中考数学专题复习--数与式

合集下载

中考数学专题复习数与式概念与运算方法

中考数学专题复习数与式概念与运算方法
(2)非负数的性质:若几个非负数之和为 0,则每一个非负数都 为 0.
中考数学专题复习数与式的概念和 运算方法
·人教版
第1课时 │归类示例
归类示例
类型之一 实数的概念及分类
命题角度: 1.有理数与无理数的概念 2.实数的分类
22 实数 7 ,sin)0,3 -8,
12,|-
中考数学专题复习数与式的概念和 运算方法
·人教版
第1课时 │归类示例
(1)求一个数的相反数,直接在这个数的前面加上负号, 有时需要化简得出.
(2)负数的绝对值等于它的相反数.反过来,一个数的绝 对值等于它的相反数,则这个数是非正数.
(3)解有关绝对值和数轴的问题时常用到字母表示数的思 想、分类讨论思想和数形结合思想.
(2)相反数等于它本身的数是零,即若 a=-a,则 a=0.
3.倒数:__乘__积____是 1 的两个数互为倒数. [注意] 零是唯一没有倒数的数,倒数等于本身的数是 1 或-1.
中考数学专题复习数与式的概念和 运算方法
·人教版
第1课时 │考点聚焦
4.绝对值:数轴上表示数 a 的点与原点的_距__离___,记作|a|.
中考数学专题复习数与式的概念和 运算方法
·人教版
第1课时 │考点聚焦
考点聚焦
考点1 实数的概念及分类
1.按定义分类
有理数整数负整正零数整数
自然数
实数
分数
正 负分 分数 数有限小数或无限循环小数
无理数 正 负无 无理 理数 数无限不循环小数
中考数学专题复习数与式的概念和
运算方法
·人教版
第1课时 │考点聚焦
(2)对于带单位的近似数,则由近似数的位数和后面的单位共同确 定.如近似数 3.618 精确到千分位,3.618 万,数字 8 实际上是十位上 的数字,即精确到十位.

九年级数学中考专题复习数与式 试题

九年级数学中考专题复习数与式 试题

卜人入州八九几市潮王学校实数的有关概念◆【根底知识回忆】 1.12-的倒数为〔〕 A .12B .2C .2-D .1-2.某在一次扶贫助残活动中,一共捐款2580000元.将2580000元用科学记数法表示为〔〕 A .72.5810⨯元B .70.25810⨯元C .62.5810⨯元D .625.810⨯元 80 m 记为80 m ,那么向西走60 m 记为〔〕A .-60 mB .︱-60︱mC .-〔-60〕mD .601m 4.2-的相反数是〔〕A .2B .2-C .12D .12-5.-2的绝对值是__________. 【参考答案】1.C2.C3.A4.A ◆【应考知识点】 知识点:有理数、无理数、实数、非负数、相反数、倒数、数的绝对值 大纲要求:1.使学生复习稳固有理数、实数的有关概念.2.理解有理数、无理数以及实数的有关概念;理解数轴、相反数、绝对值等概念,理解数的绝对值的几何意义.3.会求一个数的相反数和绝对值,会比较实数的大小.4.画数轴,理解实数与数轴上的点一一对应,能用数轴上的点表示实数,会利用数轴比较大小.考察重点:1.有理数、无理数、实数、非负数概念;2.相反数、倒数、数的绝对值概念;3.在中,以非负数a 2、|a|、a (a≥0)之和为零作为条件,解决有关问题.◆【复习目的】理解有理数、无理数以及实数的有关概念;理解数轴、相反数、绝对值等概念,理解数的绝对值的几何意义.注意:〔1〕近似数、有效数字.如0.030是2个有效数字〔3,0〕,准确到千分位;4×105是3个有效数字,准确到千位;万是3个有效数字〔3,1,4〕准确到百位. 〔2〕绝对值2x =的解为2±=x ;而22=-,但少局部同学写成22±=-.〔3〕在中,以非负数a 2、|a|、(a ≥0)之和为零作为条件,解决有关问题.◆【应考重点例举】 1.有理数的意义⑴数轴的三要素为、和.数轴上的点与构成一一对应.⑵实数a 的相反数为________.假设a ,b 互为相反数,那么b a +=. ⑶非零实数a 的倒数为______.假设a ,b 互为倒数,那么ab =.⑷绝对值⎪⎩⎪⎨⎧<=>=)0( )0( )0( a a a a . ⑸科学记数法:把一个数表示成的形式,其中1≤a <10的数,n 是整数.⑹一般地,一个近似数,四舍五入到哪一位,就说这个近似数准确到哪一位.这时,从左边第一个不是的数起,到止,所有的数字都叫做这个数的有效数字. 2.数的开方c ba⑴任何正数a a 叫_______________.没有平方根,0的算术平方根为______. ⑵任何一个实数a 都有立方根,记为.⑶=2a ⎩⎨⎧<≥=)0( )0( a a a .3.实数的分类和统称实数. ◆【典型例题及解析】 例1在实数-23,04,2π,-0.1010010001…〔每两个1之间依次多1个0〕,sin30°这8个实数中,无理数有〔〕A .1个B .2个C .3个D .4个【答案】C【解析】对实数分类,不能只为外表形式迷惑,而应从最后结果去判断.首先明确无理数的概念,即“无限不循环小数叫做无理数〞.=2是有理数,关键在于这个形式上带根号的数的最终结果是不是无限不循环小数.同样,用三角符号表示的数也不一定就是无理数,如sin30°、tan45°等.而-0.1010010001…尽管有规律,•但它是无限不循环小数,是无理数.2π2π,-0.1010010001…这三个数是无理数,其他五个数都是有理数,应选C.例2〔1〕a 、b 互为相反数,c 、d 互为倒数,e 〔a+b 〕+12cd -2e 0的值; 〔2〕实数a ,b ,c 在数轴上的对应点如下列图,化简【答案】解:〔1〕依题意,有a+b=0,cd=1,e≠0 a+b 〕+12cd -2e 0=0+12-2=-32. 〔2〕由图知a>0,b<c<0,且│b│>│a│, ∴a+b<0,b -c<0,-│b-c│=a-a -b -│c│-〔c -b 〕=a -a -b+c -c+b=0.【解析】相反数、倒数、绝对值都是主要的概念,解答时应从概念蕴含着的数学关系式入手.含有绝对值的代数式的化简,首先要确定绝对值符号内的数或者式的值是正、负还是零,然后再根据绝对值的意义把绝对值的符号去掉,第〔2〕•题是数形结合的题目,解题的关键在于通过观察数轴,弄清数轴上各点所表示的正负性及各实数之间的大小关系,从而才能正确地去掉绝对值符号,到达化简的目的. 例3今年6月,举行了第五届泛珠三角区域经贸洽谈会.据估算,本届大会合同HY 总额达2260亿元.将2260用科学记数法表示为〔结果保存2个有效数字〕〔〕A .32.310⨯ B .32.210⨯C .32.2610⨯D .40.2310⨯【答案】A【解析】准确把握概念.把一个数写成a×10n的形式〔其中1≤│a│<10,n 为整数〕,•这种记数法叫做科学记数法.一个近似数,四舍五入到哪一位,就说这个近似数准确到哪一位.这时,从左边第一个不是0的数字起,到准确的数位止,所有的数字,都叫做这个数的有效数字.根据题意,可知答案为A. 例4假设m n n m -=-,且4m =,3n =,那么2()m n +=.【答案】49或者1;【解析】根据绝对值的定义来进展解答.│a│=(1)(0)(0)aa a a a >⎧⎪=⎨⎪-<⎩.由题意︱m -n ︱=n -m 知道,n>m.而︱m ︱=4,︱n ︱=3故m=±4,n=±m=-4,n=3或者m=-4,n=-3.故〔m+n 〕2=1或者49.例5x 、y +〔y 2-6y+9〕=0,假设axy -3x=y ,那么实数a 的值是〔〕A .14B .-14C .74D .-74〔y -3〕2=0∴3x+4=0,y -3=0∴x=-43,y=3.∵axy-3x=y ,∴-43×3a-3×〔-43〕=3∴a=14∴选A【解析】假设几个非负数之和等于零,那么每个非负数均等于零.这是非负数具有的一个重要性质.此题y -3〕2均为非负数,它们的和为零,只有3x+4=0,且y -3=0,由此可求得x ,y 的值,将其代入axy -3x=y 中,即求得a 的值. ◆【09年中考题分类汇编】 一、选择题1.〔2021年〕-5的相反数是〔〕A .15B .15-C .-5D.52.(2021年)12-的倒数为〔〕 A .12B .2C .2-D .1-3.(2021年)4-的绝对值是〔〕A .4-B .14-C .4D .144.〔2021年〕2021年重点建立工程方案〔草案〕显示,港珠澳大桥工程估算总HY726亿元,用科学记数法表示正确的选项是〔〕A .107.2610⨯元 B .972.610⨯元 C .110.72610⨯元D .117.2610⨯元5.〔2021年内蒙古〕国家体育场“鸟巢〞建筑面积达25.8万平方米,将25.8万平方米用科学记数法〔四舍五入保存2个有效数字〕表示约为〔〕A .42610⨯平方米B .42.610⨯平方米C .52.610⨯平方米D .62.610⨯平方米6.〔2021年〕假设向东走80 m 记为80 m ,那么向西走60 m 记为〔〕A .-60 mB .︱-60︱mC .-〔-60〕mD .601m 7.〔2021年〕在数轴上表示2-的点离点的间隔等于〔〕A .2B .2-C .2±D .48.〔2021年襄樊〕A 为数轴上表示1-的点,将A 点沿数轴向左挪动2个单位长度到B 点,那么B 点所表示的数为〔〕A .3-B .3C .1D .1或者3-9.〔2021年〕假设+20%表示增加20%,那么-6%表示().A .增加14%B .增加6%C .减少6%D .减少26% 10.〔2021年内蒙古〕27的立方根是〔〕A .3B .3-C .9D .9-11.〔2021年〕36的算术平方根是〔〕.A.6B.±6C.6D.±6 二、填空题1.〔2021年〕-2的绝对值是__________.2.〔2021年〕15-的相反数是;立方等于8-的数是.3.(2021年)13-=_________;0(=_________;14-的相反数是_________.4.〔2021年〕假设()2240a c -++-=,那么=+-c b a .5.(2021年)宝岛HY 的面积约为36000平方公里,用科学记数法表示约 为平方公里.6.〔2021年〕有着丰富的旅游资源,如五、平遥古城、乔家大院等著名景点,吸引了众多的海内外游客,2021年全旅游总收入73亿元,这个数据用科学记数法可表示为. 【参考答案】 选择题1. D2. C3. C4. A5. D 【解析】此题考察科学记数法和有效数字,将一个数用科学记数法表示为()10110na a ⨯≤<的形式,其中a 的有效数字就是10na ⨯的有效数字,且n 等于这个数的整数位数减1。

人教版中考数学一轮复习专题一《数与式》知识点+练习

人教版中考数学一轮复习专题一《数与式》知识点+练习


a2
a
a (a 0) -a (a 精品PPT 0)
7、科学记数法: 把一个数表示成 a×10n 的形式,其中
1≤a<10的数,n是整数.
8、一般地,一个近似数,四舍五入到哪一 位,就说这个近似数精确到哪一位.这时, 从左边第一个不是 0 的数起,到精确数位止 所有的数字都叫做这个数的有效数字.
精品PPT
二、实数的运算: 1、数的乘方 an ,其中a叫做 底数,
n叫做 指数 .计算结果叫做 幂 。
2. a0= 1 (其中a ≠ 0且a是常数 )
1
a-n= a n (其中a ≠ 0)
精品PPT
3. 实数运算 先算 乘方 ,再算 乘除 最后 算 加减 ;如果有括号,先算 括号 里面的,
同一级运算按照从 到左 的右顺序依次进
中考第一轮复习 专题一:数与式
第1讲 实数
精品PPT
命题规律
对实数的考查: (1)、相关概念理解(有理数、相反数、绝对值、 倒数、科学记数法等); (2)、实数的运算; (3)、探究规律、估算无理数大致范围等题型以 选择题、填空题、计算题为主流。探究规律题 以9分题呈现。
精品PPT
知识清单
一、相关概念: 1、实数 (1)、 有理数 和 无理数 统称为实数 (2)、 整数 和 分数 统称为有理数
失分警示:去括号时,如果括号外面是符号, 一定要变号,且与括号内每一项相乘,不要 有漏项. 例:-2(3a-2b-1)=-6a+4b+2.
精品PPT
4.幂运算法则
精品PPT
5.整式的乘除运算
精品PPT
❖ (6)乘法公式
精品PPT
4.因式分解:就是把一个多项式化为几个 整式的 积 的形式.分解因式要进行到每 一个因式都不能再分解为止.

中考数学总复习《数与式》专项检测卷(附带答案)

中考数学总复习《数与式》专项检测卷(附带答案)

中考数学总复习《数与式》专项检测卷(附带答案)学校:___________班级:___________姓名:___________考号:___________一、选择题(共20小题) 1.(2022•无锡)分式32x-中x 的取值范围是( ) A .2x ≠B .2x ≠-C .2x -D .2x2.(2022•无锡)下列运算正确的是( ) A .2222a a -=B .224()ab ab =C .236a a a ⋅=D .844a a a ÷=3.(2022•钢城区)7-的相反数是( ) A .7-B .17-C .7D .174.(2022•陕西)计算:32(4)(a b -= ) A .538a bB .6216a bC .628a b -D .5216a b5.(2022•陕西)2022年6月5日上午10时44分07秒,熊熊的火焰托举着近500000千克的火箭和飞船冲上云霄,这是我国长征2F 运载火箭将“神舟十四号”载人飞船送入太空的壮观情景.其中,数据500000用科学记数法可以表示为( ) A .60.510⨯B .45010⨯C .4510⨯D .5510⨯6.(2022•陕西)21-的绝对值为( ) A .21B .21-C .121D .121-7.(2022•德州)下列实数为无理数的是( ) A .12B .0.2C .5-D 38.(2022•德州)已知2M a a =-,2(N a a =-为任意实数),则M N -的值( ) A .小于0B .等于0C .大于0D .无法确定9.(2022•德州)下列运算正确的是( ) A .22423a a a +=B .236(2)8a a =C .326a a a ⋅=D .222()a b a b -=-10.(2022•淮安)计算23a a ⋅的结果是( ) A .2aB .3aC .5aD .6a11.(2022•淮安)2022年十三届全国人大五次会议审议通过的政府工作报告中提出,今年城镇新增就业目标为11000000人以上.数据11000000用科学记数法表示应为( ) A .80.1110⨯B .71.110⨯C .61110⨯D .61.110⨯12.(2022•攀枝花)2的平方根是( ) A .2B .2±C 2D .213.(2022•攀枝花)下列各式不是单项式的为( ) A .3B .aC .baD .212x y14.(2022•攀枝花)实数a 、b 在数轴上的对应点位置如图所示,下列结论中正确的是( )A .2b >-B .||b a >C .0a b +>D .0a b -<15.(2022•内蒙古)下列计算正确的是( ) A .336a a a +=B .1a b a b÷⋅=C .22211a a a -=--D .3325()b b a a=16.(2022•内蒙古)实数a 在数轴上的对应位置如图所示,21|1|a a +-的化简结果是( )A .1B .2C .2aD .12a -17.(2022•淄博)计算3262(2)3a b a b --的结果是( ) A .627a b -B .625a b -C .62a bD .627a b18.(2022•淄博)若实数a 的相反数是1-,则1a +等于( ) A .2B .2-C .0D .1219.(2022•淄博)下列分数中,和π最接近的是( ) A .355113B .22371C .15750D .22720.(2022•巴中)下列运算正确的是( ) A 2(2)2-- B .111()33-=- C .236()a a =D .842(0)a a a a ÷=≠二、填空题(共5小题)21.(2022•无锡)我市2021年GDP 总量为14000亿元,14000这个数据用科学记数法可表示为 .22.(2022•038(1)--= .23.(2022•黄石)计算:20(2)(20223)--= . 24.(2022•襄阳)化简分式:ma mba b a b+=++ .25.(2022•菏泽)若22150a a --=,则代数式244()2a a a a a --⋅-的值是 . 三、解答题(共6小题) 26.(2022•无锡)计算: (1)1|5|(2)tan 45--+-+︒; (2)26142m m m----. 27.(2022•陕西)计算:115(2)28()3-⨯-+⨯-.28.(2022•内蒙古)先化简,再求值:2344(1)11x x x x x -+--÷--,其中3x =. 29.(2022•淮安)(1)计算:0|5|(32)2tan 45-+--︒; (2)化简:23(1)93a a a ÷+--. 30.(2022•阜新)先化简,再求值:22691(1)22a a a a a -+÷---,其中4a =.31.(2022•徐州)计算: (1)202211(1)|33|()93--+--+;(2)22244(1)x x x x+++÷.一、选择题(共14小题)1.(2023•绥化一模)2±是4的( )区域模拟A .平方根B .相反数C .绝对值D .倒数2.(2023•达州一模)12023-的倒数的绝对值是( ) A .2023B .12023C .2023-D .12023-3.(2023•汶上县一模)2022年3月11日,新华社发文总结2021年中国取得的科技成?.其中中国高铁运营里程超40000000米.则数据40000000用科学记数法可表示为( ) A .80.410⨯B .7410⨯C .84.010⨯D .6410⨯4.(2023•张家口二模)“中国智造”势在必行.据2023年1月21日消息,英特尔公司定购了一台AML 公司的约23亿元人民币的最先进的EUV 光刻机;据2022年9月8日消息,武汉购买了一台价格约为5亿元人民币的非EUV 光刻机.由于美国的干涉,我国买不到最先进的EUV 光刻机;就连我国购买较低端的DUV 光刻机,美国近期都开始干涉.据2022年8月14日的消息:“中国已经购买了700多台AML 公司的光刻机.”这700台光刻机,按平均每台2亿元人民币计算,总共约合是人民币( ) A .111.410⨯元B .121.410⨯元C .101410⨯元D .120.1410⨯元5.(2023•沭阳县一模)计算33()ab 的结果是( ) A .6abB .36a bC .6a bD .39a b6.(2023•寻乌县一模)下面的计算正确的是( ) A .326a a a ⋅=B .222()a b a b -=-C .326()a a -=D .55a a -=7.(2023•明光市一模)下列运算错误的是( ) A 42=±B .2124-=C .22232a a a -=D .633a a a ÷=8.(2023•明光市一模)把多项式424a a -分解因式,结果正确的是( ) A .22(2)(2)a a a a -+B .22(4)a a -C .2(2)(2)a a a +-D .22(2)a a -9.(2023•张家口二模)下列计算不正确的是( ) A 222+=B 222C 0.452=D 1232=10.(2023•韩城市一模)下列运算正确的是( ) A .3515m m m ⋅= B .235()m m -=- C .23246()m n m n -=D .22321m m -=11.(2023•兴隆台区一模)下列运算正确的是( ) A 255=± B .0.40.2= C .3(1)1--=-D .222(3)6m m n -=-12.(2023•泰山区一模)在实数:(6)--,-5,0,|3|-中,最小的数是( ) A .(6)--B .5-C .0D .|3|-13.(2023•白塔区校级一模)化简 的结果是( ) A .﹣3B .±3C .3D .914.(2023•黄浦区二模)设a 是一个不为零的实数,下列式子中,一定成立的是( ) A .32a a ->-B .32a a >C .32a a ->-D .32aa>二、填空题(共10小题)15.(2023•兴隆台区一模)分解因式:2()9()a x y y x -+-= . 16.(2023•梁园区一模)计算:3|5|8---= .17.(2023•潮南区一模)若与y n +3x 4是同类项,则(m +n )= .18.(2023•海曙区一模)若2(2)30a b -++=,则2023()a b +的值是 . 19.(2023•慈溪市一模)在1-,-2,1,0这四个数中,最小的数是 . 20.(2023•崂山区一模)计算:433(2)x y xy ÷-= . 21.(2023•364 . 22.(2023•1205. 23.(2023•杨浦区二模)如果关于x 的二次三项式25x x k -+在实数范围内不能因式分解,那么k 的取值范围是 .24.(2023•张店区一模)化简22()m n mn n m m m--÷-的结果为 .三、解答题(共7小题)25.(2023•大丰区一模)计算:40218()2sin 453π---︒. 26.(2023•长安区四模)计算:2021(2)3(3)()3--︒+--. 27.(2023•1125()|234cos302-+-︒. 28.(2023•青海一模)先化简,再求值:2221111()()aba b ++-,其中11()2a -= 1b =.29.(2023•齐齐哈尔模拟)(1)计算:202302(1)(2022)(3)12tan 60π-⨯-÷-︒︒; (2)因式分解:22222()4x y x y +-.30.(2023•襄垣县一模)(131148(2)()1224-⨯-(2)下面是小颖对多项式因式分解的过程,请认真阅读并完成相应任务. 分解因式:22(3)(3)x y x y +-+.解:原式(33)(33)x y x y x y x y =++++--⋯⋯第一步(44)(22)x y x y =+-⋯⋯第二步 8()()x y x y =+-⋯⋯第三步 228()x y =- ⋯⋯第四步任务一:以上变形过程中,第一步依据的公式用字母a ,b 表示为 ;任务二:以上分解过程第 步出现错误,具体错误为 ,分解因式的正确结果为 . 31.(2023•官渡区校级模拟)已知:2420a a --=. (1)求2(4)1a a --的值; (2)求证:42204a a -=-;(3)若24251100404a b a a -=-+ 以下结论:0b > 0b = 0b < 你认为哪个正确?请证明你认为正确的那个结论.1.下列实数中 比3-小的数是( ) A .2-B .1C .0D .π-2.太阳的主要成分是氢 氢原子的半径约为0.000000000053m .这个数用科学记数法可以表示为( ) A .100.5310-⨯B .105.310-⨯C .115.310-⨯D .125310-⨯考前押题3.(1)计算:011(32)()4cos30|123-++︒--; (2)因式分解:29x y y -.4.已知2a b += 2ab = 求32231122a b a b ab ++的值.5.如图 约定:上方相邻两整式之和等于这两个整式下方箭头共同指向的整式. (1)求整式M 、P ; (2)将整式P 因式分解; (3)P 的最小值为 .参考答案一、选择题(共20小题)1.【答案】A有意义【解答】解:分式3-2x∴-≠x20解得2x≠故选:A.2.【答案】D【解答】解:222-=故A错误不符合题意;2a a a2224()=故B错误不符合题意;ab a b235⋅=故C错误不符合题意;a a a844÷=故D正确符合题意;a a a故选:D.3.【答案】C【解答】解:7-的相反数为7故选:C.4.【答案】B【解答】解:32-a b(4)2322a b=-(4)()62=;16a b故选:B.5.【答案】D【解答】解:数据500000用科学记数法表示为5⨯.510故选:D.6.【答案】A【解答】解:21-的绝对值为21故选:A.7.【答案】D是分数属于有理数故本选项不合题意;【解答】解:A.12B.0.2是有限小数属于有理数故本选项不合题意;C.5-是整数属于有理数故本选项不合题意;D3故本选项符合题意;故选:D.8.【答案】C【解答】解:M N-2(2)=---a a a222=-+a a2=-+(1)1a2a-(1)02a∴-+(1)11∴-大于0M N故选:C.9.【答案】B【解答】解:A .因为22223a a a += 故A 选项不符合题意; B .因为236(2)8a a = 故B 选项符合题意; C .因为23235a a a a +⋅== 故C 选项不符合题意; D .因为222()2a b a ab b -=-+ 故D 选项不符合题意. 故选:B .10.【答案】C【解答】解:235a a a ⋅=. 故选:C .11.【答案】B【解答】解:711000000 1.110=⨯. 故选:B .12.【答案】D【解答】解:因为2(2)2±= 所以2的平方根是2故选:D .13.【答案】C【解答】解:A 、3是单项式 故本选项不符合题意; B 、a 是单项式 故本选项不符合题意; C 、b a不是单项式 故本选项符合题意; D 、212x y 是单项式 故本选项不符合题意; 故选:C .14.【答案】B【解答】解:由数轴知 12a << 32b -<<- A ∴错误||b a > 即B 正确0a b +< 即C 错误0a b -> 即D 错误.故选:B .15.【答案】C【解答】解:3332a a a += 故A 错误 不符合题意; 2111a a b a b b b b÷⋅=⋅⋅= 故B 错误 不符合题意; 22222(1)21111a a a a a a a ---===---- 故C 正确 符合题意; 3326()b b a a= 故D 错误 不符合题意; 故选:C .16.【答案】B【解答】解:根据数轴得:01a << 0a ∴> 10a -<∴原式||11a a =++-11a a =++-2=.故选:B .17.【答案】C【解答】解:原式62626243a b a b a b =-= 故选:C .18.【答案】A【解答】解:实数a 的相反数是1- 1a ∴=12a ∴+=.故选:A .19.【答案】A【解答】解:355 3.1416113≈; 223 3.140871≈; 157 3.1450=; 22 3.14287≈因为 3.1416π≈所以和π最接近的是355113. 故选:A .20.【答案】C【解答】解:A 2(2)2- 选项错误 不符合题意;B 、11()33-= 选项错误 不符合题意; C 、236()a a = 选项正确 符合题意; D 、844(0)a a a a ÷=≠ 选项错误 不符合题意;故选:C .二、填空题(共5小题)21.【答案】41.410⨯.【解答】解:414000 1.410=⨯ 故答案为:41.410⨯.22.【答案】3-.【解答】解:原式21=-- 3=-.故答案为:3-.23.【答案】3.【解答】解:原式41=- 3=.故答案为:3.24.【答案】m .【解答】解:原式ma mba b +=+()m a b a b +=+m =故答案为:m .25.【答案】15.【解答】解:244()2a a a a a --⋅-22442a a a a a -+=⋅-22(2)2a a a a -=⋅-22a a =-22150a a --=2215a a ∴-=∴原式15=.故答案为:15.三、解答题(共6小题)26.【答案】(1)112;(2)22m +.【解答】解:(1)原式1512=-+112=;(2)原式62(2)(2)(2)(2)m m m m m m -+=++-+-24(2)(2)m m m -=+-22m =+.27.【答案】9-.【解答】解:原式10163=- 1043=-+-9=-.28.【答案】22x x +-- 5-.【解答】解:原式223(1)11(2)x x x x ---=⋅-- 2(2)(2)11(2)x x x x x +--=-⋅-- 22x x +=-- 当3x =时 原式3232+=-- 5=-. 29.【答案】(1)4;(2)13a +. 【解答】解:(1)原式5121=+-⨯ 512=+-4=;(2)原式(3)(3)3a a a a a =÷+-- 3(3)(3)a a a a a-=⨯+- 13a =+. 30.【答案】3a a- 14. 【解答】解:原式2(3)21()(2)22a a a a a a --=÷---- 2(3)3(2)2a a a a a --=÷-- 2(3)2(2)3a a a a a --=⋅-- 3a a -=当4a =时 原式43144-==.31.【答案】(1)43-; (2)2x x +. 【解答】解:(1)202211(1)|33|()93--+--+13333=+--+43=-;(2)22244(1)x x x x +++÷ 222(2)x x x x +=⋅+ 2x x =+.一、选择题(共14小题)1.【答案】A【解答】解:2±是4的平方根. 故选:A .2.【答案】A【解答】解:12023-的倒数是2023- 12023∴-的倒数的绝对值是|2023|2023-=. 故选:A .3.【答案】B区域模拟【解答】解:740000000410=⨯. 故选:B .4.【答案】A【解答】解:11200000000700140000000000 1.410⨯==⨯元. 故选:A .5.【答案】D【解答】解:33()ab333()a b =39a b =.故选:D .6.【答案】C【解答】解:A 、32a a a ⋅= 故原计算错误 不合题意; B 、222()2a b a b ab -=+- 故原计算错误 不合题意; C 、326()a a -= 故原计算正确 符合题意; D 、54a a a -= 故原计算错误 不合题意; 故选:C .7.【答案】A【解答】解:A 42= 故A 符合题意;B 、2124-= 故B 不符合题意; C 、22232a a a -= 故C 不符合题意; D 、633a a a ÷= 故D 不符合题意;故选:A .8.【答案】C【解答】解:原式22(4)a a =- 2(2)(2)a a a =+-. 故选:C .9.【答案】C【解答】解:A 、原式2= 所以A 选项正确 不合题意; B 、原式2= 所以B 选项正确 不合题意; C 、原式10= 所以C 选项错误 符合题意; D 、原式2= 所以D 选项正确 不合题意. 故选:C .10.【答案】C【解答】解:A 、358m m m ⋅= 故A 不符合题意; B 、236()m m -=- 故B 不符合题意; C 、23246()m n m n -= 故C 符合题意; D 、22232m m m -= 故D 不符合题意; 故选:C .11.【答案】C【解答】解:A 255 故A 不符合题意; B 100.4= 故B 不符合题意;C 、3(1)1--=- 故C 符合题意;D 、22(3)9m m -= 故D 不符合题意;故选:C .12.【答案】B【解答】解:(6)6--= |3|3-=50|3|(6)∴-<<-<--.故选:B .13.【答案】C【解答】解:=3.故选:C .14.【答案】A【解答】解:A .32a a ->- 故本选项符合题意;B .若1a =- 则32a a < 故本选项不符合题意;C .若1a = 则32a a -<- 故本选项不符合题意;D .若1a =- 则32a a< 故本选项不符合题意. 故选:A .二、填空题(共10小题)15.【答案】()(3)(3)x y a a -+-.【解答】解:2()9()a x y y x -+-2()(9)x y a =--()(3)(3)x y a a =-+-故答案为:()(3)(3)x y a a -+-16.【答案】3-.【解答】解:3|5|8----5(2)=---52=-+3=-故答案为:3-.17.【答案】﹣1.【解答】解:∵与y n +3x 4是同类项∴m +3=4 n +3=1∴m =1 n =﹣2∴m +n=1+(﹣2)=﹣1.故答案为:﹣1.18.【答案】1-.【解答】解:由题意得 20a -= 30b +=解得2a = 3b =-所以 20232023()(23)1a b +=-=-.故答案为:1-.19.【答案】2-.【解答】解:|1|1-=|2|2-=21> 21∴-<-2101∴-<-<<∴在1-2- 1 0中最小的数为:2-.故答案为:2-.20.【答案】18x-.【解答】解:原式4333(8)x y x y=÷-1 8x=-.故答案为:18x-.21.【答案】4.【解答】3644=.故答案为:4.22.【答案】0.【解答】解:原式52510=2525==.故答案为:0.23.【答案】254k>.【解答】解:关于x的二次三项式25x x k-+在实数范围内不能分解因式就是对应的二次方程250x x k -+=无实数根∴△2(5)42540k k =--=-<254k ∴>. 故答案为:254k >. 24.【答案】1m n-. 【解答】解:原式222m n m mn n m m--+=÷ 2()m n m m m n -=⋅- 1m n=-. 故答案为:1m n -. 三、解答题(共7小题)25.2.【解答】解:40218()2sin 453π---︒212212=-+- 12212=-+2=26.【答案】5-.【解答】解:2021(2)3(3)()3--︒+--34319=+-4119=-+-5=-.27.【答案】533-【解答】1125()|234cos302-+-︒ 352(23)4=-+--522323=-+533=-28.【答案】222a ba b + 32.【解答】解:2221111()()a b a b ++-22222()a b b a ab a b +-=+2222222a ab b b a a b +++-=22222ab b a b +=222a ba b += 当11()22a -== 1b =时 原式2222121⨯+⨯=⨯424+=32=.29.【答案】(1)829;(2)22()()x y x y +-.【解答】解:(1)原式11192332=-⨯÷+139=-+ 829=; (2)原式2222(2)(2)x y xy x y xy =+++-22()()x y x y =+-.30.【答案】22()()a b a b a b -=+- 进行乘法运算 8()()x y x y +-.【解答】解:(1)原式1143(8)()2324=-⨯--1143238()24=+⨯- 2342=- 232=;(2)原式(33)(33)x y x y x y x y =++++--⋯⋯第一步(44)(22)x y x y =+-⋯⋯第二步8()()x y x y =+-⋯⋯第三步228()x y =-.⋯⋯第四步任务一:以上变形过程中 第一步依据的公式用字母a b 表示为22()()a b a b a b -=+-;任务二:以上分解过程第四步出现错误 具体错误为进行乘法运算 分解因式的正确结果为8()()x y x y +-.故答案为:22()()a b a b a b -=+- 进行乘法运算 8()()x y x y +-.31.【答案】(1)3;(2)见解答;(3)0b >.【解答】(1)解:2420a a --= 242a a ∴-=2(4)1a a ∴--2281a a =--22(4)1a a =--221=⨯-3=;(2)证明:2420a a --=224a a ∴-=222(2)(4)a a ∴-= 即4224416a a a -+= 42204a a ∴-=-;(3)解:0b > 证明如下: 由(2)知42204a a -=-42204a a ∴=-4222()(204)a a ∴=-84240016016a a a ∴=-+ ∴842110040164a a a =-+由(2)知42204a a -=-42204a a ∴=-∴421514a a =-4242481511411004044a a b a a a a -∴===-+2420a a --=0a '≠40a ∴>0b ∴>.1.【答案】D【解答】解:A 、|2||3|-<- 因此23->- 故A 不符合题意; B 、31-< 故B 不符合题意; C 、30-< 故C 不符合题意; D 、|||3|π->- 因此3π-<- 故D 符合题意. 故选:D .2.【答案】C【解答】解:110.000000000053 5.310-=⨯. 故选:C .3.【解答】解:(1)原式3134232=++⨯- 4=; (2)原式2(9)y x =-考前押题(3)(3)y x x =+-.4.【解答】解:原式32231122a b a b ab =++ 221(2)2ab a ab b =++21()2ab a b =+2a b += 2ab =∴原式12442=⨯⨯=.5.【答案】(1)520x -;(2)4(2)(2)P x x =+-;(3)16-.【解答】解:(1)根据题意得:2(3420)3(3)M x x x x =----22342039x x x x =---+520x =-;223420(2)P x x x =--++ 22342044x x x x =--+++ 2416x =-;(2)2416P x =-24(4)x =-4(2)(2)x x =+-;(3)2416P x =- 20x∴当0x =时,P 的最小值为16-. 故答案为:16-。

初三数学中考专题—数与式(全面、详细、好用)

初三数学中考专题—数与式(全面、详细、好用)

1专题一:数与式一、考点综述考点内容:实数与代数式是数学知识的基础,也是其它学科的重要工具,因此在近年来各地的中考试卷中始终占有一席之地. 考纲要求: (1)实数1借助数轴理解相反数、倒数、绝对值意义及性质. 2掌握实数的分类、大小比较及混合运算.3会用科学记数法、有效数字、精确度确定一个数的近似值. 4能用有理数估计一个无理数的大致范围. (2)代数式1了解整式、分式、二次根式、最简二次根式的概念及意义.会用提公因式法、公式法对整式进行因式分解.2理解平方根、算术平方根、立方根的意义及其性质. 根据整式、分式、二次根式的运算法则进行化简、求值考题分值:数与式约占总分的17.1%备考策略:①夯实基础,抓好“双基”.②把课本的典型、重点的题目做变式和延伸. ③注意一些跨学科的常识.④关注中考的新题型.⑤关注课程标准里面新增的目标. ⑥探究性试题的复习步骤:1.纯数字的探索规律.2.结合平面图形探索规律.3.结合空间图形探索规律,4.探索规律方法的总结. 二、例题精析【答案】选B .【规律总结】部分学生不能够读懂题意,无法做出正确选择,往往会随便猜出一个答案.突破方法:根据表格中所提供的信息,找出规律,容易发现短横与长横所表示的不同意义.然后对照分析出两个安全空格中所应填写的数字. 例2.阅读下面的材料,回答问题:点A 、B 在数轴上分别表示实数a 、b ,A 、B 两点之间的距离表示为AB .当A 、B 两点中有一点在原点时,不妨设点A 在原点,如图1-3,AB OB b a b ===-;当A 、B 两点都不在原点时:(1)如图1-4,点A 、B 都在原点的右边,A B O B O A b a b a a b=-=-=-=-;(2)如图1-5,点A 、B都在原点的左边,()AB OB OA b a b a a b a b =-=-=---=-=-;(3)如图1-6,点A 、B在原点的两边,()AB OA OB a b a b a b a b =+=+=+-=-=-.综上,数轴上A 、B 两点之间的距离AB a b =-.回答下列问题:的两点之间的距离是 ;数轴上表示-2和-1和-3的两点之间的距离之间的距离是.如果2AB =,那么x =. 【解题思路】依据阅读材料,所获得的结论为AB a b =-,结合各问题分别代入求解.(1)253,2(5)3,1(3)4-=---=--=;(2)(1)1AB x x =--=+;因为2AB =,所以12x +=,所以12x +=或12x +=-.所以1x =或3x =-.【答案】(1)3,3,4;(2)1x =或3x =-.【规律总结】要认真阅读材料,理解数轴上两点A 、B 的距离公式AB a b =-,获取新的信息和结论,然后应用所得结论,解答新问题.例3.0细心观察图形,认真分析各式,然后解答问题。

专题69 数与式中的新定义问题(原卷版)-2023年中考数学重难点解题大招复习讲义-新定义问题

专题69 数与式中的新定义问题(原卷版)-2023年中考数学重难点解题大招复习讲义-新定义问题

例题精讲【例1】.定义一种新运算:,例如.若,则k=.变式训练【变1-1】.定义:对于实数a,符号[a]表示不大于a的最大整数.例如:[5.7]=5,[5]=5,[﹣π]=﹣4,如果,则x的取值范围是()A.5≤x<7B.5<x<7C.5<x≤7D.5≤x≤7【变1-2】.规定:符号[x]叫做取整符号,它表示不超过x的最大整数,例如:[5]=5,[2.6]=2,[0.2]=0.现在有一列非负数a1,a2,a3,…,已知a1=10,当n≥2时,a n=a n﹣1+1﹣5([]﹣[]),则a2022的值为.【例2】.定义:如果一个数的平方等于﹣1,记为i2=﹣1,这个数i叫做虚数单位,把形如a+bi的数叫做复数,其中a叫做这个复数的实部,b叫做这个复数的虚部.它的加、减、乘法运算与整数的加、减、乘法运算类似.例如计算:(4+i)+(6﹣2i)=4+6+i﹣2i=10﹣i(2﹣i)(3﹣i)=6﹣2i﹣3i+i2=6﹣5i﹣1=5﹣5i根据以上信息计算(1+2i)(2﹣i)+(2﹣i)2=.变式训练【变2-1】.贾宪是生活在北宋年间的数学家,著有《黄帝九章算法细草》《释锁算书》等书,但是均已失传.所谓“贾宪三角”指的是如图所示的由数字所组成的三角形,称为“开方作法本源”图,也称为“杨辉三角”.贾宪发明的“开方作法本源“图作用之一,是为了揭示二项式(a+b)n(n=1,2,3,4,5)展开后的系数规律,即(a+b)1=a+b,(a+b)2=a2+2ab+b2,(a+b)3=a3+3a2b+3ab2+b3,(a+b)4=a4+4a3b+6a2b2+4ab3+b4,(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5.则二项式(a+b)n(n为正整数)展开后各项的系数之和为()A.2n﹣1+1B.2n﹣1+2C.2n D.2n+1【变2-2】.已知n行n列(n≥2)的数表中,对任意的i=1,2,…,n,j=1,2,…,n,都有a ij=0或1.若当a st=0时,总有(a1t+a2t+…+a nt)+(a s1+a s2+…+a sn)≥n,则称数表A为典型表,此时记表A中所有a ij的和记为S n.(1)若数表,,其中典型表是;(2)典型表中S5的最小值为.1.对任意两个实数a,b定义两种运算:a⊕b=,a⊗b=,并且定义运算顺序仍然是先做括号内的,例如:(﹣2)⊕3=3,(﹣2)⊗3=﹣2,((﹣2)⊕3)⊗2=3⊗2=2,则等于()A.B.3C.D.22.对于两个不相等的实数a、b,我们规定符号Min{a,b}表示a、b中较小的值,如Min{2,4}=2,按照这个规定,方程Min{}=的解为()A.1或3B.1或﹣3C.1D.33.定义:如果a x=N(a>0,a≠1),那么x叫做以a为底N的对数,记做x=log a N.例如:因为72=49,所以log749=2;因为53=125,所以log5125=3.则下列说法正确的个数为()①log61=0;②log323=3log32;③若log2(3﹣a)=log827,则a=0;④log2xy=log2x+log2y(x>0,y>0).A.4B.3C.2D.14.我们把称作二阶行列式,规定它的运算法则为=ad﹣bc.如=2×5﹣3×4=﹣2,请你计算的值为.5.对于实数a,b,定义运算“◎”如下:a◎b=(a+b)2﹣(a﹣b)2.若(m+1)◎(m ﹣2)=16,则m=6.设n为正整数,记n!=1×2×3×4×…×n(n≥2),1!=1,则+++…++=.7.新定义:任意两数m,n,按规定y=﹣m+n得到一个新数y,称所得新数y为数m,n 的“愉悦数”.则当m=2x+1,n=x﹣1,且m,n的“愉悦数”y为正整数时,正整数x 的值是.8.对数的定义:一般地,若a x=N(a>0且a≠1),那么x叫做以a为底N的对数,记作x=log a N,比如指数式23=8可以转化为对数式3=log28,对数式2=log636,可以转化为指数式62=36.计算log39+log5125﹣log232=.9.对于正整数m,我们规定:若m为奇数,则f(m)=3m+3;若m为偶数,则f(m)=.例如f(5)=3×5+3=18,f(8)==4.若m1=1,m2=f(m1),m3=f(m2),m4=f(m3),…,依此规律进行下去,得到一列数m1,m2,m3,m4,…,m n,…(n为正整数),则m1+m2+m3+…+m2021=.10.如图,把平面内一条数轴x绕原点O逆时针旋转角θ(0°<θ<90°)得到另一条数轴y,x轴和y轴构成一个平面斜坐标系.规定:过点P作y轴的平行线,交x轴于点A,过点P作x轴的平行线,交y轴于点B,若点A在x轴上对应的实数为a,点B在y轴上对应的实数为b,则称有序数对(a,b)为点P的斜坐标.(1)点P(x,y)关于原点对称的点的斜坐标是;(2)在某平面斜坐标系中,已知θ=60°,点P的斜坐标为(2,4),点N与点P关于x 轴对称,则点N的斜坐标是.11.欧拉是18世纪瑞士著名的数学家,他的贡献不仅遍及高等数学的各个领域,在初等数学中也留下了他的足迹.下面是关于分式的欧拉公式:=(其中a,b,c均不为零,且两两互不相等).(1)当r=0时,常数p的值为.(2)利用欧拉公式计算:=.12.任何一个正整数n都可以进行这样的分解:(s、t是正整数,且s≤t),如果在n的所有这种分解中两因数之差的绝对值最小,我们就称是n的最佳分解,并规定:F(n)=.例如18可以分解成1×18,2×9,3×6这三种,这时就有F(18)==.给出下列关于F(n)的说法:①F(2)=;②F(48)=;③F(n2+n)=;④若n非0整数,则F(n2)=1,其中正确说法的是(将正确答案的序号填写在横线上).13.对于三个实数a,b,c,用M{a,b,c}表示这三个数的平均数,用min{a,b,c}表示这三个数中最小的数.例如:M{1,2,9}==4,min{1,2,﹣3}=﹣3,min{3,1,1}=1.请结合上述材料,解决下列问题:(1)min{sin30°,cos60°,tan45°};(2)若M{﹣2x,x2,3}=2,求x的值.14.定义为二阶行列式,规定它的运算法则为:=ad﹣bc.例如:=5×8﹣6×7=﹣2.(1)求的值.(2)若=20,求m的值.15.材料:对于一个四位正整数m,如果满足百位上数字的2倍等于千位与十位的数字之和,十位上数字的2倍等于百位与个位的数字之和,那么称这个数为“相邻数”.例如:∵3579中,2×5=3+7=10,7×2=5+9=14,∴3579是“相邻数”.(1)判断7653,3210是否为“相邻数”,并说明理由;(2)若四位正整数n=1000a+100b+10c+d为“相邻数”,其中a,b,c,d为整数,且1≤a≤9,0≤b≤9,0≤c≤9,0≤d≤9,设F(n)=2c,G(n)=2d﹣a,若为整数,求所有满足条件的n值.16.我国宋朝数学家杨辉在他的著作《详解九章算法》中提出“杨辉三角”(如图),此图揭示了(a+b)n(n为非负整数)展开式的项数及各项系数的相关规律.例如:(a+b)0=1,它只有一项,系数为1;(a+b)1=a+b,它有两项,系数分别为1,1,系数和为2;(a+b)2=a2+2ab+b2,它有三项,系数分别为1,2,1,系数和为4;根据以上规律,解答下列问题:(1)(a+b)5展开式共有项,系数和为.(2)求(2a﹣1)5的展开式;(3)利用表中规律计算:25﹣5×24+10×23﹣10×22+5×2﹣1(不用表中规律计算不给分);(4)设(x+1)17=a17x17+a16x16+…+a1x+a0,则a1+a2+a3+…+a16+a17的值为.17.若规定f(n,m)=n×(n+1)×(n+2)×(n+3)×…×(n+m﹣1),且m,n为正整数,例如f(3,1)=3,f(4,2)=4×5,f(5,3)=5×6×7.(1)计算f(4,3)﹣f(3,4);(2)试说明:;(3)利用(2)中的方法解决下面的问题,记a=f(1,2)+f(2,2)+f(3,2)+…+ f(27,2),b=f(1,3)+f(2,3)+f(3,3)+…+f(11,3).①a,b的值分别为多少?②试确定a b的个位数字.18.请阅读以下材料,解决问题.我们知道:在实数体系中,一个实数的平方不可能为负数,即a2≥0.但是,在复数体系中,如果一个数的平方等于﹣1,记为i2=﹣1,这个数i叫做虚数单位,那么形如a+bi (a、b为实数)的数就叫做复数,a叫做这个复数的实部,b叫做这个复数的虚部.它的加,减,乘法运算与整式的加,减,乘法运算类似,例如计算:(3+i)i=3i+i2=3i﹣1(2+i)+(3﹣4i)=(2+3)+(1﹣4)i=5=3i;若两个复数,它们的实部和虚部分别相等,则称这两个复数相等;若它们的实部相等,虚部互为相反数,则称这两个复数共轭,如1+2i的共轭复数为1﹣2i.根据材料回答:(1)填空:①(2+i)(3i﹣1)=;②将m2+9(m为实数)因式分解成两个复数的积:m2+9=;(2)若a+bi是(1+2i)2的共轭复数,求(b﹣a)2022的值;(3)已知(a+i)(b+i)=2﹣4i,求(a2﹣b2)(i2+i3+i4+…+i2023)的值.19.式子“1+2+3+4+…+100”表示从1开始的连续100个正整数的和,由于上述式子比较长,书写不方便,为了简便起见,可以将上述式子表示为,这里“∑”是求和的符号.例如“1+3+5+7+…+99”用“∑”可以表示为,“13+23+33+…+103”用“∑”可以表示为.(1)把写成加法的形式是;(2)“2+4+6+8+…+100”用“∑”可以表示为;(3)计算:.20.好学的小贤同学,在学习多项式乘以多项式时发现:(x+4)(2x+5)(3x﹣6)的结果是一个多项式,并且最高次项为:x•2x•3x=3x3,常数项为:4×5×(﹣6)=﹣120,那么一次项是多少呢?要解决这个问题,就是要确定该一次项的系数.根据尝试和总结他发现:一次项系数就是:×5×(﹣6)+2×(﹣6)×4+3×4×5=﹣3,即一次项为﹣3x.请你认真领会小东同学解决问题的思路,方法,仔细分析上面等式的结构特征.结合自己对多项式乘法法则的理解,解决以下问题.(1)计算(x﹣5)(3x+1)(5x﹣3)所得多项式的一次项系数为.(2)若计算(x2+x﹣1)(x2﹣2x+a)(2x+3)所得多项式的一次项系数为2,求a的值;(3)若(x+1)2022=a0x2022+a1x2021+a2x2020+…+a2021x+a2022,则a2021=.21.阅读下列材料.材料一:对于一个四位正整数,如果百位数字大于千位数字,且个位数字大于十位数字,则称这个数是“双增数”;如果百位数字小于千位数字,且个位数字小于十位数字,则称这个数是“双减数”.例如:3628、4747是“双增数”,5231、9042是“双减数”.材料二:将一个四位正整数m的百位数字和十位数字交换位置后,得到一个新的四位数m',规定:F(m)=m﹣m',例如:F(2146)=2146﹣2416=﹣270.(1)最大的“双增数”是,最小的“双减数”是;(2)已知“双增数”s=1000x+100(y+4)+10y+6(1≤x≤9,0≤y≤9,x、y是整数),“双减数”t=3000+20a+b(0≤a≤9,0≤b≤9,a、b是整数),且t的各个数位上的数字之和能被12整除,现规定k=F(s)+F(t),求k的最大值.。

中考数学总复习课件之数与式

中考数学总复习课件之数与式

考点聚焦
归类探究
回归教材
第2讲 │ 考点随堂练
9.比较大小:-56__>____-76;π__>____3.14. [解析] 两个负数,绝对值大的反而小;无理数是无限不循环小数.
10.如果 a=22001110,b=22001112,那么 a,b 的大小关系是 a__<____b. [解析] 因为 a>0,b>0,a÷b=22001110÷22001112=22001110×22001112<1, 所以 a<b.
·新课标
第2讲 │ 考点随堂练
·新课标
第1课时┃ 实数
考点4 实数的运算
内容
提醒
在实数范围内,加、减、乘、除
运 算
(除数不为零)、乘方都可以进行, 但开方运算不一定能进行,正实
(1)零 指 数 、 负 整 数
法 数和零总能进行开方运算,而负 指数的意义, 防止
则 实数只能开奇次方,不能开偶次 以下错误:
·新课标
第1讲 │ 考点随堂练
6.一个数的绝对值是它的相反数,此数是( D ) A.正数 B.负数 C.正数或0 D.负数或0
[解析] 0的绝对值和相反数都是0,而负数的绝对值与它的 相反数相等.
7.数轴上的点A到原点的距离是6,则点A表示的数为( A )
A.6或-6
B.6
C.-6
D.3或-3
[解析] 数轴上到原点的距离是6的点有两个,分别位于原 点的左右两侧.
考点聚焦
归类探究
回归教材
第1讲 │ 考点随堂练
4.-3的倒数是_-__13___,-2.5的绝对值是__2_._5__, 0的相反数是___0___,倒数等于本身的数是_1_和___-__1__.
5.-32的倒数的绝对值___23___. [解析] -32的倒数为-32,-23=23.

中考数学《数与式》专项练习题(含答案)

中考数学《数与式》专项练习题(含答案)

中考数学《数与式》专项练习题(含答案)一、单选题1.一条河的水流速度是2.5km /h ,某船在静水中的速度是km /h v ,则该船在这条河中逆流行驶的速度是( )A .()2.5km /h v +B .()2.5km /h v -C .()2.5km /h v -D .()5km /h v - 2.-24的相反数是( )A .-24B .24C .124-D .124 3.当2x =时,代数式234(2)(8)x x x x x -+的值是( )A .-4B .-2C . 2D . 44.有理数a ,b ,c 在数轴上对应的点的位置如图所示,有下列式子:①c -a >b -a ;②a +b >a +c ;③bc >ac ;④b a >c a.其中正确的有( )A .1个B .2个C .3个D .4个5.—0.25的相反数是:( )A .14B .4C .-4D .-56.把式子()()()()()2482562121212121++++⋅⋅⋅+化简的结果为()A .102421-B .102421+C .51221-D .51221+ 7.下列各式从左到右的变形,是因式分解的是( )A .()ab ac d a b c d ++=++B .21(1)(1)a a a -=+-C .222()2a b a ab b +=++D .222(2)a a a a --=- 8.下列各式的结果为3-的是( )A .()()()2933---++--B .012345-+-+-C .4.5 2.3 2.5 3.72-+-+D .()()()27603---+-+++ 9.已知a 2+ab=5,ab+b 2=﹣2,那么a 2﹣b 2的值为( )A .3B .7C .10D .﹣1010.实数4的平方根是()A .2B .-2C .2±D .16±11.下面的说法正确的是( )A .正有理数和负有理数统称有理数B .整数和分数统称有理数C .正整数和负整数统称整数D .有理数包括整数、自然数、零、负数和分数12.国家统计局公布的数据显示,经初步核算,2020年尽管受到新冠疫情的影响,前三个季度国内生产总值仍然达到近697800亿元,按可比价格计算,同比增长了6.2%.将数据697800用科学记数法表示为( )A .3697.810⨯B .469.7810⨯C .56.97810⨯D .60.697810⨯二、填空题13.下面给出的五个结论中:①最大的负整数是-1;②数轴上表示数3和-3的点到原点的距离相等;③当a≤0时,|a|=-a 成立;④若a 2=9,则a 一定等于3; ⑤2110a +一定是正数.说法正确的有_________________ 14.现有一列数a 1,a 2,a 3,…,其中a 1=1,a 2=111+a ,a 3=211+a ,…,a n =111+n a -,则a 17的值为________.15.计算21()2-____.16.已知132n xy +-与34y x 是同类项,则n 的值是__________. 17.计算:23÷25=______.18.三个连续奇数,中间一个为2n ﹣1,则这三个连续奇数之和为_____.19.有一列数a 1,a 2,a 3,…,a n ,已知a 1=1,a 2=2,从第三个数开始,每个数都等于它前面的两个数中第二个数除以第一个数所得的商,例a 3=a 2÷a 1=2……,那么a 2018=_____.20.用正负数表示具有相反意义的量:(1)高出海平面342米记为+342米,那么-20米表示的是__________;(2)某工厂增产1 200吨记为+1 200吨,那么减产13吨记为__________.三、解答题21.计算:(1)﹣13+10﹣7 (2)21—41??59÷()()22.计算:(1;(2.23.已知a+b=-8 , ab=10,求22a b +和 2()a b -的值.24.先化简,再求值:2211111a a a a a --÷+--+,其中a=4.25.请回答下列问题:(1介于连续的两个整数a 和b 之间,且a b <,那么a = ,b = ;(2)x 2的小数部分,y 1的整数部分,求x = ,y = ;(3)求)yx 的平方根.26.已知在纸面上画一数轴,折叠纸面.(1)若1表示的点与﹣1表示的点重合,则﹣2表示的点与数 表示的点重合(2)若﹣2表示的点与4表示的点重合,回答以下问题:①数7对应的点与数 对应的点重合;②若数轴上A 、B 两点之间的距离为2020(点A 在B 的左侧),且A 、B 两点经折叠后重合,求A 、B 两点表示的数是多少?(3)点C 在数轴上,将它向右移动4个单位,再向左2个单位后,若新位置与原位置到原点的距离相等,则C 原来表示的数是多少?请列式计算,说明理由.27.乘法公式的探究及应用.(1)如图1,可以求出阴影部分的面积是 (写成两数平方差的形式);(2)如图2,若将阴影部分裁剪下来,重新拼成一个矩形,它的宽是 ,长是 ,面积是 (写成多项式乘法的形式);(3)比较图1、图2阴影部分的面积,可以得到公式 ;(4)运用你所得到的公式,计算下列各题:① 20.2×19.8 ;②()()22m n p m n p +--+.28.在解决数学问题时,我们一般先仔细读题干,找出有用信息作为已知条件,然后用这些信息解决问题,但是有的题目信息比较明显,我们把这样的信息称为显性条件,而有的信息不太明显需要结合图形,特殊式子成立的条件,实际问题等发现隐含信息作为条件,这样的条件称为隐含条件,所以我们在做题时更注意发现题目中的隐含条件(阅读理解)读下面的解题过程,体会加何发现隐含条件,并回答. 化简:2(13x)1x ---.解:隐含条件1-3x≥0,解得:x 13≤,∴原式=(1-3x )-(1-x )=1-3x-1+x=-2x(启发应用)已知△ABC 22x 1(5x)4(4x)+---,,,记△ABC 的周长为C △ABC(1)当x=2时,△ABC 的最长边的长度是______(请直接写出答案).(2)请求出C △ABC (用含x 的代数式表示,结果要求化简).29.某检修小组乘一辆汽车沿一条东西向公路检修线路,约定向东走为正,某天从A 地出发到收工时,行走记录如下:(单位:km )+15,-2,+5,-3,+8,-3,-1,+11,+4,-5,-2,+7,-3,+5(1)请问,收工时检修小组距离A地多远?在A地的那一边?(2)若检修小组所乘汽车的平均油耗是7.5升/100km,则汽车在路上行走大约耗油多少升?(精确到0.1升)参考答案1.B2.B3.A4.C5.A6.C7.B8.B9.B10.C11.B12.C13.①②③⑤14.1597 258415.4 16.317.1 418.6n﹣319.2.20.低于海平面20米, -13吨21.⑴ -10 ⑵ -322.(1)0;(2)423.44,24.24.1 525.(1)4;b=(2−4;3(3)±826.(1)2;(2)①-5;②点A表示的数是-1009、点B表示的数是1011;(3)-1.27.(1)a2−b2;(2)a−b,a+b,(a+b)(a−b);(3)(a+b)(a−b)=a2−b2;(4)①99.96;②4m2−n2+2np−p2.28.(1)3;(229.(1)所以检修小组最后在A地东面36km处;(2)汽车在路上行走大约耗油5.6升.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教学目标 数与式是初中数学的基础知识,且知识点较多,是以大容量、小综合的形式命题,试题的难度为中低档,主要考查灵活运用知识的能力,一般考生都 能解答.常见题型有填空题、选择题、计算题以及部分开放性探索型试题,这些题占总题量的4%~6%,分值占总分的4%~8%. 重点、难点 数与式的综合练习。 教 学 内 容

知识梳理: 数与式 一.实数和代数式的有关概念 1.实数分类:

实数无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数 2.数轴:规定了原点、正方向和单位长度的直线。数轴上所有的点与全体实数是一一对应关系,即每个实数都可以用数轴上的一个点表示;反过来,数轴上的每一个点都表示一个实数。

3.相反数:只有符号不同的两个数叫做互为相反数。0的相反数是0。数轴上,表示互为相反数的两个点位于原点的两边(0除外),并且与原点的距离相等。

4.倒数:1除以一个数的商,叫做这个数的倒数。一般地,实数a的倒数为a1。0没有倒数。两个互为倒数的数之积为1.反之,若两个数之积为1,则这两个数必互为倒数。

5.绝对值:一个正实数的绝对值等于它本身,零的绝对值等于零,负实数的绝对值等于它的相反数。 a=0000aaaaa,绝对值的几何意义:数轴上表示一个数到原点的距离。

-2 -1 0 1 2 -2 -1 0 1 2 6.实数大小的比较:在数轴上表示的两个数,右边的数总比左边的数大。 (1)正数大于零,零大于负数。 (2)两正数相比较绝对值大的数大,绝对值小的数小。 (3)两负数相比较绝对值大的数反而小,绝对值大小的数反而大。

(4)对于任意两个实数a和b,①a>b,②a=b,③a7.代数式:用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连结而成的式子,叫代数式。单独的一个数或字母也是代数式。

8.整式:单项式与多项式统称为整式。 单项式:只含有数与字母乘积形式的代数式叫做单项式。一个数或一个字母也是单项式。单项式中数字因数叫做这个单项式的系数。一个单项式中所有字母的指数的和叫做这个单项式的次数。 多项式:几个单项式的代数和多项式。在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项。多项式里,次数最高的项的次数就是这个多项式的次数。一个多项式有n项且次数是m,我们就称这个多项式为m次n项式。

9.分式:一般地,用A,B表示两个整式,若B中含有字母,且B≠0,则式子BA叫做分式。 10.有理式:整式和分式统称为有理式。 11.无理式:根号里含有字母的代数式叫做无理式。 12.a0=1(a≠0),ap=ap1(a≠0,p是正整数)。

13.平方根:若x2=a(a≥0),则x叫做a的平方根(或二次方根)。一个整数有两个平方根,它们互为相反数,整数a的平方根记为+a和—a;0的平方根是0;负数没有平方根。 若x2=a(a≥0),则x=±a。 14.算术平方根:整数a的正的平方根+a叫做a的算术平方根,+a可简记为a。0的算术平方根仍为0.

15.立方根:若x3=a,则x叫做a的立方根(或三次方根),记为3a,即x=3a。正数的立方根是正数,0的立方根是0,负数的立方根是负数。

16.有理数的开方: a2=a(a≥0),a2=a=)0()0(0)0(aaaaa

17.科学记数法:把一个数写成a×10n(1≤a<10,n是整数),叫做科学记数法。 18.有效数字:从最左边的不是零的数字算起,到最后一位要保留的数字为止。 19.运算律: (1)加法交换律:a+b=b+a。 (2)加法结合律:(a+b)+c=a+(b+c)。 (3)乘法交换律:a*b=b*a。 (4)乘法结合律:(a*b)*c=a*(b*c)。 (5)乘法分配律:(a+b)*c=a*c+b*c。

20.am*an=anm,am÷an=anm(a≠0),amn=amn,abn=an*bm。

21.平方差公式:(a+b)(a-b)=a2-b2 完全平方公式:ba2=a2+2ab+b2,ba2=a2-2ab+b2 22.十字相乘法:x2+bx+c=(x+m)(x+n)其中b=m+n,c=mn。 23.最简分式:一个分式的分子与分母没有公因式时,这种分式叫做最简分式。

24.分式的加减法:(1)同分母的分式相加减,分母不变,把分子相加减。 (2)异分母的分式相加减,先通分,变成同分母的分式,然后相加减。

25.分式的乘除法:(1)分式乘分式,用分子的积作为分子,分母的积作为分母。 (2)分式除以分式,等于被除式乘除式的倒数。

26.二次根式:形如a(a≥0)的式子,叫做二次根式。

27.二次根式的性质: (1)a2 =a(a≥0);(2)a2=a =)0()0(0)0(aaaaa

(3)ab=ab (a≥0, b≥0);(4)ba=ba( a≥0, b>0)。 28.最简二次根式:满足下列两个条件的二次根式,叫做最简二次根式。 (1)被开方数的因数是整数,因式是整式。 (2)被开方数中不含能开得尽的因数或因式。

29.同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式。 30.分母有理化:把分母中的根号化去,叫做分母有理化。 注意:分母有理化时,分子与分母需要同时乘分母的有理化因式。

经典例题解析:

例1. 在在,,,,,中,无理数的个数为2031308010174..() A. 1 B. 2 C. 3 D. 4 分析:应当知道,只有无限不循环的小数才是无理数,有限小数0.80108,无限循环小 数和分数都是有理数,还应当知道,并非含有根号的数就是无理数,如031174.24,所以不是无理数,而是有理数,故本题应选正确。()B 例2. 已知下列5个命题 (1)零是最小的实数 (2)数轴上所有的点都表示实数 (3)两个无理数的和仍然是无理数 ()412713的立方根是± (5)任何实数都有两个互为相反数的平方根 其中正确命题的个数是( ) A. 1 B. 2 C. 3 D. 4 分析:(1)要正确区分实数的最小值和实数绝对值最小值的意义 (2)要正确区分平方根和立方根的相同点和不同点 (3)“任何数……”就意味着没有例外,因此若能举出一个反例便可证明原命题是假命题。 因此可以得出5个命题中只有(2)是真命题,故选A。 例3. 已知、、是实数,且满足,求的值。xyzxyzzxyz()||42102 解:010|2|0)4(2zzyx,,∵ 又()||xyzz42102

∴()||xyzz4020102 即xyzz402010 ∴,,xyz421 当,,时,×xyzxyz4214216 注意:这是一个条件求值问题,利用非负数的性质可以求出x、y、z的值,从而使问题得解。

例4. 计算:×()()()13200422116121102

解:原式×314142121212()()() 2414212122×()212124 归纳:()()111注意负指数的意义:或aaaaPPPP 其中a≠0,P是正整数,在本题中, ()1311331

()()2012004202004210任何非零实数的次方等于,在本题中,≠,故 例5. xpxqxxpxqx1120011133时,代数式的值为,则当时,代数式 的值为( ) 解:当时,代数式的值为:xpxqx113 pqpq()()111120013 故当时,的值为:xpxqx113 pqpq()()()11113 [()]pq12 ()200121999

例6. 计算÷·xxxxxxxxxxxxyy22222224423429922

解:原式÷·()()()()()()()()()()()xxxxxxxxxxyx1222312232322 ()()()()()()()()()()xxxxxxxxxxyx1222223132322··xxy3 归纳:对分子、分母都是多项式的分式进行乘除运算时,一定要先将每个多项式分解因式,然后将除法统一成乘法,最后再进行约分化简。 课堂练习:

一、选择题: 1. 下列各组数中,相等的是_________

A. ()13和1 B. ()12和-1 C. ()12和-1 D. ()||11和 2. 设a,b为两实数,则下列命题中是假命题的是_________ A. 若a+b=0,则|a|=|b| B. 若|a|+|b|=0,则a=b=0 C. 若a2+b2=0,则a=b=0 D. 若|a+b|=0,则a=b=0 3. 一天的时间共86400秒,用科学记数法表示应为_________

相关文档
最新文档