透射显微镜的工作原理
透射电子显微镜介绍

对于材料研究用的TEM试样大致有三种类型: 经悬浮分散的超细粉末颗粒。 用一定方法减薄的材料薄膜。 用复型方法将材料表面或断口形貌复制下来的复型膜。
对支持膜的要求:
➢ 要有相当好的机械强度,耐高能电子轰击; ➢ 应在高倍下不显示自身组织,本身颗粒度要小,以提高样品分辨率; ➢ 有较好的化学稳定性、导电性和导热性。
二、透射电子显微成像
使用透射电镜观察材料的组织、结构,需具备以下两个前提: 一是制备适合TEM观察的试样,厚度100-200nm,甚至更薄; 二是建立电子图像衬度理论 像衬度是指电子像图上不同区域间光强度的差别。 透射电镜的像衬度来源于样品对入射电子束的散射。可分为:
衍射衬度:晶体薄膜试样显微图像 质厚衬度 :非晶态试样图像
形貌+结构 空心结构
四、透射电镜得到的信息
晶格条纹+电子衍射
(1)量取两个晶面晶面之间的距离 (2)与标准卡片去比对,选择合适的面
四、透射电镜得到的信息
线扫 Line Scan 面扫 Mapping
EDS元素分析
四、透射电镜得到的信息
总
一般成像 模式
明场像 (BF) 暗场像 (DF)
微观形貌,厚度差异,尺寸大小 取向,分布,结构缺陷
在明场像情况下,原子序数较高或样品较厚的 区域在荧光屏上显示较暗的区域。在暗场像情 况下,与明场像相反。
质量厚度衬度:对于无定形或非晶体试样,电子图像的衬度是由于试样各 部分的密度ρ和厚度t不同形成的,简称质厚衬度。
成像的影响因素
➢ 电子数目越多,散射越厉害,透射电子就越少,从而图像就越暗 ➢ 样品厚度、原子序数、密度对衬度也有影响,一般有下列关系:
透射电镜TEM原理详解

度为ρ和厚度为t旳样品上,若入射电子数为n,经过
厚度为dt后不参加成象旳电子数为dn,则入射电子散
射率为
单个原子旳散射截面
dn N dt A 0
每单位体积样品旳散射面积
n
M
单位体积样品中包括旳原子个数
厚度为dt旳晶体总散射截面
将上式积分,得:
N
N0
exp
N A 0t
M
式中N0为入射电子总数(即t=0时旳n值),N为最终参 加成像旳电子数。
G t
当A、B两区不是由同一种物质构成时,衬 度不但取决于样品旳厚度差,还取决于样品旳 原子序数差。
一样旳几何厚度,含重原子散射作用强, 相应旳明场像暗;反之,由轻原子构成旳区域, 散射作用弱,相应旳明场像亮.
复型样品旳制备中,常采用真空镀膜投影 旳措施,因为投影(重)金属或萃取第二相粒 子旳原子序数总是比复型材料大得多,所以经 过投影旳复型图像衬度要高得多。
特点
透射电镜旳明显特点是辨别本 事高。目前世界上最先进旳透射 电镜旳辨别本事已到达0.1nm,可 用来直接观察原子像。
相 位 衬 度
衍射衬度
位错
质厚衬度
二相粒子萃取复型 样品制备示意图
45钢900℃水淬, 600℃回火1h,6000×
• 具有一定能量旳电子束与样品发生作用,透过样品 旳电子束,携带了反应样品微区厚度、平均原子序 数、晶体构造或位向差别旳多种信息,这么旳电子 束经放大后形成反应这些信息旳透射电子像。
微镜辨别率旳理论极限。若用波长最短旳可见光(λ= 390nm )作
照明源,则
r0≈200nm 200nm是光学显微镜辨别本事旳极限
怎样提升显微镜旳辨别率
• 根据透镜辨别率旳公式,要想提升显微镜旳辨别率,关键 是降低照明光源旳波长。
透射电子显微镜--原理

• • • • Brightness Lifetime Pressure (vacuum) = related to the price Maintenance
Zhengmin Li
16
各种电子枪的比较
Brightness (Candela)
Life time 40hr >2000Hr >7000Hr
Zhengmin Li 30
物镜极靴
(OL Polepiece)
Zhengmin Li 31
真空系统
电子显微镜镜筒必须具有很高的真空度,这是因 为:若电子枪中存在气体,会产生气体电离和放 电,炽热的阴极灯丝受到氧化或腐蚀而烧断;高 速电子受到气体分子的随机散射而降低成像衬 度以及污染样品。一般电子显微镜镜筒的真空 要求在10-4~10-6 Torr。真空系统就是用来把镜 筒中的气体抽掉,它由二级真空泵组成,前级为 机械泵,将镜筒预抽至10-3 Torr,第二级为油扩散 泵,将镜筒抽空至10-4~10-6 Torr的真空度后,电镜 才可以开始工作。
Zhengmin Li 3
德国EM-902
Zhengmin Li 4
日本电子株式会社 (JEOL) JEM-1230
Zhengmin Li 5
Philips EM400T
Zhengmin Li 6
Philips TECNAI-20
Zhengmin Li 7
TEM 的基本工作原理
电子枪产生的电子束经1~2级聚 光镜会聚后均匀照射到试样上的 某一待观察微小区域上,入射电 子与试样物质相互作用,由于试 样很薄,绝大部分电子穿透试样, 其强度分布与所观察试样区的形 貌、组织、结构一一对应。 在观察图形的荧光屏上,透射出 试样的放大投影像,荧光屏把电 子强度分布转变为人眼可见的光 强分布,于是在荧光屏上显出与 试样形貌、组织、结构相对应的 图像。
仪器分析SEMTEM

仪器分析SEMTEMSEM(扫描电子显微镜)和TEM(透射电子显微镜)是两种常用的仪器分析方法,用于观察材料的微观结构和成分。
它们都利用电子束与样品的相互作用来获取信息。
下面将分别介绍SEM和TEM的工作原理和应用。
SEM利用高能电子束与样品表面的相互作用来观察样品的表面形貌和成分。
其工作原理如下:电子枪产生的聚焦电子束通过透镜系统形成一个细小的电子束,并聚焦引导到样品表面上。
与样品表面相互作用的电子束导致了反射、散射或吸收,其中部分电子通过接收器收集到形成信号。
这些信号被转换成图像,并在显微镜屏幕上显示出来。
SEM可以提供高分辨率、大深度以及大视场的表面形貌图像,并且可以通过能谱分析系统对样品的元素组成进行表征。
SEM广泛应用于材料科学、生物科学、纳米科学等领域。
在材料科学中,SEM可以用于观察材料的晶体形态、纹理、表面缺陷等。
在生物科学中,SEM可以用于观察细胞、组织和生物材料的形貌和结构。
在纳米科学中,SEM可以用于研究纳米材料的形貌、尺寸和形状。
此外,SEM还可以用于分析样品的成分和化学组成。
相比之下,TEM是一种通过透射电子束与样品相互作用来观察材料的内部结构和成分的方法。
其工作原理如下:电子枪产生的电子束经过透镜系统形成一个细小的电子束,并聚焦到样品上。
样品上的一部分电子透过样品,并通过设备上的透射电子探测器来检测。
这些透射电子被转换成图像,并在显微镜屏幕上显示出来。
TEM具有高分辨率的优点,可以提供关于样品内部结构和成分的详细信息。
TEM广泛应用于材料科学、生物科学、纳米科学等领域。
在材料科学中,TEM可以用于观察材料的晶格结构、晶界、层状结构等。
在生物科学中,TEM可以用于观察细胞、组织和病毒等的内部结构。
在纳米科学中,TEM可以用于观察纳米材料的结构、尺寸和形貌。
此外,TEM还可以用于分析样品的成分和化学组成。
综上所述,SEM和TEM是常用的仪器分析方法,用于观察材料的微观结构和成分。
透射电镜工作原理

透射电镜工作原理
透射电镜是一种使用电子束取代光束的显微镜。
它通过加速电子到高速,并将其聚焦在一个非常小的点上,然后让这些电子穿过样品,通过传递的电子来获取样品的高分辨率图像。
透射电镜的工作原理是基于电子在穿过物质时的相互作用。
当电子束进入样品时,一些电子会被样品原子的电场散射或反射。
然而,大多数电子会穿过样品的原子和分子之间的空隙,形成显微图像。
为了获得高分辨率,透射电镜使用一个电子透镜来控制电子束的聚焦。
这个透镜可以调整电子束的焦距,使其能够穿过样品的不同区域,并在检测器上形成高分辨率的图像。
通过控制电子束的聚焦和透镜的属性,可以获得不同深度的样品图像。
另外,透射电镜还使用一种叫做散射栅的装置,可以通过改变电子束入射角度来探索样品的不同角度。
这样可以获取不同方向上的样品图像,并且在一定程度上提高了透射电镜的分辨率。
透射电镜可以用于研究各种样品,包括生物分子、晶体、纳米颗粒等。
它在材料科学、生物学、纳米科技等领域有着广泛的应用。
由于电子具有比光更短的波长,透射电镜能够提供更高的分辨率,可以观察到更小尺寸的细节,并提供更丰富的信息。
透射电镜的工作原理

透射电镜的工作原理
透射电镜是一种高级显微镜,它利用电子束而不是光束来观察样品的微观结构。
透射电镜的工作原理主要包括电子源、电子透镜系统、样品台和检测系统。
首先,电子源产生高能电子束。
通常采用热阴极发射电子的方式,通过加热使
阴极发射出电子,然后经过一系列的加速器和聚焦器,将电子束聚焦到极小的直径,以便能够穿透样品并形成清晰的像。
其次,电子透镜系统起到聚焦和成像的作用。
透射电镜中的电子透镜系统通常
包括几个电磁透镜,通过调节透镜的电压和电流,可以控制电子束的聚焦和偏转,从而实现对样品的高分辨率成像。
然后,样品台是样品放置的地方。
在透射电镜中,样品通常需要制备成极薄的
切片,以便电子束可以穿透并形成像。
样品台通常可以在多个方向上进行微小的移动,以便对样品进行全方位的观察和分析。
最后,检测系统用于接收电子束穿过样品后的信号,并将其转换成图像。
检测
系统通常采用荧光屏或者数字传感器,将电子束的信号转换成可见的图像,并通过电子显微镜的显示器或者计算机进行观察和分析。
总的来说,透射电镜的工作原理是利用高能电子束穿透样品,通过电子透镜系
统的聚焦和成像,将样品的微观结构放大成可见的图像,从而实现对样品的高分辨率观察和分析。
透射电镜在生物学、材料科学、纳米技术等领域有着广泛的应用,对于研究微观结构和表征样品具有重要意义。
TEM电子显微镜工作原理详解

TEM电子显微镜工作原理详解TEM电子显微镜是一种高分辨率的分析仪器,能够在纳米尺度下观察材料的微观结构和成分,对于研究材料的性质和特性具有重要意义。
本文将详细介绍TEM电子显微镜的工作原理,包括透射电子显微镜和扫描透射电子显微镜。
透射电子显微镜(Transmission Electron Microscope,TEM)工作原理:透射电子显微镜主要由电子光源、透镜和探测器组成。
首先,电子光源发射高能电子束,这些电子从阴极发射出来,经过加速器获得较高的能量。
然后,电子束通过一系列的电磁透镜进行聚焦,使电子束变得更加细致和密集。
接着,电子束通过物质样本,部分电子被样本吸收或散射,形成透射电子。
这些透射电子被接收器捕获和放大成像,形成TEM图像。
透射电子显微镜的工作原理是基于电子的波粒二象性。
电子是一种粒子同时也是一种波动,其波动性质使得它具备非常短的波长,远远小于可见光的波长。
这使得TEM能够观察到比传统光学显微镜更小的尺度。
另外,透射电子显微镜在工作中还需要考虑电子束的束流强度、对样本的破坏性和控制样本与探测器之间的距离等因素。
TEM电子显微镜通过透射电子成像方式观察样本,因此对样本的制备要求非常高。
样品需要制备成非常薄的切片,通常厚度在几十纳米到几百纳米之间,以保证电子可以穿透。
对于一些无法制备成切片的样品,可以利用离子切割或焦离子技术获得透明的样品。
此外,在观察样本时需要避免污染和氧化等现象。
扫描透射电子显微镜(Scanning Transmission Electron Microscope,STEM)工作原理:扫描透射电子显微镜是透射电子显微镜的一种变种,它在透射成像的基础上加入了扫描功能。
STEM可以实现高分辨率的成像,同时也可以进行能谱分析和电子衍射。
STEM电子显微镜工作原理类似于透射电子显微镜,但需要注意的是,STEM使用的电子束并不需要通过所有的样本区域。
电子束只需通过样本中的一个小区域,然后扫描整个样本,因此样本制备要求和透射电子显微镜相比较低。
透射电子显微镜的结构与功能

化学成分分析
01 通过能谱仪(EDS)等附件,对样品进行化学成 分分析。
02 可以检测样品中的元素组成、元素分布和含量。 03 对材料科学、生物学等领域的研究具有重要价值
。
动态过程观察
01
透射电子显微镜可以观察样品的动态过程,例如相变、化学 反应等。
02
通过拍摄连续的显微图像,观察样品在时间尺度上的变化。
中间镜
用于进一步放大实像或改 变成像性质。
投影镜
将最终的放大实像投射到 荧光屏或成像设备上。
真空系统
真空泵
维持透射电子显微镜内部的高真空环境,以减少电子束在空气中散射和吸收。
真空阀
压电源
为电子枪提供加速电压,使电子束具有足够的能量穿 过样品。
高成本
透射电子显微镜的制造成本较高,维 护和运行成本也相对较高。
06
CATALOGUE
透射电子显微镜的发展趋势与展望
高分辨技术
原子像分辨率
01
通过提高电子枪的亮度和像差矫正技术,实现原子级别的分辨
率,观察更细微的结构细节。
动态范围
02
提高成像系统的动态范围,以适应不同样品厚度的观察,更好
地展示样品的层次结构。
样品
样品是透射电子显微镜中的观察对象,通常为薄片或薄膜 。样品需要足够薄,以便让电子束穿透并观察到内部的细 节。
为了保证观察结果的准确性和可靠性,样品需要经过精心 制备和处理,如脱水、染色、切片等。同时,样品的稳定 性也至关重要,以确保在观察过程中不会发生形变或损坏 。
物镜
物镜是透射电子显微镜中的重要元件之一,它对电子束进行放大并传递给下级透 镜。物镜的放大倍数决定了显微镜的总放大倍数。
透射电子显微镜的 结构与功能
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
透射显微镜的工作原理
透射电子显微镜(Transmission Electron Microscope, TEM)是
一种利用电子束传递来对样品进行观察和分析的仪器。
它在细胞生物学、材料科学等领域发挥着重要作用。
透射电子显微镜的工作原理可以分为以下几个步骤:
1. 电子源产生电子束:透射电子显微镜使用一个电子枪产生高速的电子束。
电子束首先通过专门设计的系统进行聚焦和收束,以保证电子束的直径足够小。
2. 束缚电子(束缚脱电子):电子束通过束流进样品。
所谓束缚电子指的是样品原子中的电子在电子束的作用下被激发到较高能级,这样使得它们遵循一定的路径发射出来,形成散射电子和被束囚电子。
这些束缚电子会以不同的角度散射出电子束。
3. 透射电子的形成:束囚电子的路径会受到样品物质的阻碍而改变方向,其中一部分束囚电子将经过样品而形成透射电子。
透射电子在通过样品时会和样品的原子、分子以及晶体结构发生相互作用。
4. 透射电子的收集和分析:透射电子进入显微镜的透射电子探测器,探测器会将透射电子转化为电荷信号,并将信号传递给显示屏或电子学器件。
然后根据散射模式和信号的强度,可以确定样品的结构、形态和成分。
通过透射电子显微镜,我们可以观察到极小的事物,像原子和分子,因为电子的波长比光的波长小得多。
在透射电子显微镜
中,细致的样品制备、高真空环境以及精密的光学系统都是保证获得高分辨率和清晰图像的关键。