UG运动分析教程运动仿真

合集下载

UGNX8.5运动仿真的基本介绍

UGNX8.5运动仿真的基本介绍

第2章UG NX8.5运动仿真的基本介绍本章主要介绍UGNX8.5模块中运动仿真的功能。

运动仿真是UGNX8.5模块中的主要部分,它能对任何二维或三维机构进行复杂的运动学分析、动力分析和设计仿真。

通过UG 的建模功能建立一个三维实体模型,利用UG的运动仿真功能给三维实体模型的各个部件赋予一定的运动学特性,再在各个部件之间设立一定的连接关系既可建立一个运动仿真模型。

UG的运动仿真功能可以对运动机构进行大量的装配分析工作、运动合理性分析工作,诸如干涉检查、轨迹包络等,得到大量运动机构的运动参数。

通过对这个运动仿真模型进行运动学或动力学运动分析就可以验证该运动机构设计的合理性,并且可以利用图形输出各个部件的位移、坐标、加速度、速度和力的变化情况,对运动机构进行优化。

运动仿真功能的实现步骤为:1.建立一个运动分析场景;2.进行运动模型的构建,包括设置每个零件的连杆特性,设置两个连杆间的运动副和添加机构载荷;3.进行运动参数的设置,提交运动仿真模型数据,同时进行运动仿真动画的输出和运动过程的控制;4.运动分析结果的数据输出和表格、变化曲线输出,人为的进行机构运动特性的分析UG NX8.5运动仿真的界面。

UG NX8.5运动模型管理。

UG NX8.5运动分析。

成运动过程的跟踪记录运动副的创建2.1 UGNX8.5运动仿真主界面在进行运动仿真之前,先要打开UG NX8.5运动仿真的主界面。

在UG 的主界面中选择菜单命令【启动】|【运动仿真】,随后弹出提示框,点击是按钮,如图2-1所示。

图2-1 执行运动仿真命令选择该菜单命令后,系统将会自动打开运动仿真的主界面,同时弹出运动仿真的工具栏。

2.1.1 运动仿真工作界面介绍点击运动仿真后UG 界面将作一定的变化,系统将会自动的打开UG 运动仿真的主界面。

该界面分为三个部分:运动仿真工具栏部分、运动场景导航窗口和绘图区,如图2-2所示。

图2-2 运动仿真主界面运动仿真工具栏运动仿真绘图区 运动仿真导航器运动仿真工具栏部分主要是运动仿真各项功能的快捷按钮,运动场景导航窗口部分主要是显示当前操作下处于工作状态的各个运动场景的信息。

UG6.0运动仿真

UG6.0运动仿真

连杆 1 曲线(切割路线)
运动副实例,切割机机构仿真。 定义连杆:支架为固定连杆,另外三个部件均为连杆(连杆 1,连杆 2,连杆 3)。 定义运动副:1 定义连杆 2 为滑动副,在支架的导轨上滑动。并定义驱动为恒定,初
速度为 50。 2 定义连杆 3 为滑动副,并咬合连杆 2,使其能够在连杆 2 的支架上上下
z (设计位置):单击次按钮可以使运动模型回到运动仿真前置处理之前的初始三
维实体设计状态。
z
(装配位置):单击次按钮可以使运动模型回到运动仿真前置处理后的 ADAMS
运动分析模型状态。
20
UG 产品设计师讲课大纲
4.5 机构仿真动画的导出
在运动导航器中右击仿真文件,在快捷菜单中选择导出,然后选择一种动画形式即可 将仿真动画导出。 注意:在 UG 里面,导出动画需要比较长的时间,效果也不是很好。
z
:用于设置连杆最初的转动速度。
z
:用于设置连杆最初的移动速度。
z
:用于设置连杆的基本属性。
;
:选中该复选框后,连杆将固定在当前位置不动。
;
:通过该文本框可以为连杆指定一个名称。
固定连杆
在运动仿真中,主要的运动部件我们必须把他设为连杆,对于非主要运动部件和在机
构中起支撑作用的部件,我们可以把他设置成为是基于时间的一种运动形式。机构在指定的时间中运动,并指定该时间段中的步
数进行运动分析。
Step1. 打开文件。
Step2. 选择
命令进入运动仿真模块。在“运动导航器”窗口
中的
选项上单击右键,在系统弹出的快捷菜单中选择
命令。单击命令
栏中的“动画” 命令,系统弹出“动画”对话框。
4.螺钉副

ugnx运动仿真笔记

ugnx运动仿真笔记

第一章运动仿真基础运动仿真是 NX数字仿真中的一个模块,它能对任何二维或三维机构进行复杂的运动学剖析、静力剖析,使用运动仿真的功能给予模型的各个零件必定的运动学特征,再在各个零件之间建立必定的连结关系即可成立一个运动仿真模型。

什么是运动剖析NX运动仿真模块用于成立运动机构模型,剖析模型的运动规律。

经过运动仿真能达成以下内容:创立各样运动副、传动机构、施加载荷等。

进行机构的干预剖析、距离、角度丈量等。

追踪零件的运动轨迹。

输出零件的速度、加快度、位移和力等图表。

运动仿真的实现实现运动仿真的 5个基本步骤以下:成立一个运动仿真文件(motion ,后缀为 sim)。

进行运动模型的建立,设置每个零件的连杆特征。

设置两个连杆间的运动副和增添载荷、传动副等。

进行运动参数的设置,提走运动仿真模型数据,解算运动仿真。

运动剖析结果的数据输出。

履行运动剖析仿真运动机构有 3种解算方案:惯例驱动、关节运动和电子表格驱动,详细含义以下:惯例驱动:是鉴于时间的一种运动形式。

机构在指定的时间和步数进行运动仿真,它是最常用的一种驱动。

关节运动:是鉴于位移的一种运动形式。

机构在指定的步长和步数时行运动仿真。

电子表格驱动:其的功能和关节运动、惯例驱动同样,使用电子表格作为某个运动副的驱动,例模型的运动依据指定的时间和动作达成。

达成解算后运动仿真模型,剖析结果能以5种形式输出。

动画输出:以时间和步长的形式使模型运动起来。

图表输出:对机构仿真的结果生成直观的电子表格数据,比方:位移、速度、加快度。

填补电子表格:记录运动仿真驱动运动副时间、步数到电子表格创立序列:控制一个装置运动仿真文件的装置和拆卸次序。

载荷传达:以电子表格的形式剖析零件在运动仿真过程中的受力状况。

名称含义:连杆:是连杆机构中两头分别与主动和从动构件铰接以传达运动和力的杆件。

运动副:作用是将机构中的连杆连结在一同,并定义规定的动作,常用的运动副以下:旋转副、滑动副、圆柱副、固定的、球面副、平面的。

ug弹簧运动仿真

ug弹簧运动仿真

ug弹簧运动仿真UG弹簧运动仿真概述UG是一款常用的三维CAD软件,可以进行各种物理仿真,其中包括弹簧运动仿真。

弹簧运动仿真可以模拟弹簧在不同外力作用下的变形和位移,为设计师提供了重要的参考信息。

本文将介绍如何在UG中进行弹簧运动仿真。

步骤1. 创建零件文件首先,在UG中创建一个新的零件文件。

选择“文件”菜单中的“新建”选项,然后选择“零件”类型。

在新建零件对话框中输入名称和单位,并设置适当的尺寸和精度。

2. 绘制弹簧模型接下来,使用UG中的绘图工具绘制一个弹簧模型。

可以使用圆柱体或螺旋线等基本几何体来创建弹簧模型,也可以使用插入特征或导入外部模型等方法来创建。

3. 定义材料属性在进行弹簧运动仿真之前,需要定义材料属性。

选择“材料”菜单中的“编辑材料库”选项,在材料库对话框中选择适当的材料,并设置其密度、弹性模量和泊松比等属性。

4. 定义边界条件接下来,需要定义边界条件。

选择“分析”菜单中的“新建静态分析”选项,在静态分析对话框中选择适当的设置,并设置弹簧模型的固定边界和加载边界条件。

5. 进行弹簧运动仿真完成上述步骤后,即可进行弹簧运动仿真。

选择“计算”菜单中的“计算全部”选项,UG将自动进行计算,并生成弹簧在不同外力作用下的变形和位移结果。

6. 分析结果最后,可以对仿真结果进行分析。

选择“查看”菜单中的“查看结果”选项,在结果视图中查看弹簧模型在不同外力作用下的变形和位移情况,并进行必要的修正和优化。

总结UG弹簧运动仿真是一种重要的物理仿真方法,可以为设计师提供重要参考信息。

通过以上步骤,可以在UG中轻松进行弹簧运动仿真,并得到准确可靠的结果。

ug运动仿真基本步骤

ug运动仿真基本步骤

ug运动仿真基本步骤运动仿真是一种模拟运动过程的方法,通过计算机模型来预测和分析运动的行为和性能。

它在众多领域中得到广泛应用,如机械工程、航空航天工程、汽车工程等。

下面将介绍UG软件中运动仿真的基本步骤。

一、构建模型运动仿真的第一步是构建模型。

在UG软件中,可以使用多种方式创建模型,如实体建模、曲面建模等。

在进行运动仿真时,需要将模型的各个部件组装到一起,并确保它们之间的连接正确。

通过拖拽和旋转等操作,可以将部件装配到正确的位置。

在装配过程中,可以使用约束来定义部件之间的运动关系,如旋转关节、滑动关节等。

二、定义驱动器和约束在完成模型的构建后,需要为模型添加驱动器和约束。

驱动器是指作为运动仿真输入的外部力或运动,可以是电机驱动、液压驱动等。

在UG软件中,可以通过定义位移、速度或力矩等参数来模拟驱动器的作用。

约束是指限制模型运动的规则,可以是固定、对称、平行等。

在UG软件中,可以通过选择部件上的面、边或点来添加约束。

约束可以保持部件的相对位置固定,也可以限制部件的运动范围。

通过添加约束,可以模拟实际系统中的各种约束条件,如静摩擦、动摩擦、间隙等。

三、定义边界条件边界条件是指模型的初始状态或边界条件。

在进行运动仿真时,需要定义模型的初始位置、速度和加速度等。

在UG软件中,可以通过设置初始条件来定义模型的初始状态。

边界条件还包括模型与外界的交互,如模型与地面的接触、模型与空气的流动等。

通过定义边界条件,可以模拟系统在不同环境下的运动行为。

四、设置运动仿真参数在进行运动仿真之前,还需要设置一些仿真参数,如仿真时间、时间步长等。

在UG软件中,可以通过设置仿真参数来控制仿真的精度和计算速度。

较小的时间步长可以提高仿真的精度,但会增加计算时间。

较长的仿真时间可以模拟长时间的运动,但需要更多的计算资源。

五、运行仿真完成上述步骤后,可以开始进行运动仿真。

在UG软件中,可以选择“运动模拟”功能,在仿真过程中,UG会根据模型、驱动器、约束和边界条件进行计算,并生成动画和结果数据。

UG运动仿真模块

UG运动仿真模块


机构如下:
ቤተ መጻሕፍቲ ባይዱ
• •
以下是雨刮的创建运动仿真过程: 第一步:建立连杆,本例共六个连杆,点击连杆钮,依次对蜗杆、涡轮、连 杆、滑块和雨刮建立连杆。如下图:
第二步:创建运动副,本例创建了旋转副、滑动副、齿轮副、线缆副、齿轮齿条 副。 (1)点击旋转副:对驱动轴、涡轮、连杆、雨刮创建旋转副。如下图:

创建运动副本例创建了旋转副滑动副齿轮副线缆副齿轮齿条以下依次为涡轮连杆与涡轮连杆与滑块雨刮的旋转副各副的方向跟原点如图所示3点击齿轮副
UG运动仿真
1、运动仿真定义: 运动仿真模块是CAE应用软件,用于建立运动机构模型, 分析其运功规律运动方针。 运动仿真模块可以进行机构的干涉分析。跟踪零件的运动轨迹, 分析机构中零件的速度、加速度、作用力、反作用力、和力矩等。 根据这些分析结果可以指导修改零件的结果设计或调整零件的材 料。 2、创建运动仿真的步骤 可以认为是一组连接在一起的连杆的集合。 第一步 创建连杆 第二步 创建运动付 第三步 定义运动驱动 第四步 求解 第五步 仿真 第六步 分析

第五步:仿真运动。点击动画,弹出动画对话框,点击播放按扭,即可观察 动画。

第六步:分析。点击图表,对雨刮进行运动分析,选择运动副J006,请求为 速度,组件为幅值,点击确定

雨刮的速度图表如下,速度的变化符合设计要求。
以下依次为涡轮、连杆与涡轮、连杆与滑块、雨刮的旋转副,各副的方向跟 原点如图所示

(2)点击滑动副:对滑块和线缆创建滑动副,各副的方向和原点如下图所示

(3)点击齿轮副:创建传动轴跟油轮的齿轮副,参数比率为第一个旋转副对 第二个旋转副的速度之比,此例中的比率为0.48,如下图所示。注意:齿轮 副必须建立在两个旋转上

ug运动仿真

ug运动仿真第一十四章数字样机的机构设计与运动仿真实例第一节 UG NX运动仿真基础知识1.进入UG NX运动仿真模块启动UG NX 8.0中文版软件系统,打开或创建1个装配部件(装配主模型),接着选择“起点”→“所有应用模块”→“运动仿真”菜单命令,即进入UG NX 8. 0的运动仿真模块(见图14-1)。

注意,此时的运动仿真工具栏全部命令为浅灰色(即未激活,见图14-2上图)。

选择“工具”→“定制”菜单命令,在“定制”对话框的“工具条”选项卡中,选择“运动”和“运动分析”两个工具栏,并选择“文本在图标下面”,则全部命令(含次级命令)加亮(见图14-2下图)。

单击“关闭”按钮后,全部命令重新为浅灰色。

图14-1 进入运动仿真模块图14-6 未成功创建运动仿真的实例4.运动仿真模块支持的运动分析类型(解算方案)UG NX可以执行的运动分析类型,即解算方案如下。

(1)运动学仿真机构运动学是研究机构运动的一门科学,其研究对象是连杆(构件)的位移、速度和加速度,及其与时间的关系,而不考虑运动发生的原因。

因此,在机构运动学仿真分析中只考虑运动驱动,其他的因素(如作用力、摩擦力、重力,以及零件的材料、质量)都不用考虑。

机构运动学仿真就是在不考虑力等因素影响的情况下,分析机构运动的变化规律,包括线性位移或角度位移、线性速度或角度速度、线性加速度或角度加速度随着时间变化的规律曲线,以及机构是否发生干涉和自锁,跟踪构件(UG NX称为连杆)的运动轨迹等。

通过运动学仿真,修改和运动有关的机构参数,实现机构运动参数的优化。

(2)动力学仿真机构动力学远比机构运动学复杂,它不仅涵盖了运动学分析的内容,而且还要考虑机构发生运动的真正原因,如作用力、摩擦力、重力,以及零件的材料、质量和惯性等。

机构动力学仿真就是在考虑力等因素影响的情况下,不仅分析机构运动的变化规律,包括线性位移或角度位移、线性速度或角度速度、线性加速度或角度加速度随着时间变化的规律曲线,以及机构是否发生干涉和自锁,跟踪构件(UG NX称为连杆)的运动轨迹等,而且还可以分析运动副中的作用力(矩)、反作用力(矩)。

ug nx motion机构运动仿真基础及实例

ug nx motion机构运动仿真基础及实例
UGNXMotion机构运动仿真是一种基于UGNX软件平台的机构运动分析工具,它能够模拟机构的运动及其相应的反应,为机构设计和优化提供有效的工具支持。

本文将介绍UG NX Motion机构运动仿真的基本原理和操作方法,并通过实例详细说明其应用。

首先,本文将介绍机构运动仿真的基本理论,包括机构运动的分类、运动学和动力学基本概念、运动仿真的基本流程等,以帮助读者更好地理解机构运动仿真的原理和方法。

接着,本文将详细介绍UG NX Motion机构运动仿真的操作方法,包括建立机构模型、定义运动和负载条件、设定仿真参数、运行仿真和分析仿真结果等。

通过这些操作,读者将能够熟练地使用UG NX Motion机构运动仿真工具进行机构设计和优化。

最后,本文将通过实例详细说明UG NX Motion机构运动仿真的应用,包括平面机构、空间机构、连杆机构等。

通过这些实例,读者将能够更加深入地了解UG NX Motion机构运动仿真的能力和优势,为机构设计和优化提供更加有效的支持。

综上所述,《UG NX Motion机构运动仿真基础及实例》将为读者介绍机构运动仿真的基本原理和操作方法,并通过实例详细说明其应用,为机构设计和优化提供有效的工具支持。

- 1 -。

UG运动仿真

运动仿真的工作界面本章主要介绍UG/CAE模块中运动仿真的功能。

运动仿真是UG/CAE(Computer Aided Engineering)模块中的主要部分,它能对任何二维或三维机构进行复杂的运动学分析、动力分析和设计仿真。

通过UG/Modeling的功能建立一个三维实体模型,利用UG/Motion的功能给三维实体模型的各个部件赋予一定的运动学特性,再在各个部件之间设立一定的连接关系既可建立一个运动仿真模型。

UG/Motion的功能可以对运动机构进行大量的装配分析工作、运动合理性分析工作,诸如干涉检查、轨迹包络等,得到大量运动机构的运动参数。

通过对这个运动仿真模型进行运动学或动力学运动分析就可以验证该运动机构设计的合理性,并且可以利用图形输出各个部件的位移、坐标、加速度、速度和力的变化情况,对运动机构进行优化。

运动仿真功能的实现步骤为:1.建立一个运动分析场景;2.进行运动模型的构建,包括设置每个零件的连杆特性,设置两个连杆间的运动副和添加机构载荷;3.进行运动参数的设置,提交运动仿真模型数据,同时进行运动仿真动画的输出和运动过程的控制;4.运动分析结果的数据输出和表格、变化曲线输出,人为的进行机构运动特性的分析。

打开运动仿真主界面在进行运动仿真之前,先要打开UG/Motion(运动仿真)的主界面。

在UG的主界面中选择菜单命令【Application】→【Motion】,如图9-1所示。

图9-1 打开UG/Motion操作界面选择该菜单命令后,系统将会自动打开UG/Motion的主界面,同时弹出运动仿真的工具栏。

运动仿真工作界面介绍点击Application/Motion后UG界面将作一定的变化,系统将会自动的打开UG/Motion 的主界面。

该界面分为三个部分:运动仿真工具栏部分、运动场景导航窗口和绘图区,如图9-2所示。

图9-2 UG/Motion 主界面运动仿真工具栏部分主要是UG/Motion各项功能的快捷按钮,运动场景导航窗口部分主要是显示当前操作下处于工作状态的各个运动场景的信息。

UG NX运动分析实例


运动副5(J005)角速度图:

维 设
谢谢观看!

三 维
UGNX运动分
设 计
析实例
UGNX运动分析实例
■ 通过UG NX软件,对平面四连杆机构进行三维建模,通过预先给定尺, 之后建立相应的连杆、运动副及运动驱动,对建立的运动模型进行运动 学分析,给出构件上某点的运动轨迹及速度和加速度变化的规律曲线, 用图形和动画来模拟机构的实际运动过程,这是传统的分析方法所不能 比拟的。
分析实例——求解结果分析
■ 经过解算,可对平面四杆机构进行运动仿真显示及其相关的后处理,通过动画可以观察 机构的运动过程,并可以随时暂停、倒退,选择动画中的轨迹选项,可以观察机构的运 动过程,还可以生成指定标记点的位移、速度、加速度等规律曲线。
具体操作如下:
1 如图a所示,在运动导航窗口中右键点击【XY-作图】按钮,选择【新建】,软件会 自动跳出【图表】对话框,如图b所示。选择J002旋转副后,Y轴属性请求选择速度,分量 选择角度幅值,即表示角速度,接着点击【Y轴定义】中的【+】将Y轴分量确定,最后点 击【应用】输出图表,为了方便起见,我们还可以将数据导出至Excel图表格式,如图c和 d所示。
■ 连杆添加具体操作步骤如下:
1 如图a所示,点击功能区上的【连杆】 按钮,弹出新建连杆对话框,如图b所示。
2 选中连杆1,点击【应用】创建连杆L1, 再选中连杆2点击【应用】创建连杆L2,再选 中连杆3点击【应用】创建连杆L3,再选中连 杆4点击【应用】创建连杆L4,最后单击取消 , 创建完成,可以在运动导航窗口模型树下看见 四个连杆,如图c所示。NX 10.0 环境中,系 统会自动识别连杆并创建。
6 点击运动副对话框中的【基本】标签,勾选【啮合连杆】,点击【选择连杆】,并 在视图区选择连杆1,指定连杆1的上端圆心为指定原点,同样选择Z轴正向为指定矢量。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

UG运动分析教程运动仿真
UG是一款功能强大的三维建模软件,广泛应用于各个领域,包括机械、汽车、航空等。

它不仅可以用来进行建模和设计,还可以进行动力学仿真,帮助工程师们分析和优化设计。

本教程将介绍UG中的运动分析功能,并通过一个实例来展示如何进行运动仿真。

首先,我们需要准备一个需要进行运动分析的模型。

在UG中,可以通过建模的方式创建一个模型,或者导入一个已有的模型。

在这里,我们将以一个简单的机械手臂为例。

创建一个机械手臂模型的步骤如下:
1. 打开UG软件,并选择新建一个Part文件。

2. 在Part文件中,使用线、曲线和曲面等绘图功能来绘制机械手臂的各个零件。

3.通过修剪、镜像、旋转等操作,将这些零件组合成一个完整的机械手臂模型。

完成模型的创建后,我们可以开始进行运动分析了。

UG中的运动分析功能是通过基于约束的方法实现的。

这意味着我们需要定义各个零件之间的运动约束,以模拟真实的运动过程。

下面是进行运动分析的具体步骤:
1.在UG的运动分析模块中,选择一个初始约束状态,将零件固定在所需的位置和方向上。

2.选择一个驱动装置,比如一个电机或者一个手动控制杆,用来驱动机械手臂的运动。

3.为机械手臂的各个关节添加旋转或者平移约束,限制它们的运动范围。

4.根据需求设置运动仿真的时间范围和步长。

5.运行仿真,观察机械手臂的运动过程,并分析各个关节的运动特性。

6.根据仿真结果,调整驱动装置和约束条件,优化机械手臂的设计。

通过以上步骤,我们可以利用UG的运动分析功能对机械手臂进行仿真,并得出各个关节的运动规律和优化建议。

运动分析不仅可以帮助我们
验证设计的合理性,还可以提供重要的工程参数,比如力、速度、加速度等,为进一步的设计改进提供依据。

运动分析在机械设计中的应用非常广泛,不仅可以用于机械手臂,还
可以应用于各种其他的机械设备。

UG作为一款功能强大的三维建模软件,可以帮助工程师们更加高效地进行运动分析,并得出准确的仿真结果。

总结起来,UG的运动分析功能可以帮助工程师们进行机械设备的仿
真和优化设计。

通过定义运动约束和驱动装置,进行仿真过程,我们可以
得到各个关节的运动规律和重要的工程参数,为机械设计的改进提供有效
的依据。

UG的运动分析功能在现代工程设计中具有重要的应用价值。

相关文档
最新文档