多种群遗传算法的函数优化算法

合集下载

遗传算法遗传算法

遗传算法遗传算法
11
(5)遗传算法在解空间进行高效启发式搜索,而非盲 目地穷举或完全随机搜索;
(6)遗传算法对于待寻优的函数基本无限制,它既不 要求函数连续,也不要求函数可微,既可以是数学解 析式所表示的显函数,又可以是映射矩阵甚至是神经 网络的隐函数,因而应用范围较广;
(7)遗传算法具有并行计算的特点,因而可通过大规 模并行计算来提高计算速度,适合大规模复杂问题的 优化。
26
(4)基本遗传算法的运行参数 有下述4个运行参数需要提前设定:
M:群体大小,即群体中所含个体的数量,一般取为 20~100; G:遗传算法的终止进化代数,一般取为100~500; Pc:交叉概率,一般取为0.4~0.99;
Pm:变异概率,一般取为0.0001~0.1。
27
10.4.2 遗传算法的应用步骤
遗传算法简称GA(Genetic Algorithms)是1962年 由美国Michigan大学的Holland教授提出的模拟自然 界遗传机制和生物进化论而成的一种并行随机搜索最 优化方法。
遗传算法是以达尔文的自然选择学说为基础发展起 来的。自然选择学说包括以下三个方面:
1
(1)遗传:这是生物的普遍特征,亲代把生物信息交 给子代,子代总是和亲代具有相同或相似的性状。生 物有了这个特征,物种才能稳定存在。
18
(3)生产调度问题 在很多情况下,采用建立数学模型的方法难以对生
产调度问题进行精确求解。在现实生产中多采用一些 经验进行调度。遗传算法是解决复杂调度问题的有效 工具,在单件生产车间调度、流水线生产车间调度、 生产规划、任务分配等方面遗传算法都得到了有效的 应用。
19
(4)自动控制。 在自动控制领域中有很多与优化相关的问题需要求
10

多目标遗传算法NSGA-II

多目标遗传算法NSGA-II

在NSGA-II中,我们计算两个属性Sp 和np来帮助我们识别更好的个体。
快速非支配排序
假设种群大小为P,该算法需要计算每个个体p的被支配个数np和该个体支配的解的集合Sp 这两个参数。 遍历整个种群
该算法的伪代码如下:
拥挤度
• 为了使得到的解在目标空间中更加均匀,引入了拥挤度的概念
•为所有个体的拥挤距离初始化零。 •审视所有的个人和目标值。通过用Inf值分配绑定解决方案 来选择它们。 •计算每个目标的第m个最大值和最小值,得到归一化的分 母。 •对第i个个体的m个目标的拥挤距离求和
计算拥挤度是为了保存下来相似程度较低的解,保持解空间的多样性
精英保留策略
1 首先将父代种群Pt和子代种群Qt合成种群Rt 2 根据以下规则从种群Rt生成新的父代种群Rt+1
(1)根据Pareto等级从低到高的顺序,将整层种 群放入父代种群Rt+1中,真到某一层个体不能 全部放入父代种群Rt+1。 (2)将该层个体根据拥挤度从大到小排列,依次 放入父代种群Rt+1中,直到父代种群Rt+1f填满。
单目标优化——》多目标优化
NSGA-II 在常规遗传算法上的改进
• 1 快速非支配算子设计 • 多目标优化问题的设计关键在于求取Pareto最优解集。
• 2 通过优先选择拥挤距离较大的个体
• 3 精英策略选择算子
• NAS中的性能评估也可以是一个多目标问题 • 测试集上的准确率 • 参数数量
遗传算法解决多目标优化问题
多目标优化问题:
• 包含多个可能有冲突的目标函数
NSGA-Ⅱ算法,即带有精英保留策略的快 速非支配多目标优化算法,是一种基于 Pareto最优解的多目标优化算法。

多目标遗传优化算法代码

多目标遗传优化算法代码

多目标遗传优化算法代码
遗传算法是一种常用的优化算法,它模拟了生物进化的过程,通过种群的进化来寻找最优解。

多目标遗传优化算法是遗传算法的一种扩展,用于解决多目标优化问题。

以下是一个简单的伪代码示例,用于说明多目标遗传优化算法的基本思想:
plaintext.
初始化种群。

计算种群中每个个体的适应度(针对多个目标)。

重复执行以下步骤直到满足终止条件:
选择父代个体。

交叉产生子代个体。

变异子代个体。

计算子代个体的适应度(针对多个目标)。

更新种群。

在实际编写多目标遗传优化算法的代码时,需要根据具体的问
题定义适应度函数、选择算子、交叉算子和变异算子等。

此外,还
需要考虑种群大小、迭代次数、交叉概率、变异概率等参数的设置。

对于具体的实现代码,可以使用Python、Java、C++等编程语
言来编写。

在实际编写代码时,需要根据具体的问题进行适当的调
整和优化,以获得更好的求解效果。

总的来说,多目标遗传优化算法是一种强大的优化工具,可以
用于解决多目标优化问题,但在实际应用中需要根据具体的问题进
行适当的调整和优化。

希望这个简单的伪代码示例能够帮助你理解
多目标遗传优化算法的基本思想。

遗传算法中种群选择策略的比较与优化方法

遗传算法中种群选择策略的比较与优化方法

遗传算法中种群选择策略的比较与优化方法遗传算法(Genetic Algorithm,简称GA)是一种模拟自然选择和遗传机制的优化算法,广泛应用于解决复杂问题。

在遗传算法中,种群选择策略起着至关重要的作用,直接影响算法的性能和收敛速度。

本文将比较不同的种群选择策略,并探讨一些优化方法。

1. 简单选择策略简单选择策略是最基本的选择策略之一,根据个体适应度的大小来选择个体。

适应度越大的个体被选择的概率越大,适应度较小的个体则被淘汰的概率较大。

这种策略简单直观,但容易导致早熟收敛和局部最优解的陷阱。

2. 锦标赛选择策略锦标赛选择策略是一种随机选择个体进行比较的方法。

每次从种群中随机选择一定数量的个体,然后选择其中适应度最好的个体作为父代。

这种策略能够增加种群的多样性,减少早熟收敛的可能性。

3. 轮盘赌选择策略轮盘赌选择策略是一种按照适应度比例进行选择的方法。

将适应度值转化为概率,然后根据个体的适应度概率进行选择。

适应度越大的个体被选择的概率越高,适应度较小的个体也有一定的选择机会。

这种策略能够更好地保留优秀个体,并增加种群的多样性。

4. 非支配排序选择策略非支配排序选择策略是一种多目标优化的选择方法。

通过将个体按照非支配排序进行划分,优先选择非支配解,并根据拥挤度进行选择,以维持种群的多样性。

这种策略适用于多目标优化问题,能够得到一系列的非支配解。

优化方法:1. 精英保留策略精英保留策略是一种保留种群中最优个体的方法。

在选择过程中,将适应度最好的个体直接复制到下一代中,以保持种群中优秀个体的稳定。

这种策略能够加速算法的收敛速度,但也容易导致早熟收敛。

2. 多样性保持策略为了避免种群过早陷入局部最优解,需要保持种群的多样性。

多样性保持策略可以通过引入随机因素、增加选择压力等方式来增加种群的多样性。

例如,可以在选择过程中引入一定的随机性,或者通过调整选择压力参数来平衡种群的多样性和收敛速度。

3. 自适应选择策略自适应选择策略是根据种群的动态变化来调整选择策略的方法。

多种群协同进化的并行遗传算法

多种群协同进化的并行遗传算法

多种群协同进化的并行遗传算法多种群协同进化并行遗传算法(Multi-population Cooperative Coevolutionary Parallel Genetic Algorithm, MCCPGA)是一种基于群体协作的进化算法,通过将一个大问题分解为多个子任务,并使用多个种群并行地进行进化,以提高算法效率。

本文将对多种群协同进化并行遗传算法的原理、优点以及应用进行详细介绍。

首先,多种群协同进化并行遗传算法的基本原理是将一个大问题分解成多个子任务,每个子任务由一个种群独立进化。

不同子任务之间通过共享信息交流、协作进化来改善效果。

算法的基本步骤为:初始化多个种群,每个种群为一个子任务的解空间;进行进化操作,包括选择、交叉、变异等;定期进行群体间信息交流,如共享精英个体、最优个体传递等;直到满足终止条件为止。

多种群协同进化并行遗传算法具有以下几个优点。

首先,通过并行计算,同时进行多个种群的进化,加快了算法的速度和收敛速度。

其次,多种群之间的信息交流可以引入不同种群的优势,提高了群体的多样性和整体的能力。

此外,不同子任务的粒度可以根据问题的特点进行调整,灵活性较高,适用范围广。

多种群协同进化并行遗传算法已经在多个领域得到了广泛应用。

例如,在优化问题中,可以将每个种群看作是一个决策变量的子集,通过不同种群的协作进化来求解全局最优解。

在机器学习中,不同种群可以分别学习不同任务的特征,通过信息交流来提高整体的分类准确率。

在智能控制中,可以构建多个控制子系统,通过种群之间的协同来优化整体的控制性能。

总而言之,多种群协同进化并行遗传算法是一种通过多个种群的协作进化来求解复杂问题的进化算法。

通过并行计算和信息交流,该算法能够加快速度、提高能力,已经在优化问题、机器学习、智能控制等领域取得了良好的效果。

未来,随着计算力的提升和算法的改进,多种群协同进化并行遗传算法有望在更多的应用领域发挥重要作用。

组合优化问题的遗传算法求解

组合优化问题的遗传算法求解

组合优化问题的遗传算法求解一、简介组合优化问题指的是在有限个元素中选取某些元素,以达到最优化的目标。

组合优化问题的求解在实际中应用广泛,如旅行商模型、调度问题、网络优化等领域。

但是这类问题求解面临着复杂度高、难以精确求解等困难。

在这种情况下,遗传算法是一种有效的求解方法。

遗传算法是一种基于达尔文进化论的计算方法,通过模拟生物进化的方式求解组合优化问题。

本文将介绍遗传算法在组合优化问题求解中的应用,着重介绍遗传算法基本框架、编码方法、适应度函数的构建以及遗传算法的优化策略等。

二、遗传算法基本框架遗传算法的求解过程主要包括初始种群生成、适应度评价、选择操作、交叉操作和变异操作等基本步骤。

(1)初始种群生成遗传算法首先需要生成一定数量的初始种群,初始种群可以通过随机生成或其他启发式算法生成。

例如,在旅行商问题中,初始种群可以随机生成多条路径。

(2)适应度评价适应度函数是遗传算法的核心,适应度函数的构建直接关系到遗传算法的性能。

适应度函数是对每个染色体的优劣进行量化评价,用以指导后续优化操作。

适应度函数构建需要根据问题特点进行设计。

(3)选择操作选择操作是指将上一代种群中的某些个体复制到下一代种群中,个体复制的概率与其适应度大小有关。

适应度越高的个体被选择的概率越大,从而使适应度高的个体更有机会进化到下一代。

选择操作可以通过轮盘赌选择、锦标赛选择等方式实现。

(4)交叉操作交叉操作是指对选择后的个体进行杂交,交叉操作是遗传算法的核心,它通过随机杂交个体的染色体,产生新的杂交染色体,从而增加搜索空间。

交叉操作可分为单点交叉、多点交叉、均匀交叉等。

(5)变异操作变异操作是指在交叉操作之后对个体发生变异,从而产生新的个体。

变异操作是通过随机改变染色体中的基因,从而增加多样性。

变异操作可以是简单变异、非一致变异、高斯变异等。

以上是遗传算法的基本框架,遗传算法的性能因素有适应度函数的设计、进化代数、群体大小、交叉概率、变异概率等。

遗传算法参数的动态优化方案

遗传算法参数的动态优化方案

遗传算法参数的动态优化方案遗传算法是一种基于自然选择和遗传学原理的优化算法,它通过不断进化,逐步优化变量组合,得到最优解。

然而,遗传算法的性能和效果受到诸多参数的影响,而如何选择恰当的参数,以进一步提高遗传算法的性能和效果,成为研究者关注的问题之一。

因此,本文将探讨一种动态优化遗传算法参数的方案。

一、遗传算法参数的分类遗传算法中,常用的参数包括种群大小、交叉率、变异率等。

其中,种群大小是指每一代中所包含的个体数量,交叉率是指个体之间进行交叉的概率,变异率则表示每个变量在进化过程中突变的概率。

二、动态优化遗传算法参数方案1. 模型选择首先,需要确定一个代价函数(或目标函数),该函数将用于评估遗传算法的性能和效果。

对于复杂的问题,一般选择替代模型,如支持向量回归模型、决策树模型等。

然后,针对模型参数,设计基于遗传算法的优化策略。

2. 参数初始化在遗传算法启动之前,为遗传算法参数设置初值,并通过几十代的进化来寻找最优解。

一般来说,种群大小可以设为50到100左右,交叉率可以设为0.8到0.9,变异率可以设为0.005到0.01。

然后,将初值作为代价函数或目标函数的输入,以检验初值选择是否合理。

3. 优化策略基于上述的初值,开始进行动态优化遗传算法参数。

具体而言,在每次进化时,根据当前进化代数和遗传算法性能的变化情况,实时调整遗传算法参数。

如在前几代时,可以采用较小的交叉率和变异率,以保持种群多样性。

当进化代数较大时,应考虑加大交叉率和变异率,以加速收敛并求得最优解。

4. 优化终止当遗传算法达到预定的停止条件时,不再进行进化。

一般而言,停止条件包括代数足够、收敛到最优解等。

此时,通过对遗传算法参数的调整,得到优化后的遗传算法模型参数,以获取进一步的性能提升。

三、优化效果分析本方案将基于实验数据来验证其优化效果。

取50个连续函数优化问题和10个离散函数优化问题,分别采用传统的遗传算法(未设置动态优化参数)和本文所提出的动态优化方案进行比较。

关于函数优化遗传算法的研究

关于函数优化遗传算法的研究
b gn ei
t= 0
些新 的模拟 进 化算 法也 逐 渐 出现 并 日益 完善 , 为这 类 复杂 优
化 问题 提供 了一定 的 解决 方 案 。遗传 算 法是 目前 研究 最 多 、 应用 最 广 的模 拟进 化算 法 , 在众 多 领域 得 到 了广泛 应 用 。本 文 就遗 传算 法 在 函数 优 化 问题 中的 编码 方 式 及 遗 传 操 作 作
许多 实 际 问题都 可 以归 结 为优 化 问题 , 统 的优 化技 术 传 往往 都对 目标 函数 有 一定 要 求 , 连 续 可 微 性 、 性 等 。而 如 凸 在 实 际应用 中 , 目标 函数 往 往 是 非 凸 的 , 有许 多 局 部 最 优 具 点, 有效 地求解 非 凸函数 的全局 最 优解 是 一个 非 常 困难 的 问 题 。特 别是 对 于 大规 模 问 题 , 由于 局部 最 优 点 的增 多 , 得 使 寻求 全局最 优 点 的难 度增 大 , 因而 研究 有 效 的全局 优 化方 法 具有 重要 的现 实 意义 。近 年 来 , 随着 计算 技 术 的发 展 , 些 一 新 的智 能算 法 ( 遗 传 算 法 、 拟 退 火 算 法 、 忌 搜 索 算 法 ) 如 模 禁 得到 了迅 速 发 展 和 广 泛 应 用 。特 别 是模 拟 进 化 算 法 ( A、 G G 、s , P E ) 无论 是 理论 研 究还 是应 用 研 究都 空 前活跃 , 时 , 同 一
关 于 函 数 优 化 遗 传 算 法 的 研 究
张 焱
( 阳大 学师 范学 院数 学 与计算 机 系 ,辽 宁 沈 阳 10 1 ) 沈 10 6 摘 要 :遗 传算 法 是一 种 有 效的模 拟进 化 算 法 ,针 对 不 同 问题 ,编码 方 式 多种 多样 。本 文 就 函数 优 化 问题 ,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

多种群遗传算法的函数优化算法
1、案例背景
针对遗传算法所存在的问题,一种多种群遗传算法结构模型(Multiple Population GA,简称MPGA)可以用来取代常规的标准计算模型(SGA)。

MPGA在SGA的基础上主要引入了以下几个概念:
(1)突破SGA仅靠单个群体进行遗传进化的框架,引入多个种群同时进行优化搜索;不同的种群赋以不同的控制参数,实现不同的搜索目的。

(2)各个种群之间通过移民算子进行联系,实现多种群的协同进化;最优解的获取是多个种群协同进化的综合结果。

(3)通过人工选择算子保存各种群每个进化代中的最优个体,并作为判断算法收敛的依据。

图 7-1 MPGA的算法结构示意图
复杂二元函数求最值:
图 7-2 二元函数图像
2、案例目录:
第7章多种群遗传算法的函数优化算法7.1 理论基础
7.1.1遗传算法早熟问题
7.1.2多种群遗传算法概述
7.2案例背景
7.2.1问题描述
7.2.2解决思路及步骤
7.3 MATLAB程序实现
7.3.1移民算子
7.3.2人工选择算子
7.3.3目标函数
7.3.4标准遗传算法主函数
7.3.5多种群遗传算法主函数
7.3.6结果分析
7.4延伸阅读
7.5 参考文献
3、主程序:
%% 多种群遗传算法
clear;
clc
close all
NIND=40; %个体数目
NVAR=2; %变量的维数
PRECI=20; %变量的二进制位数
GGAP=0.9; %代沟
MP=10; %种群数目
FieldD=[rep(PRECI,[1,NVAR]);[-3,4.1;12.1,5.8];rep([1;0;1;1],[1,NVAR])]; %译码矩阵
for i=1:MP
Chrom{i}=crtbp(NIND, NVAR*PRECI); %创建初始种群
end
pc=0.7+(0.9-0.7)*rand(MP,1); %在【0.7,0.9】范围i内随机产生交叉概率
pm=0.001+(0.05-0.001)*rand(MP,1); %在【0.001,0.05】范围内随机产生变异概率
gen=0; %初始遗传代数
gen0=0; %初始保持代数
MAXGEN=10; %最优个体最少保持代数
maxY=0; %最优值
for i=1:MP
ObjV{i}=ObjectFunction(bs2rv(Chrom{i}, FieldD));%计算各初始种群个体的目标函数值
end
MaxObjV=zeros(MP,1); %记录精华种群
MaxChrom=zeros(MP,PRECI*NVAR); %记录精华种群的编码
while gen0<=MAXGEN
gen=gen+1; %遗传代数加1
for i=1:MP
FitnV{i}=ranking(-ObjV{i}); % 各种群的适应度
SelCh{i}=select('sus', Chrom{i}, FitnV{i},GGAP); % 选择操作
SelCh{i}=recombin('xovsp',SelCh{i}, pc(i)); % 交叉操作
SelCh{i}=mut(SelCh{i},pm(i)); % 变异操作
ObjVSel=ObjectFunction(bs2rv(SelCh{i}, FieldD)); % 计算子代目标函数值
[Chrom{i},ObjV{i}]=reins(Chrom{i},SelCh{i},1,1,ObjV{i},ObjVSel); %重插入操作
end
[Chrom,ObjV]=immigrant(Chrom,ObjV); % 移民操作
[MaxObjV,MaxChrom]=EliteInduvidual(Chrom,ObjV,MaxObjV,MaxChrom); % 人工选择精华种群YY(gen)=max(MaxObjV); %找出精华种群中最优的个体
if YY(gen)>maxY %判断当前优化值是否与前一次优化值相同
maxY=YY(gen); %更新最优值
gen0=0;
else
gen0=gen0+1; %最优值保持次数加1
end
end
%% 进化过程图
plot(1:gen,YY)
xlabel('进化代数')
ylabel('最优解变化')
title('进化过程')
xlim([1,gen])
%% 输出最优解
[Y,I]=max(MaxObjV); %找出精华种群中最优的个体
X=(bs2rv(MaxChrom(I,:), FieldD)); %最优个体的解码解disp(['最优值为:',num2str(Y)])
disp(['对应的自变量取值:',num2str(X)])
4、运行结果:
标准遗传算法运行5次得到的结果图:
多种群遗传算法运行5次得到的结果图:。

相关文档
最新文档