门式起重机计算书

合集下载

25吨龙门吊计算书

25吨龙门吊计算书

25吨龙门吊计算书【原创实用版】目录1.引言2.龙门吊的基本概念和结构3.25 吨龙门吊的设计参数4.25 吨龙门吊的计算过程5.结论正文一、引言龙门吊是一种广泛应用于港口、车间、仓库等场合的重型起重设备。

本文主要介绍一种 25 吨龙门吊的计算书,以便于更好地理解龙门吊的设计原理和计算过程。

二、龙门吊的基本概念和结构龙门吊,又称门式起重机,是一种桥架型起重设备,主要用于室外作业。

它由主梁、支腿、起重小车、电气系统等部分组成。

主梁是龙门吊的主要承载结构,支腿用于支撑主梁,起重小车在主梁上运行,负责吊装货物。

三、25 吨龙门吊的设计参数在设计 25 吨龙门吊时,需要考虑以下主要参数:1.载重量:25 吨2.主梁跨度:根据实际需求设定,例如 20 米3.主梁截面:根据主梁跨度和载重量计算得出,例如:200mm×200mm4.支腿高度:根据实际需求设定,例如 10 米5.起重小车参数:根据主梁跨度和载重量计算得出,例如:5 吨,5 米四、25 吨龙门吊的计算过程在计算 25 吨龙门吊的过程中,需要考虑以下方面:1.主梁弯曲强度计算:根据主梁截面和载重量计算主梁的弯曲强度,以确保主梁在吊装过程中不会发生弯曲变形。

2.主梁稳定性计算:分析主梁在各种工况下的稳定性,以确保主梁在使用过程中始终保持稳定。

3.支腿强度计算:根据支腿高度和载重量计算支腿的强度,以确保支腿在吊装过程中不会发生弯曲或屈曲。

4.起重小车计算:根据起重小车的参数和载重量计算起重小车的强度和稳定性。

五、结论本文通过对 25 吨龙门吊的设计参数和计算过程的介绍,帮助读者更好地了解龙门吊的设计原理和计算方法。

龙门吊受力计算书

龙门吊受力计算书

龙门吊受力计算书
四合同梁板预制厂的梁板浇筑及搬运采用两台龙门吊,龙门吊跨径21m,横梁由7片321型贝雷片组成;竖杆高9m,由3片321型
贝雷片组成;采用单轨移动,移动轮间距7m。

1、龙门吊内力计算:
龙门吊内力计算按照静定平面钢架进行计算,此
钢架为一简支钢架支座反力只有2个,考虑钢架
的整体平衡
∑X=0
∑M A=0
∑Y=0 V A=V B=F/2
当龙门吊搬运16m板时所承受的集中荷载F=170.04KN
V A=V B=85.02KN
弯距计算:根据内力计算法则,各杆端弯距为
M AC=669.53KN.m(右侧受拉) M CA=669.53KN.m(左侧受拉)M CD=669.53KN.m(上侧受拉) M DC=669.53KN.m(上侧受拉)M DB=669.53KN.m(右侧受拉) M BD=669.53KN.m(左侧受拉)M E=223.18 KN.m(下侧受拉)
剪力计算:根据内力计算法则,各杆端剪力为
Q AC=0 Q CA=0
Q CD=85.02KN Q DC=85.02KN
Q DB=0 Q BD=0
Q E=170.04KN
321型贝雷片允许弯距M0=975 KN.m,允许剪应力Q0=3978 KN 满足要求。

2、抗倾覆计算: P
H=9。

0m
L=7。

0m
P=98.52KN
对A点取距
抗倾覆力矩由竖向力P产生,则
M抗=P*L/2=344.82KN.m
倾覆力矩由风力或其他力F产生, 则
M倾=F*H=9F
当M抗= M倾时F最大Fmax=38.31KN
3
吊不使用时,
(见图)。

钢轨。

16T葫芦门机计算书

16T葫芦门机计算书

电动葫芦门式起重机(Q=16t L k=20.5m H=9m A3)设计计算书江苏华东起重机有限公司16t 葫芦龙门起重机是我公司设计制造的。

根据双方拟定的“技术协议”,我工程技术人员积极成立专业设计小组,进行认真地设计计算。

参照标准电动葫芦门式起重机相关内容,现对该起重机的电动葫芦的起升、运行速给于确定及起重机大车运行速度进行设计,并对相应的电动机、减速机给于确定;对起重机的门架进行设计(包括主梁的设计、支腿的内力计算以及下横梁的设计和强度校核);对起重机的大车运行方式进行设计,并对轮压进行计算,确定车轮型号及合适道轨型号。

一、葫芦起升、运行速度的确定在《起重机金属结构设计》对葫芦龙门各机构和工作速度作了如下的规定:起升速度:V q =3~7.5m/min运行速度:V x =10~40m/min大车运行速度:V d =20~60m/min其工作级别依用途不同而定,一般定为A3~A5。

根据本起重机的使用情况及使用现场,可选为A3工作制度。

再查《电动葫芦技术文件》选用CD 116-9电动葫芦即可满足本起重机的使用要求,其具体参数如下:电动葫芦型号:CD 116-9起升高度:H=9m起升速度:V q =3.5m/min运行速度:V x =20m/min二、确定大车运行速度及相对应的电动机、减速机规格1、初估电动机的功率W'由大车运行静功率计算公式:W'=W (Q +G )V 6式中 W ——大车每吨重量所产生的运行阻力(Kg/t)Q ——起重量 (t )G ——大车自重 (t )η——大车支行机构总效率 (取0.9)其中, W= (μd/2+f)KR ——车轮半径(cm )d —— 车轮轴承内径(cm )μ—— 滚动轴承摩擦系数 f —— 滚动摩擦力臂K ——轮缘摩擦阻力系数又参照标准电磁吊大车运行参数性能参数,选取:车轮直径:R=φ600mm , d=90mm再查《起重机设计手册》μ=0.015 f=0.06 K=1.6所以将数据代入公式中得 W'=8.5KW故,初选电动机 YZR160M 2-6 P=8.5KW n=908m/min2、确定减速机及大车运行速度由公式 V 大=其中 D ——车轮直径 (mm)i= = =38查标准减速机样本取 i=77.5所以,选定减速机的型号: ZSC600-IIV-1/2 i=77.51R n πD i n πD V 大93所以,实际大车运行速度 V 小= =20.5m/min3、确定电动机的型号反算电动机功率,将大车实际运行速度V 大代入公式中得W=8.5KW所以,初定电机能满足。

25吨龙门吊计算书

25吨龙门吊计算书

25吨龙门吊计算书
【最新版】
目录
1.引言
2.龙门吊概述
3.25 吨龙门吊的参数和配置
4.25 吨龙门吊的计算过程
5.结论
正文
一、引言
龙门吊是一种广泛应用于各类工程中的重要吊装设备,其强大的吊装能力为各类大型设备的安装、搬运提供了便利。

本文旨在通过对 25 吨龙门吊的计算书的分析,为读者提供有关龙门吊的基本知识和计算方法。

二、龙门吊概述
龙门吊,又称门式起重机,是一种桥架型起重设备。

它主要由主梁、支腿、起重小车、电气系统等部分组成。

龙门吊的优点在于其结构简单、操作方便、适应性强,可以满足不同场合的吊装需求。

三、25 吨龙门吊的参数和配置
在计算 25 吨龙门吊之前,需要先了解其主要参数和配置。

以下是一个示例:
1.吊装能力:25 吨
2.主梁跨度:20 米
3.支腿高度:6 米
4.起重小车:一台,可沿主梁移动
5.电气系统:包括电机、减速器、制动器、限位开关等
四、25 吨龙门吊的计算过程
在计算 25 吨龙门吊的过程中,需要考虑以下几个方面:
1.主梁结构计算:根据吊装能力、跨度和自重,计算主梁的截面面积、材料和截面形状。

2.支腿结构计算:根据支腿高度、自重和主梁载荷,计算支腿的材料和截面形状。

3.起重小车计算:根据吊装能力、起重小车的自重和移动速度,计算起重小车的电机功率、减速器速比等参数。

4.电气系统计算:根据电机功率、制动器要求和限位开关功能,选择合适的电气设备。

五、结论
通过对 25 吨龙门吊的计算书的分析,我们可以了解到龙门吊的结构特点、工作原理和计算方法。

45T门式起重机轨道梁计算书迈达斯计算

45T门式起重机轨道梁计算书迈达斯计算

荷载通过梁作用在冠梁上,冠梁对混凝土梁产生均布的反作用力为

将整块混凝土梁反过来,以施加集中力的4个轮子作为基座。以地基反力作为均布荷载作用在体系上,通过力学求解器求解出基座A、B、C、D点的内力,见下图。
受力模型简化
弯矩示意图
剪力示意图
结构为静定,通过力学求解器求得
梁下表面受拉时在产生的最大弯矩为:M=在B、C点产生的剪力最大为V=
施工荷载(CS)
SUM
合计(CS)
M[1]
车辆
2.荷载组合
名称
激活
弹性
描述
合计
承载能力极限状态
No
1.施工阶段法向压应力验算
单元
位置
类型
阶段
验算
Sig_MAX
Sig_ALW
(MPa)
(MPa)
1
I
MY-MAX
二期
OK
0
1
I
MY-MIN
二期
OK
0
1
J
MY-MAX
二期
OK
1
J
MY-MIN
二期
OK
2
I
MY-MAX
300
300
2
J
Rbar-4
OK
0
300
300
3
I
Rbar-1
OK
0
300
300
3
I
Rbar-2
OK
0
300
300
3
I
Rbar-3
OK
0
300
300
3
I
Rbar-4
OK
0
300
300

10T龙门吊计算书

10T龙门吊计算书

1 相关计算书1.1 工程概况配置1台10t-17m门式起重机,起重机满载总重37t,均匀分布在4个轮上,理论计算轮压:f=mg/4=37*1.8/4=90.65kN为确保安全起见,按1.5系数将轮压设计值提高到140kN进行设计。

基础梁拟采用500mm*1200mm矩形截面钢筋混凝土条形基础梁,长度根据现场实际情况施工,轨道梁设置在场地持力层上,混凝土强度等级为C25。

基础设计中不考虑轨道与基础的共同受力作用,忽略钢轨承载能力不计,按半无限弹性地基梁进行设计。

1.2 梁的截面特性混凝土梁采用C25混凝土,抗压强度25MPa。

设计采用条形基础,如图所示,轴线至梁底距离:y1=d2=0.52=0.25my2=d−y1=0.5−0.25=0.25m图1.2-1 基础梁截面简图梁的截面惯性矩:I=1/3(by23+by13)=0.0125m4梁的截面抵抗矩:W=Id−y1=0.01250.4−0.25=0.083m3混凝土的弹性模量:E c=2.80×104KN/m2截面刚度:E c I=0.0125∗2.8∗104=350KN/m21.3 按反梁法计算地基的净反力和基础梁的截面弯矩假定基底反力均匀分布,如图所示,每米长度基底反力值为:p =∑F L ⁄=4∗14020∗2+30=8.0KN/m 若根据脚架荷载和基底均布反力,按静定梁计算截面弯矩,则结果表明梁不受脚架端约束可以自有挠曲的情况。

反梁法则把基础梁当成以脚架端为不动支座的三跨不等跨连续梁,当底面作用以均布反力p=8.0kN/m 时,支座反力等于支座左右截面剪力绝对值之和,查《建筑施工计算手册》附表2-16得:l 1=20 q =8.0KN/mn =l 2/l 1=30/20=1.521*ql M φ= 1*ql V φ=////右左V V R +=表1.3-1 三跨不等跨连续梁的弯矩、剪力计算系数表由计算结果可见,支座反力与轮压荷载相比产生不均匀力,将支座不均匀力分布于支座两侧各1/3跨度范围,最终反梁法得到的各截面弯矩小于第一次分配弯矩,故采用Mb 最大值进行配筋验算。

完整版龙门吊计算书

下赶场沟大桥预制场74T龙门吊设计计算书下赶场沟大桥74T 龙门吊计算书一、归纳本预制场龙门吊横梁由贝雷片拼成,门柱由钢管和型钢组成;计算跨径为 24m。

1、门柱一个门柱用 2 根Φ 325mm、δ =10mm 的钢管作主立柱,立柱上采用2根[25b 槽钢作斜撑。

立柱顶上设置2 根[30b 槽钢作横梁,贝雷片直接作用于[30b 槽钢上。

立柱底部经过20mm 厚A3 钢板与单轨平车连接。

每个门柱两个平车,一个主动,一个被动。

两个平车之间用2 根 14#槽钢拼焊成箱形前后焊联。

钢管与钢横梁采用焊接连接加固。

2、横梁一组横梁用 6 排 9 片贝雷片,设置上下加强弦杆。

两端头用 4 片(90-115-90)× 118cm 支撑架连接。

中间接头均用90×118cm 支撑架连接。

同时横梁的上下面均用支撑架连接加固,除两端头上表面用(90-115-90)× 118cm 支撑架外,其余用 90×118cm 支撑架。

横梁一边经过吊带悬挂 28#工字钢设 10T 电动葫芦,用于模板安装及砼浇筑,吊带距离间隔为1m。

横梁与门柱用桁架螺栓连接,再用Φ20U 型螺栓加固。

3.天车在横梁上布置枕木、铁轨、 1.6m 主动平车。

枕木间距为60cm,5T 慢速卷扬机放平车上,用 5 门滑车组吊装 ,钢丝绳采用直径为25mm 的。

4.操作台操作台设在门柱上,两套门吊的操作台相邻设置,以便于联系,一致协调操作。

各种电缆按规定布设,保证安全,便利。

二、横梁计算对本龙门吊可进行以下简化计算,横梁拟用简支梁进行计算,脚架按受压格构柱进行计算,斜撑起牢固作用不作受力计算。

1、荷载计算横梁自重: q=11.7 KN/m天平及滑轮自重: P1=25KN起吊重量: P2=740/2=370KN2、计算简图(横梁)3、内力计算(1)最大弯矩当集中荷载作用于横梁的跨中地址,产生跨中最大弯矩,此时A、B支点也产生最大的负弯矩。

龙门吊计算书

龙门吊计算一、设计要求:门吊桁高16m,净高14m;宽28m,净宽24m;吊重50t,梁上小车10t。

设计验算要求如下:1、重和吊重作用下验算。

2、门吊在风载和自重下验算(抗倾覆)(暴风时)。

3、门吊在大风和吊重时抗倾覆验算。

二、设计验算1、吊在吊重时受力验算,由sap2000电算(见后图表)。

2、门吊在风载和自重作用下抗倾覆验算。

空载:飓风q=700Pa v>32m/s小车Q=10t;自重Q自=28×1+[(3×7+3)×2] ×0.7+10=28+33.6=71.60tk为折减系数;k取1空载F风1=S梁×q×δ=56×700×1=39200NF风2=S腿×q×δ=28×700×1=19600NF腿=2F风2 =39200NM稳=Q自×5 =716×5=3580Kn.mM倾=F风1×15+ F腿×7=39200×22=862.4Kn.mM稳>M倾3、门吊运行时在风载和吊重下倾覆验算:运行:8级大风v>32m/s;q=200PaF风1吊=56×200×1=11200NF风腿吊=28×2×200×0.5=11200NM风1吊+M风腿吊=11200×15+11200×7=246.4 Kn.mM稳=Q自×5 =716×5=3580Kn.mM稳>M倾由前面图可知只要吊重时吊绳摆幅不超过线AB则吊重有利于结构稳定。

龙门吊基础计算书

龙门吊基础计算书钢筋场龙门吊基础计算书1、龙门吊基础设计⽅案该龙门吊起吊能⼒为5T 的门吊,门吊⾃重按6T 计算。

基础采⽤条形基础,每隔10m 设置⼀道2cm 宽的沉降缝,宽1.0m,⾼35cm,基础采⽤C20砼,纵向受⼒钢筋采⽤两层共六根HPB235A 12mm 光圆钢筋,箍筋采⽤HPB235A 10mm 光圆钢筋,箍筋间距为200mm ,具体尺⼨如图1-1,1-2所⽰。

图1-2 基础钢筋砼梁侧⾯图2、基底地质情况基底为较软弱的粉质粘⼟,采⽤换填的⽅法提⾼地基承载⼒,基底换填0.5m 厚的碎⽯⼟,未压实,按松散考虑,地基基本承载⼒为σ0为200~200kPa ,取200Kp 。

查《路桥施⼯计算⼿册》中碎⽯⼟的变形模量E 0=29~65MPa ,粉质粘⼟16~39MPa,为安全起见,取碎⽯⼟的变形莫量E 0=29 MPa ,粉质粘⼟16MPa 。

3、建模计算3.1、⼒学模型简化基础内⼒计算按弹性地基梁计算,⽤有限元软件Midas Civil2010进⾏模拟计算。

即把钢筋砼梁看成梁单元,将地基看成弹性⽀承。

龙门吊⾃重按6T 计算,总重11T ,两个受⼒点,单点受集中⼒5.5T ,基础梁按10m 长计算。

具体见图3-3。

图3-1 ⼒学简化模型3.2、弹性⽀撑刚度推导根据《路桥施⼯计算⼿册》可知,荷载板下应⼒P 与沉降量S 存在如下关系:230(1)10cr P b E s ωυ-=-?其中:E0-----------地基⼟的变形模量,MPa ;ω-----------沉降量系数,刚性正⽅形板荷载板ω=0.88;刚性圆形荷载板ω=0.79;ν-----------地基⼟的泊松⽐,为有侧涨竖向压缩⼟的侧向应变与竖向压缩应变的⽐值;Pcr-----------p-s 曲线直线终点所对应的应⼒,MPa ;s-------------与直线段终点所对应的沉降量,mm ;b-------------承压板宽度或直径,mm ;不妨假定地基的变形⼀直处在直线段,这样考虑是⽐较保守也是可⾏的。

ME50+50-38A3门式起重机设计计算书

龙门吊设计计算书(ME50t+50t-38mA3三角桁架龙门吊)计算内容:龙门吊结构计算、龙门吊抗倾覆计算设计人:年月日校核人:年月日审定人:年月日目录龙门吊设计计算书 0一、设计依据 (2)二、主要性能参数 (2)三、龙门吊组成 (2)四、龙门吊结构设计计算 (2)五、龙门吊抗倾覆计算 (7)一、设计依据1、《起重机设计规范》(GB3811-2008);2、《钢结构设计规范》(GB50017-2003);3、《公路桥涵设计通用规范》(JTG D60-2004)4、起重机安装使用说明书、合格证、强度校核计算说明书;5、《特种设备安全法》;二、主要性能参数三、龙门吊组成四、龙门吊结构设计计算(一)提升小车(1)主要性能参数(2)起升机构计算已知:起重能力Q静=Q+W吊具=50t+1t=51t粗选:单卷扬,倍率m=10,滚动轴承滑轮组,效率η=0.91。

见《起重机设计手册》表3-2-11,P223。

则钢丝绳自由端静拉力S:S=QJ静/(η×m)=51/(0.91×10)=5.6t,选择一台8t卷扬机。

钢丝绳破断拉力总和∑t:∑t= S ×n/k=2.8×5/0.82=17t,选择钢丝绳:6×37—22—1570,GB8918-2006。

(二)C型主梁(以单根主梁分析)(1)计算载荷①额定起重量:Q1=500kN ②吊具自重:Q2=10kN③天车自重:Q3=65kN ④C型主梁自重:q=3.6kN/m(2)载荷系数:冲击系数:k1=1.1((GB3811-2008《起重机设计规范》P13)动载系数:k2=1.05 (GB3811-2008《起重机设计规范》P11)安全系数:[K]=1.22(3)载荷组合:P=1.1*(500+75)*0.5=316.25kN(4)计算参考数值:C型主梁截面技术特性:[σ]=215MPa E=2.1×105MPa [τ]=145MPa [f]=1/500 (5)内力计算(按最不利工况计算)①最大弯矩:计算简图M = 0.25PL+0.125qL2= 0.25×316.25×24+0.125×3.6×382= 2547.3 kN•m②强度校核:(以上弦计算)σx =Mx/Wx=2547.3×106/20924483=121 MPa安全系数:K=[σ]/σx=215/121=1.7 >[K]=1.22③刚度校核:f max =PL3/48EIx+5qL4/384EIx=316250×380003/(48×2.1×106×21944893353)+5×3.6×380004/(384×2.1×106×21944893353)=10mm<[f]=38000/500=76mm④剪力校核:(最不利工况)Q max =316.25KN A下=12960mm2τmax=1.5 Q max / A下=1.5×316.25×103/12960=37Mpa≤[τ]=145Mpa 验算结果:C型主梁强度、刚度、剪力均符合使用要求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

仅供个人学习参考
门式起重机计算书
型号:
MDG

起重量:
主钩50T副钩10T

跨度:
24M

有效悬臂:
左9M右9M

工作级别:
A5

内容:
悬臂刚度强度校核;整机稳定性校核

50/10-24M单梁门式起重机计算书
起重机主参数及计算简图:
小车自重:GX=153.8KN主梁自重:GZ=554.1KN走台栏杆滑导支架等附件:GF=40.2KN
桥架自重:1100.54KN额定起重量:GE=490KN

刚性支腿折算惯性矩:4103311018.512MMbhBHI

主梁截面惯性矩:410332109.712MMbhBHI
主梁X向截面抵弯矩:373310087.76MMHbhBHWX
主梁Y向截面抵弯矩:373310089.56MMBhbHBWY
一.悬臂强度和刚度校核。
Ⅰ.悬臂刚度校核
该门式起重机采用两个刚性支腿,故悬臂端挠度计算按一次超静定龙门架计算简图计算。
式中C3:小车轮压合力计算挠度的折算系数
=1.00055
K:考虑轮缘参与约束,产生横向推力
P1,P2:小车轮压
代入数值:

按起重机设计规范有效悬臂端的许用挠度:mmLfK7.253509000350][
结论:综上计算校核,该起重机的悬臂梁的刚度满足起重机械设计规范的要求。
Ⅱ.悬臂的强度校核
仅供个人学习参考

1. 该起重机悬臂的危险截面为支承处截面,满载小车位于悬臂端时该截面受到最大弯曲应
力和最大剪应力。
此时弯曲应力:

式中xM为垂直载荷(固定载荷和移动载荷组成)产生的弯矩

qw
M
由风载荷产生的水平弯矩
(wW为计算风压,按起重机设计规范内陆取150N/M2)
s
q
M
由主梁自重惯性力产生的梁最大水平弯矩

s
p
M
由小车轮压引起的水平惯性载荷产生的水平弯矩

T
M
由小车制动引起的水平弯矩

所以:
按起重机设计规范强度计算按载荷组合Ⅱ进行,故安全系数取1.33,许用应力为

./7.176][2mmN

][max
满足要求。
2. 小车在悬臂端产生扭转载荷引起的扭矩和垂直载荷产生最大剪应力
式中21nnKMMM(1nM为起重量及小车自重引起的扭矩,2nM大车制动小车轮压引起的扭矩)

2
)()]()([02112hPPeBGeBGMSSXCEK
(e为主梁弯心距轨道中心距离0212Be)
37
1034.4MMSX

X
S
为中性轴x以上截面对x轴的静面矩

26
1013.3mm

为悬臂截面中心线所包围面积的2倍

所以:
按起重机设计规范强度计算按载荷组合Ⅱ进行,其许用剪应力

2
/02.10237.1763][][mmN


][max
满足要求。

3. 由于该危险截面受最大正应力和最大剪应力,故还需验算复合应力
故][1.132max2max成立
结论:综上计算校核,该起重机的悬臂梁的强度满足起重机械设计规范的要求。
二.起重机整机稳定性校核
该起重机为工作场地固定的桥门式类型起重机,故其起重机组别为Ⅲ。该地区属内陆地区。又
因其带有悬臂的门式起重机,故整机稳定性校核有三种工况:1.无风静载2.有风动载3.暴风侵袭
下的非工作状态。
1. 无风静载
仅供个人学习参考

工况为小车位于悬臂端,起吊额定起升载荷。其抗倾覆稳定性计算条件式:
式中95.0GK自重载荷系数

4.1PK
起升载荷的载荷系数
MC12
桥架重心到倾覆边的水平距离
故该工况通过抗倾覆稳定性校核。
2. 有风动载
工况为满载小车在悬臂端起制动,工作状态下的最大风力向不利于稳定的方向吹。其抗倾
覆稳定性计算条件式:

式中95.0GK自重载荷系数

2.1PK
起升载荷的载荷系数
aGI
EP5

小车运行起制动引起物品的水平惯性力

aGI
X52

小车运行起制动引起小车的水平惯性力

qACKF
Zh1
纵向作用于桥架上的风力

EQGF03.0
作用于起吊物上的风力

故该工况通过抗倾覆稳定性校核。
3. 暴风侵袭下的非工作状态
其抗倾覆稳定性计算条件式:

式中mB91大车轮距

qACKFHh'
1
横向作用于桥架和小车上的风力

mh15.13'
1
桥架与小车架横向挡风面积自支腿铰接点起的形心高度

故该工况通过抗倾覆稳定性校核。
结论:综上计算校核,该起重机整机稳定性满足起重机械设计规范的要求。

相关文档
最新文档