准是测试传感器在不同激励电压下的输出响应,以验证其线性度和准确性。
和处理。
特点
高输入阻抗、低输出阻抗、稳定 性好。
04
压电式传感器的应用实例
压力测量
压力传感器
压电式传感器在压力测量中应用广泛,如气瓶压力监测、管道压 力检测等。
压电式压力计
用于测量液体或气体的压力,具有高精度、高稳定性的特点。
压电薄膜压力传感器
利用压电薄膜作为敏感元件,可测量微小压力变化,常用于生物医 学和环境监测领域。
电压放大器
概述
电压放大器用于放大压电传感器 输出的电压信号。
工作原理
电压放大器通过直接耦合方式,将 压电传感器的电压信号进行放大。
特点
低输入阻抗、高输出阻抗、线性度 高。
阻抗变换号
的电路。
工作原理
阻抗变换器通过电阻、电容等元 件,将高阻抗的输出信号转换为 低阻抗的输出信号,以便于传输
压电式传感器结构简单,易于加工和 集成。
压电式传感器的优缺点
响应速度快
由于压电效应的快速响应特性,压电式传感器具有较快的响 应速度。
无热干扰
由于压电式传感器不需要加热元件,因此不会受到热干扰的 影响。
压电式传感器的优缺点
易受环境影响
压电式传感器容易受到环境温度、湿度等因素的影响,需要进行温度补偿和湿 度补偿。
水声探测
在水下环境中,压电式传感器可用于水声探测和声呐系统,实现 水下目标的定位和识别。
05
压电式传感器的校准与维护
压电式传感器的校准方法
压电式传感器的校准是确保测量准确性的重要步骤,通常包括零点校准和灵敏度校 准。
零点校准是将传感器的输出读数调整到零或一个已知的基准值,以消除任何偏差。
灵敏度校准是测试传感器在不同激励电压下的输出响应,以验证其线性度和准确性。
和处理。
特点
高输入阻抗、低输出阻抗、稳定 性好。
04
压电式传感器的应用实例
压力测量
压力传感器
压电式传感器在压力测量中应用广泛,如气瓶压力监测、管道压 力检测等。
压电式压力计
用于测量液体或气体的压力,具有高精度、高稳定性的特点。
压电薄膜压力传感器
利用压电薄膜作为敏感元件,可测量微小压力变化,常用于生物医 学和环境监测领域。
电压放大器
概述
电压放大器用于放大压电传感器 输出的电压信号。
工作原理
电压放大器通过直接耦合方式,将 压电传感器的电压信号进行放大。
特点
低输入阻抗、高输出阻抗、线性度 高。
阻抗变换号
的电路。
工作原理
阻抗变换器通过电阻、电容等元 件,将高阻抗的输出信号转换为 低阻抗的输出信号,以便于传输
第6章压电式传感器课件

②逆压电效应 在这些电介质的极化方向上施加 电场,它们也会产生变形,电场去掉后,变形随之消 失,这种现象称逆压电效应,或电致伸缩效应。
6.1.1 压电效应
1.石英晶体的压电效应 石英晶体是最常用的压电晶
体 之 一 。 其 化 学 成 分 为 SiO2 , 是 单晶体结构。它理想的几何形状 为正六面体晶柱,实际上两端为 晶锥形状。通过上下晶锥顶点的z 轴称为光轴,在此方向不产生压 电效应。
为了使压电陶瓷具有压电效 应,就必须在一定温度下对其进 行极化处理,即给压电陶瓷加外 电场,使电畴规则排列,从而具 备压电性能。
6.1.1 压电效应
外加电场的方向即是压电陶瓷的极化方向,通 常取沿z轴方向。左图为施加外电场时的情形。外加 电场去掉后,电畴极化方向基本保持原极化方向,如 右图所示。因此,压电陶瓷的极化强度不恢复为零, 而是存在着很强的剩余极化强度。
6.1.2 压电材料
(4)温度性能 要求压电材料具有较高的居里 点,以便获得较宽的工作温度范围,这是因为居 里点是压电材料开始失去压电效应的温度。
(5)长期稳定性 要求压电材料的压电特性不 随时间蜕变。
6.1.2 压电材料
1.压电晶体 由晶体学可知,无对称中心的晶体通常具有压
电效应,具有压电效应的单晶体统称为压电晶体。 石英晶体是最典型而常用的压电晶体,其特点是
P ql
式中,q为电荷量;l为正负电荷 间的距离。
6.1.1 压电效应
当石英晶体沿x轴方向被压缩时,沿y方向产生 拉伸变形,使正负离子的相对位置改变。P1、P2、P3 的矢量和不再为零,在x轴方向的分量小于零,因而 在x轴正方向的晶体表面上产生负电荷,在相对表面 上产生正电荷。
然而,电偶极矩的矢量和在 y轴和z轴的分量还是零,所以在 垂直于y轴和z轴的晶体表面上不 会出现电荷,d21=d31=0。
6.1.1 压电效应
1.石英晶体的压电效应 石英晶体是最常用的压电晶
体 之 一 。 其 化 学 成 分 为 SiO2 , 是 单晶体结构。它理想的几何形状 为正六面体晶柱,实际上两端为 晶锥形状。通过上下晶锥顶点的z 轴称为光轴,在此方向不产生压 电效应。
为了使压电陶瓷具有压电效 应,就必须在一定温度下对其进 行极化处理,即给压电陶瓷加外 电场,使电畴规则排列,从而具 备压电性能。
6.1.1 压电效应
外加电场的方向即是压电陶瓷的极化方向,通 常取沿z轴方向。左图为施加外电场时的情形。外加 电场去掉后,电畴极化方向基本保持原极化方向,如 右图所示。因此,压电陶瓷的极化强度不恢复为零, 而是存在着很强的剩余极化强度。
6.1.2 压电材料
(4)温度性能 要求压电材料具有较高的居里 点,以便获得较宽的工作温度范围,这是因为居 里点是压电材料开始失去压电效应的温度。
(5)长期稳定性 要求压电材料的压电特性不 随时间蜕变。
6.1.2 压电材料
1.压电晶体 由晶体学可知,无对称中心的晶体通常具有压
电效应,具有压电效应的单晶体统称为压电晶体。 石英晶体是最典型而常用的压电晶体,其特点是
P ql
式中,q为电荷量;l为正负电荷 间的距离。
6.1.1 压电效应
当石英晶体沿x轴方向被压缩时,沿y方向产生 拉伸变形,使正负离子的相对位置改变。P1、P2、P3 的矢量和不再为零,在x轴方向的分量小于零,因而 在x轴正方向的晶体表面上产生负电荷,在相对表面 上产生正电荷。
然而,电偶极矩的矢量和在 y轴和z轴的分量还是零,所以在 垂直于y轴和z轴的晶体表面上不 会出现电荷,d21=d31=0。
压电式传感器.完美版PPT

正压电效应
电能
机械能
逆压电效应
(一)石英晶体的压电效应
天然结构石英晶体的理想外形是一个正六面体,在晶体
学中它可用三根互相垂直的轴来表示,其中纵向轴Z-Z 称为光轴;经过正六面体棱线,并垂直于光轴的X-X 轴称为电轴;与X-X轴和Z-Z轴同时垂直的Y-Y轴
(垂直于正六面体的棱面)称为机械轴。
通常把沿电轴X-X方向
P3
-
- -
+-
X
在X轴的正向出现负电荷,在Y、Z方向则不出现电荷。
可见,当晶体受到沿X(电轴)方向的力FX作用时,它在X
方向产生正压电效应,而Y、Z方向则不产生压电效应。
晶体在Y轴方向力FY作用下的情况与FX相似。当FY>0 时,晶体的形变与图(b)相似;当FY<0时,则与图 (c)相似。由此可见,晶体在Y(即机械轴)方向的力 FY作用下,使它在X方向产生正压电效应,在Y、Z方向 则不产生压电效应。
电极
++++ q ――――
q Ca
时,则两极板呈现一定 压电晶体
的电压,其大小为
U
a
q Ca
(a)
(b)Biblioteka 压电传感器的等效电路因此,压电传感器可等 效 为 电 压 源 Ua 和 一 个 电 容 器 Ca 的 串 联 电 路 , 如 图 (a) ; 也 可 等 效 为 一 个 电荷源q和一个电容器Ca 的并联电路,如图(b)。
Ca Ua Ua=q/ Ca
q Ca q =UaCa
(a)电压等效电路 (b)电荷等效电路
压电传感器等效原理
传感器内部信号电荷无“漏损”,外电路负载无穷大时, 压电传感器受力后产生的电压或电荷才能长期保存,否 则电路将以某时间常数按指数规律放电。这对于静态标 定以及低频准静态测量极为不利,必然带来误差。事实 上,传感器内部不可能没有泄漏,外电路负载也不可能 无穷大,只有外力以较高频率不断地作用,传感器的电 荷才能得以补充,因此,压电晶体不适合于静态测量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
当这种经极化后的铁电体在受到外力作用时,其剩余极化 强度将随之变化,所以也表现出压电特性。显然这种材料的压 电特性在极化方向上是最显著的。极化方向定义为z轴。
压电陶瓷稳定性较石英晶体差。
17
第5章 压电式传感器
2020/10/16
18
2020/10/16
第5章 压电式传感器
压电陶瓷的种类 : ① 钛酸钡压电陶瓷 ② 锆钛酸铅系压电陶瓷,即PZT系压电陶瓷 ③ 铌镁酸铅压电陶瓷(PMN) ④ 铌酸盐系压电陶瓷 需要指出: 通常压电陶瓷如钛酸钡和锆钛酸铅都有明 显的热释电效应。
2020/10/16
第5章 压电式传感器
压电式传感器:利用压电材料的压电效应实现能 量的转换。
当压电材料受到外力作用时,其表面将产生电荷, 将机械能转变成电能。
利用压电材料可以制成力敏元件,用来测量力和 能转变成力的各种物理量。
由于压电效应是可逆的,在压电材料的一定方向 施加电场1 ,它就会产生变形,因此压电传感器是双向 传感器。
qCaUa
Ua
q Ca
22
2020/10/16
第5章 压电式传感器
5.2.2测量电路
1.引言 压电传感器的输出信号非常微弱,要将其进行放大
才能测量出来。 压电传感器的内阻抗相当高,不是普通放大器能放
大的。而且,除阻抗匹配的问题外,连接电缆的长度、 噪声都是突出的问题。
23
2020/10/16
居里点:573℃ 石英晶体的相对介电常数较小,温度稳定性很好。 机械强度很高,性能稳定,没有热释电效应(由于温 度变化导致电荷释放),绝缘性能相当好。
14
2020/10/16
第5章 压电式传感器
压电陶瓷
压电陶瓷是人工制造的多晶压电材料,它由无数细微的单 晶组成。 1)极化前
它具有类似铁畴材料磁畴结构的“电畴”结构。 特点: “电畴”是分子自发的极化区域,各单晶的自发极化方向完全 是任意排列的,虽然每个单晶具有强压电性质,但是组成多晶 后,各单晶的压电效应却互相抵消了。
QdF Qx d11Fx
11
2020/10/16
第5章 压电式传感器
压电晶体的三种压电效应 b) 横向压电效应
12
2020/10/16
第5章 压电式传感器
压电晶体的三种压电效应 c) 切向压电效应
13
2020/10/16
第5章 压电式传感器
石英是具有良好压电效应的一种压电晶体。在20~ 200℃范围内压电常数的温度变化率约是-0.016%/℃, 在温度较低时,压电常数的变化很小。
一个电荷发生器。同时,它也是一个电容器,晶体上聚
集正负电荷的两表面相当于电容的两个极板,极板间
物质等效于一种介质,则其电容量为 21
Ca
r0A
d
式中: A——压电片的面积; d——压电片的厚度;
εr ——压电材料的相对介电常数。
➢ 电荷等效电路
第5章 压电式传感器
➢电压等效电路
2020/10/16
外部分布电容的影响并获得良好的低频特性; ④ 温度和湿度稳定性要好,具有较高的居里点,以期得到较
宽的工作温度范围; ⑤ 时间稳定性 : 压电特性不随时间蜕变。
单晶体:石英晶体等
压电晶体分类: 多晶体:压电陶瓷等
9
2020/10/16
第5章 压电式传感器
石英晶体
石英晶体有天然的石英和人工石英 单晶体两种。
第5章 压电式传感器
2020/10/16
2
第5章 压电式传感器
2020/10/16
压力变送器部件
压电传感器的外形
压力变送器
各种小巧的压力传感器
3
2020/10/16
第5章 压电式传感器
5.2.1 压电式传感器的工作原理
★正压电效应:有些材料,当沿着一定方向对其施力而使它变 形时,内部就产生极化现象,同时在它的两个表面上产生符号 相反的电荷;当外力去除后,又重新恢复为不带电的状态。当 作用力的方向改变时,电荷的极性随之改变。 ★逆压电效应:在这些材料的极化方向施加电场,它们就会产 生变形,这种现象称为“逆压电效应”,或称为“电致伸缩效 应”。 压电材料:具有压电效应的材料称为压电材料。
4
2020/10/16
第5章 压电式传感器
5
压电转换元件受力变形的几种基本形式
2020/10/16
第5章 压电式传感器
石英晶体受力方向与电荷极性的关系
6
第5章 压电式传感器
2020/10/16
7
2020/10/16
第5章 压电式传感器
压电常数
压电材料的性能常用压电常数来表征。 以晶体为例, 设有一用晶体制成的压电元件受到力F作用, 在其相应表面上产生表面电荷Q,力F与电荷Q之间存在如下关 系:
QdF
d —压电常数
8
2020/10/16
第5章 压电式传感器
5.2.1 压电材料
选择压电材料的要求: ① 转换性能:具有较高的耦合系数或具有较大的压电常数; ② 机械性能:压电元件作为受力元件,希望它的机械强度高,
机械刚度大,以期获得宽的线性范围和高的固有振动频率; ③ 电性能:希望具有高的电阻率和大的介电常数,以期减弱
原始的压电陶瓷是一个非压电体,它不具有压电性质。15
2020/10/16
第5章 压电式传感器
压电陶瓷
2)极化后 极化处理:在一定 温度下,对压电陶瓷施加强电场, 使极性转动到20/10/16
这个方向就是压电陶瓷的极化方向,在极化方向下,各向 同性受到破坏,但在垂直的平面上,仍保持各向同性。当电场 丢掉后,压电陶瓷仍存在着很强的剩余极化,类似于铁磁物质 在磁场中被磁化的现象,它们被极化的过程和铁磁材料被磁化 的过程极其相似。
19
2020/10/16
第5章 压电式传感器
(3)厚度剪切变形 利用剪切压电效应的
压电元件除采用片状结构 形式外,还可采用管状压 电陶瓷,这种结构的极化 方向有平行于轴线的和径 向的两种。
20
第5章 压电式传感器
§ 5.2.2 压电传感器的等效电路
2020/10/16
由压电元件的工作原理可知,压电式传感器可以看作
结构:石英晶体属六方晶体,有 右旋石英晶体和左旋石英晶体之 分,其理想外形共包括三十个晶
面,分成五组。以 m、R、r、s和
x表示。六个m面也称柱面,六个 R面也称大棱面,六个面r也称为 小棱面,还有六个s面和六个x面。
10
2020/10/16
第5章 压电式传感器
压电晶体的三种压电效应 a) 纵向压电效应