第二章 透射电子显微镜 (TEM)
TEM简介

透射电子显微镜技术简介透射电子显微镜(Transmission Electron Microscope,TEM),简称透射电镜,是把经加速和聚集的电子束投射到非常薄的样品上,电子与样品中的原子碰撞而改变方向,从而产生立体角散射。
散射角的大小与样品的密度、厚度相关,因此可以形成明暗不同的影像。
通常,透射电子显微镜的分辨率为0.1~0.2nm,放大倍数为几万~百万倍,用于观察超微结构,即小于0.2微米、光学显微镜下无法看清的结构,又称“亚显微结构”。
一、透射电镜的成像原理如图所示,电子枪发射的电子在阳极加速电压的作用下,高速地穿过阳极孔,被聚光镜会聚成很细的电子束照明样品。
因为电子束穿透能力有限,所以要求样品做得很薄,观察区域的厚度在200nm左右。
由于样品微区的厚度、平均原子序数、晶体结构或位向有差别,使电子束透过样品时发生部分散射,其散射结果使通过物镜光阑孔的电子束强度产生差别,经过物镜聚焦放大在其像平面上,形成第一幅反映样品微观特征的电子像。
然后再经中间镜和投影镜两级放大,投射到荧光屏上对荧光屏感光,即把透射电子的强度转换为人眼直接可见的光强度分布,或由照相底片感光记录,从而得到一幅图1. 透射电镜与普通光学显微镜结构对比具有一定衬度的高放大倍数的图像。
透射电子显微镜的成像方式可表述为:1.由电子枪发射高能、高速电子束;2.经聚光镜聚焦后透射薄膜或粉末样品;3.透射电子经过成像透镜系统成像;4.激发荧光屏显示放大图像;5.专用底片/数字暗室记录带有内部结构信息的高分辨图像;二、透射电子显微镜的结构透射电镜一般是由电子光学部分、真空系统和供电系统三大部分组成。
1.电子光学部分整个电子光学部分完全置于镜筒之内,自上而下顺序排列着电子枪、聚光镜、样品室、 物镜、中间镜、投影镜、观察室、荧光屏、照相机构等装置。
根据这些装置的功能不同又可将电子光学部分分为照明系统、样品室、成像系统及图像观察和记录系统。
TEM电子透射电镜

TEM电子透射电镜TEM的优点有以下几个:1(信息采集范围小。
这是TEM最大的一个优点。
TEM的实验区域可以极其微小,可以直接在极微小区域内取得数据。
现在最先进的TEM已经可以对小于0.1纳米的区域进行拍照和分析。
在各种科学仪器中,只有扫描探针显微镜能达到这样的分析尺度。
但是二者不能相互替代,扫描探针显微镜研究范围只局限于表面,TEM 得到的信息来自样品的三维结构。
但是这种微小的分析尺度有时候也会带来局限性,下面会谈到。
2(工作模式多样。
透射电子显微镜(Transmission electron microscope,TEM)不仅仅具有通常显微镜的放大作用。
它还可以作为一台电子衍射仪提供样品的结构信息。
配合各种信号探测器,它又能对样品做化学成分或者磁、电性能的分析。
并且这些功能之间的转换非常方便,甚至可以同时进行。
TEM的缺点主要在以下几个方面:1(破坏性样品制备。
TEM需要很薄的样品使电子束能够穿过。
对于大多数材料,要求在微米以下。
这显然远远低于通常块体材料的厚度,所以需要认为地把样品减薄。
这实际上是个对材料的破坏过程。
这个过程有可能使样品发生变化,以致最终看到的并非材料原先的性质,而是制样过程引入的假象。
2(电子束轰击。
TEM中使用高能电子束照射样品,电子能量在105,106eV量级,并且束流密度很高。
换句话说就是在实验过程中大量高能量电子被持续地倾泻到样品上。
大部分电子会毫无遮挡地穿过样品,其余的电子会和样品里的原子发生碰撞,并且可能在碰撞时向原子传递能量。
样品吸收能量后可能出现多种变化,比如温度升高,原子电离,原子移动,等等。
而这些变化又可能引发更多相关变化,比如相变,缺陷移动,结构崩塌,原子迁移,等等。
某些情况下,研究人员会有意识地利用轰击作用研究材料的变化情况,但是多数情况下这种作用是不利的。
3(真空环境。
TEM实验需要在真空环境里进行,至少目前还是这样。
这种环境可能会对材料的性质或结构有影响,尤其是做表面研究的时候。
透射电子显微镜结构及工作原理参考幻灯片

– condenser lenses (control the electron beam)
2.1.1 Electron gun
• provides source of electrons to illuminate the specimen.
In the parallel-beam mode • usually no need to change
C1. • adjust the C2 lens to
produce an underfocused image of the C1 crossover.
focus underfocus overfocus
• good stability • long lifetime
Characteristics of the three sources operating at 100kV
Working temperature (K) Current density (A/m2)
Crossover Size (m) Brightness (A/m2sr) Energy spread (eV) Emission Current Stability (%/hr) Vacuum (Pa) Lifetime (hr)
Thermionic Emission
• If any material to be heated to a high enough temperature, the electrons gains sufficient energy to overcome the natural barrier (work function) that prevents them from leaking out to escape from the source.
第二章透射电子显微镜1_11-9-14讲义

目前AFM在扫描探针显微镜(scanning probe microscope)家族中灵敏度最高、分辨率最好并且应用 范围也最广,它对待测物要求低,既可以是导体也可以 是非导体,且实验可在真空、气体甚至在液体的环境中 也能正常进行。
10μm×10μm
AFM针尖对基质Au-Pa合金上的机械刻 蚀,书写了世界上最小的唐诗
原子操縱術 用35个氙原子排出“IBM”三个字母
1990年,IBM研究人員首度在金属镍表面用35 个惰性气体氙原子组成“IBM”三个英文字母 。
后來,又搬移近百顆铁原子形成中文“原子”二 字。此结果成为杂志及国际研讨会的封面图案。
♦ 1926年德国学者Busch指出“具有轴对称的磁场对电子束起着透镜 的作用,有可能使电子束聚焦成像”,为电子显微镜的制作提供 了理论依据。
♦ 1931年,德国学者Knoll及Ruska获得了放大12-17倍的电子光学 系统中的光阑的像,证明可用电子束和电磁透镜得到电子像。但 还不是真正的电子显微镜,因为它没有样品台。
加速电压
代表产品
常规 100-200kV JEM-2010,H-8000,
TEM
CM200,TECNAI20
♦ Knoll在1960年10月17日写了一封信给Steenbeck,希望了 解当时的具体情况。Steenbeck 在11月8日的复信中承认了 他在参观后向Rüdenberg做了汇报,并说“Rüdenberg的申 请肯定是我访问你的结果,也肯定是从我的见闻中得到的 启迪”。
♦ 电子显微镜的发明开辟了直接观察原子的途径,早在几十 年前就应得诺贝尔奖,由于有上述瓜葛,直荣而又 仅存的Ruska。
透射电镜(TEM)原理详解(课堂PPT)

G t 36
当A、B两区不是由同一种物质组成时,衬
度不仅取决于样品的厚度差,还取决于样品的
原子序数差。
同样的几何厚度,含重原子散射作用强,
相应的明场像暗;反之,由轻原子组成的区域,
散射作用弱,相应的明场像亮.
复型样品的制备中,常采用真空镀膜投影
的方法,由于投影(重)金属或萃取第二相粒
的圆盘,圆盘面垂直于入射电
子束,并且每个入射电子射中
一个圆盘就发生偏转而离开原
入射方向;未射中圆盘的电子
则不受影响直接通过。
27
散射截面的大小
按Rutherford模型,当入射电子经过原子核附近时,
其受到核电场的库仑力-e2Z/rn2作用而发生偏转,其轨
迹是双曲线型。散射角n的大小取决于入射电子和原
0.2~0.3nm
有效放大倍数
103×
106×
物镜孔径角
约700
<10
景深
较小
较大
焦长
较短
较长
像的记录
照相底板
照相底板
正是由于 α很小, TEM的 景深和焦 长都20很大
• TEM成像系统可以实现两种成像操作:一种是将物 镜的像放大成像,即试样形貌观察;另一种是将物 镜背焦面的衍射花样放大成像,即电子衍射分析。
度为ρ和厚度为t的样品上,若入射电子数为n,通过
厚度为dt后不参与成象的电子数为dn,则入射电子散
射率为
单个原子的散射截面
dn N dt A 0
每单位体积样品的散射面积
n
M
单位体积样品中包含的原子个数
厚度为dt的晶体总散射截面
将上式积分,得:
N
N
0
exp
TEM

1.2.3 PhilipsCM200-FEG场发射枪透射电 子显微镜
Philips CM200-FEG场发射枪透射电子显微镜是20世纪90 年代的产品,晶格分辨率为0.14nm,点分辨率为0.24nm,加速 电压约200kV,可以连续设置加速电压。
1.2.4 Tecnai F20-twin 场发射枪透射电 子显微镜
4.1.1点分辨率 定义:透射电镜刚能分清的两个独立颗粒的间隙或中心距离。 测定方法:Pt或贵金属蒸发法。 Pt或贵金属蒸发法。 Pt或贵金属蒸发法
真空加热蒸发
Pt或贵金属 Pt或贵金属
控制好工艺
在支持膜(火棉胶、碳膜) 在支持膜(火棉胶、碳膜) 可得到粒径0.5 1nm、 0.5上,可得到粒径0.5-1nm、 间距0.2 1nm的粒子 0.2间距0.2-1nm的粒子
1.心肌细胞 1.心肌细胞 myocardial cell 2.细胞核 细胞核nucleus 2.细胞核nucleus 3.Z带 3.Z带Z band 4.线粒体 4.线粒体 mitochondria
7.5心肌袖(心房肌)传导组织内的P细胞×5000
1.致密电子颗粒 1.致密电子颗粒 dense electronic granules 2.P细胞核 2.P细胞核 nucleus of P cell 3.心房肌细胞 3.心房肌细胞 atrial myocardial cell Z带 4. Z带 Z band
5.4光阑(Diaphragm holders and choice of diaphragms) 光阑( 光阑 ) 为限制电子束的散射,更有效地利用近轴光线,消除球差、 提高成像质量和反差 ,电镜光学通道上多处加有光阑,以遮 挡旁轴光线及散射光。 透射电镜有三种主要光阑( Types of diaphragms ) •聚光镜光阑( Condenser lens holder):限制照明孔径角
透射电子显微镜(TEM)详解

(一)间接样品的制备(表面复型)
透射电镜所用的试样既要薄又要小,这就大大限 制了它的应用领域,采用复型制样技术可以弥补 这一缺陷。复型是用能耐电子束辐照并对电子束 透明的材料对试样的表面进行复制,通过对这种 复制品的透射电镜观察,间接了解高聚物材料的 表面形貌。
蚀刻剂:高锰酸钾-浓 硫酸 将无定形部分腐蚀掉
八、透射电镜在聚合物研究中的应用
(一)结晶性聚合物的TEM照片
PE单晶及其电子衍射谱
Keller提出的PE折叠链模型
尼龙6 折叠链 片晶
单斜晶系 的PP单晶
2、树枝晶: 从较浓溶液(0.01~0.1%)结晶时,流动力 场存在,可形成树枝晶等。
PE的树枝状结晶
(3)染色:通常的聚合物由轻元素组成,在用厚 度衬度成像时图像的反差很弱,通过染色处理后 可改善。
所谓染色处理实质上就是用一种含重金属的试剂 对试样中的某一组分进行选择性化学处理,使其 结合上重金属,从而导致其对电子的散射能力增 强,以增强图像的衬度。
(a)OsO4染色,可染-C=C-双键、-OH基、-NH2基。 其染色反应是:
(二)直接样品的制备
1.粉末样品制备 粉末样品制备的关键是如何将超细粉的颗粒分散开来,
各自独立而不团聚。
胶粉混合法:在干净玻璃片上滴火棉胶溶液,然后在玻 璃片胶液上放少许粉末并搅匀,再将另一玻璃片压上, 两玻璃片对研并突然抽开,稍候,膜干。用刀片划成小 方格,将玻璃片斜插入水杯中,在水面上下空插,膜片 逐渐脱落,用铜网将方形膜捞出,待观察。
常见的聚合物制样技术
(1)超薄切片:超薄切片机将大试样切成50nm 左右的薄试样。
聚甲基丙烯酸丁酯将 聚四氟乙烯包埋后切 片,白色部分表示颗 粒形貌, 切片时,有颗粒的部 分掉了
透射电子显微镜法

透射电子显微镜法透射电子显微镜(Transmission Electron Microscope,简称TEM)是一种强大的工具,用于观察和研究各种材料的微观结构和组织。
本文将详细介绍透射电子显微镜法及其在科学研究和工业领域中的应用。
一、透射电子显微镜的原理与构成透射电子显微镜使用电子束而非光线,其原理基于电子的波粒二象性。
电子束通过针尖或者热丝发射出来,并通过电磁透镜系统进行聚焦。
经过样品之后的电子束被投射到荧光屏上,形成样品的投影图像。
透射电子显微镜主要由电子光源、透镜系统、样品台和检测系统等组成。
二、透射电子显微镜法的优势与应用透射电子显微镜法相对于光学显微镜和扫描电子显微镜具有以下优势:1. 高分辨率:透射电子显微镜可以实现亚纳米级的分辨率,使得研究者可以观察到更细微的结构和细节。
2. 高穿透性:透射电子显微镜可以穿透厚度达数百纳米的样品,揭示样品的内部结构和组成。
3. 高细节对比度:透射电子显微镜采用了染色技术,能够增加样品中相对的原子对比度,使得更多细节能够被观察到。
4. 全息电子显微镜:全息透射电子显微镜可以获得样品的三维信息,提供更全面的结构分析。
透射电子显微镜法广泛应用于材料科学、化学和生物学等领域。
以下是它的几个主要应用:1. 纳米材料研究:透射电子显微镜可以观察和分析纳米材料的形貌、晶体结构和缺陷等特征,对材料的性能研究具有重要意义。
2. 生物样品研究:透射电子显微镜可用于生物样品的观察和分析,例如观察细胞的内部结构和细节,研究生物分子的组装和功能等。
3. 界面和界面研究:透射电子显微镜可以揭示材料界面和界面的形貌、晶体结构以及化学成分等,对材料性能和反应机制的理解至关重要。
4. 材料缺陷和晶体缺陷研究:透射电子显微镜可以观察和分析材料和晶体的缺陷,例如位错、孪晶、晶格畸变等,从而提供改善材料性能的指导。
总结:透射电子显微镜法是一种重要的研究工具,它具有高分辨率、高穿透性、高细节对比度等优势。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常见的衍射花样有以下几种类型:
① 非晶物质的花样:由数个弥散的同心圆环组成,环位 置和强度与原子周围的环境有关。
② 多晶物质的花样: 明锐的同心圆环组成,环半径及其 强度与晶体的结构有确定的关系。
③ 单晶花样:是平行四边形排列的二维点阵,斑点位置、 强度和排列的对称性与晶体结构有明确的定量关系。
θ
Fig6 Intracrystalline organic matrix
b a
c
Fig7.TEM image of cross-section column crystal in prismatic layer a. intracystal electron diffract stigma b.amorphous electron diffraction ring of intergranuler boundary
Fig3 decalciication organic framework of nacreous layer.
b a
c
Fig5.a. Non-decalcification zone b. Transition zone(Sub-structure of organic net) c. All- decalcification zoneห้องสมุดไป่ตู้
后焦平面 (衍射图)
A A1 A0 A2
物平面
B
B1 B0 B2
物镜
物镜光栏
像平面
B’
A’
图2-10 质厚衬度像成像原理
❖ 2>. 衍射衬度
入射电子同晶体 样品作用时,发 生布拉格散射,电 子只改变运动方 向,而不损失能 量,这种弹性散 射其强度与入射 电子方向和晶体 之间的相对取向 密切相关。
S
S
N
N
N
S
NS
-
SN
S
N
N
N
S
S
图2-7 电磁消像散器原理
2>. 中间镜:是一个弱激磁的长焦距透镜。可以在 0~20倍范围内调节,TEM放大倍数的改变主要是通 过改变中间镜的电流来实现的。
3>. 投影镜:强磁透镜,有高的放大倍率,将中间镜像 放大并投射在荧光屏或照相底片上。
4.> 放大倍率和透镜工作模式的关系: 以四级透镜系统为例
2>. 聚光镜:聚光镜是用来将电子枪发射出的电子束 会聚在样品上,并且起调节电流密度和照明束斑的大 小的作用。
CL1是双聚焦镜中的第一聚焦镜: 是强透镜,它将 第一交叉点缩小20~60倍,使束斑约为1-5μm,体现 了聚光镜对束斑大小的调节。但如果直接将CL1会聚 的电子照射到样品上,则物与镜之间的空间太小。
❖ 选区衍射:
❖ 就是有选择地对样品中感兴趣的微区晶体进 行研究,是用选区光栏来确定衍射位置,在物镜 的像平面限光,再转到衍射模式进行分析。通常 选区衍射只能研究直径大于0.5μm的微区。
❖ 电子的穿透能力
❖ 例如 在100KV的高压下,穿透以下样品的厚 度分别为
❖
金属膜
100~2000nm
❖
Al
真空系统:由机械泵和扩散泵组成,可以达到10-5乇mmHg。 电源系统:由提供电子加速的高压部分和控制透镜聚焦成像 的低压部分组成。 。
1. TEM的照明统: 由电子枪和聚光镜 组成
1>.电子枪:是 TEM的电子源,由 阴极,阳极和控制 栅极组成。
灯丝变压 器
接负高压
100Ω
偏压电阻
100Ω
阴极 栅极帽
子束轴线与成像系
统的轴线合轴。在
∂2
不改变倾斜角度的
情况下,相对样品
做平移。
s
上线圈 下线圈
图2-5 垂直照明
倾斜照明:
即电子束轴线
∂1+∂2
与成像轴线成
h1
∂1
一定角度,而
不平移.
∂2
上线圈 下线圈 h2
图2-6 倾斜照明
2. 成像系统 物镜,中间镜和投影镜组成。 成像系统的总放大倍率为各个透镜放大倍数的乘积 M= M1·M2·M3
第二章 透射电子显微镜 (TEM)
.
选区光阑
照明源 阴极 光阑
聚光镜 样品 物镜
物镜光阑
中间镜
投影镜
荧光屏或照相底片
图2-1 透射显微镜构造原理和光路示意图
TEM的简单成像过程可以表述如下:
热阴极电子枪 电子束 阳极加速 聚光镜会聚 成细电子束 穿透样品(穿透强度取决于样品的厚度、 平均原子序数、晶体结构或者位向的差别) 物镜 成像 中间镜和投影镜放大投射到荧光屏上
Fig8 structure of subgrain of prismatic layer
图2.1 褶纹贝珍珠层表层SEM 形 图2.2 褶纹贝珍珠层断面SEM形
貌像
貌像
磷酸钙胶原基骨修复材料
几百 nm
❖
组织切片 50~70nm
TEM
结构与成分分析
碳钠米管簇
B
A C
Fig1 . teral-section B.Cross-section .C.Boundary of crystal
Fig2 decalciication organic framework of prismatic layer
100~1000倍 1000~20000倍 2~10.0万倍 10万倍以上
OL x x
第一像 第一像
IL1 第一像
x x 第二像
IL2 第二像 第一像 第二像 第三像
PL 终像 终像 终像 终像
目前的四级放大系统相应的放大倍数高达50~80万倍
物 物镜OL
IL1 IL2 PL
CRT
图 2-8 四级透镜系统
电子束照射到样品上,一部分直接穿过样品,一 部分被原子散射,散射的方向各不相同,相同出射 方向的电子在物镜的偏转作用下在物镜的后焦面上 聚于同一点,形成一个电子强度分布图。我们把它 称为电子衍射花样,如果在后焦面上不阻挡电子的 运动,这些电子会相互分开,原来样品上同一点发 出的电子又在像平面上重新相聚形成一个和原物相 似但变大了的物像。
❖ 2dSinθ=nλ
θ θ
图 2-11
3. 电子衍射花样、选区衍射 按照阿贝成像原理,出射方向相同的电子
经过物镜后会会聚于其后焦面上的一点,不 同方向的聚于不同的点,这些点组合在一起 形成一幅图案,此时适当调节第一中间镜的 电流使它的物平面于物镜的后焦面重合,就 可以把这幅电子衍射花样放大并投射到荧光 屏上 .
可以通过改变各个透镜的工作电流来获得不同的放大倍数。
❖ 1>. 物镜:用来形成第一幅高分辨电子像或电子衍射花样
的透镜。分辨率的高低主要取决于物镜,因为物镜的任何缺 陷都将被成像系统中其它透镜进一步放大,物镜通常采用强 激磁,短焦距(1.5~3mm),所以要求尽可能小的球差、像 散和色差 .
透镜磁场
a) 过焦成像 边缘出现暗条纹 b) 欠焦成像 边缘出现亮条纹
3.成像原理
❖ OM和TEM形成反差(衬度)的机制不同
❖ 振幅衬度:反映了d>15 Å的结构
❖ 相位衬度:反映了d<15 Å的结构
❖ TEM中常用四种像:质厚衬度像,衍射衬度像,相 位衬度像和电子衍射花样
❖ 1>. 质厚衬度像
阿贝成像原理:
CL2是双聚光镜中的第二聚光镜,是弱透镜,长焦 距,是对第二交叉点很有限的放大,仅约1~2倍。它 换取了长的物与镜之间的距离,可以得到足够的工作 空间来安放样品台和其他附件
欠焦
正焦
过
焦
CL1 5μm
CL2 可变光栏
10 μm
图2-4 TEM照明系统光路示意图
3>. 垂直照明和倾斜
照明
h
∂1
垂直照明:即电
5>. 图象观察和记录
6>.费涅尔衍射条纹: 是由入射电子与样品边缘的散 射电子发生干涉形成的。
样品 物镜物平面
入射电子束
入射电子束
物镜
物镜物平面
............................
物镜像平面
............................
a
b
图2-9 费聂尔衍射条纹产生及其图象示意
阳极
第一交叉点(电子 源50um)
图2-2 电子枪及其自偏压回路
阴极电子的发射率Jo =AT2·exp(-b/T) 2500~2700K范围内,
理想的电子源必须满足两个条件:高的稳定性以及高的亮度。
束 流
.饱和点
灯丝电流
图2-3 束流与灯丝电流关系示意图
电子枪的亮度为B=J0·eV/πkT, 即B与电子发射率J0成正 比。尽量找到J0高的材料可以提高电子枪的亮度。如LaB6的J0 就比W高一个数量级。
2θ
L
R
图 2-12 单晶花样衍射示意图
L 为样品到底版的距离, R 为衍射斑点到中心斑点的距离
设θ是满足布拉格衍射方程 2dSinθ=nλ,则
tan2θ=R/L 又有
tan2θ=Sin2θ/Cos2θ=2Sin Cosθ/Cos2θ≈2Sin,
代入布拉格方程, Rd=λL, d=λL/R
λ,L可以给出,R可以 测量得到
镜筒的复杂程度取决于对性能的要求
σ>50 Å
三个透镜,聚光镜,物镜,投影镜
50 Å >σ>20 Å σ<10 Å
四个透镜,单聚光镜,物镜,
中间镜,投影镜 五~六个透镜,双聚光镜,物镜,第 一、第二中间镜, 投影镜
一、TEM的结构及工作原理:
光学系统(镜筒部分):包括照明系统,成像系统,观察系 统。