遗传算法及其函数优化应用

合集下载

遗传算法用于函数优化

遗传算法用于函数优化
adptability=[adptability;parent_ave];
y_max=[y_max;max(y)];
y_min=[y_min;min(y)];
%----------------end---------------------------------
%------------遗传算法--------------------------------
4、设定交叉概率为0.9,进行遗传操作(交叉);
5、设定变异概率0.05,进行遗传操作(变异);
6、产生下一代种群,与终止条件比较,不满足返回到步骤2直到满足条件退出。
算法的流程如图7.1所示。
图7.1 算法流程图
四、实验结果及分析
我们采用遗传算法来寻求目标函数的最大值。初始化样本个数为20个,编码位数为5位,采用二进制编码,交叉概率为0.9,变异概率为0.05,最大迭代次数为1000次,初始样本随机选择,当父代与子代间适应度变化小于0.001时,达到系统指标。MATLAB模拟运行输出迭代种群的平均适应度变化、种群的最优解与最差解,绘出图像(见图1),计算运行时间的平均值(见表1),由表可知,平均运行时间约为0.65秒左右,速度较快。由图可知,前期平均适应度是不断上升的,到达一定程度后即平均适应度在0.9以上后,就基本处于波动平衡状态。通过对遗传算法的分析,这是因为种群内的所有个体几乎都已经接近最优值,上升空间比较小,且由于有变异的可能性,所以平均适应度在后期处于波动状态。由图可发现,每代的最大值都差不多,几乎都是1,但每代的最小值的变化就比较多了,但从趋势可以基本看出,最小值在逐渐变大,向最大值靠拢。因为要找的最优解是最大值,所以在迭代过程中,最小值淘汰几率最大,它的基因难以遗传下来,因此最小值会逐渐变大。

第七章遗传算法应用举例

第七章遗传算法应用举例

第七章遗传算法应用举例遗传算法是一种模拟自然选择和遗传机制的计算方法,它可以用来解决很多实际问题。

以下是几个遗传算法应用的实例。

1.旅行商问题(TSP):旅行商问题是一个经典的组合优化问题,目标是找到最短路径来访问一系列城市并返回原始城市。

遗传算法可以通过编码城市序列,并使用交叉、变异和选择操作进行优化。

通过进行迭代,遗传算法可以更优的路径,并得到近似最优的解。

2.机器学习特征选择:在机器学习中,特征选择是一种减少特征集合维度的方法,以提高模型的性能和泛化能力。

遗传算法可以用来选择最佳的特征子集,通过优化目标函数(例如分类准确率或回归误差)来评估子集的优劣,并通过交叉和变异操作不断改进。

3.组合优化问题:遗传算法也广泛应用于组合优化问题,如背包问题、任务调度、物流路径规划等。

通过定义适应度函数和优化目标,遗传算法可以最优的组合并提供近似解。

4.神经网络训练:神经网络是一种模拟人脑神经元相互连接和传递信息的计算模型。

训练神经网络需要调整网络权重和参数,以最小化损失函数。

遗传算法可以用作优化算法,通过定义染色体编码网络参数,并通过交叉和变异操作对网络进行进化,以找到更好的网络结构和参数。

5.机器调参:机器学习算法通常包含许多超参数需要调优,例如决策树的深度、神经网络的学习率等。

遗传算法可以用来超参数的最佳组合,并通过交叉和变异操作对超参数进行优化。

6.图像处理:遗传算法被广泛应用于图像处理领域,如图像增强、目标检测、图像分割等。

通过定义适应度函数和优化目标,遗传算法可以优化图像处理算法的参数和参数组合,以提高图像质量和算法效果。

7.电力系统优化:电力系统优化包括电力负荷优化、电力设备配置优化、电力网路规划等。

遗传算法可以用来优化电力系统的各种参数和变量,以提高电力系统的效率和可靠性。

总之,遗传算法是一种强大而灵活的优化算法,在许多领域都可以应用。

它通过模拟生物进化过程,通过选择、交叉和变异操作,问题的解空间,并找到最优或近似最优的解。

遗传算法原理与应用

遗传算法原理与应用
中,而一些适应函数值小的染色体则可能被淘汰。
一、遗传算法概述
1、智能优化算法 2、基本遗传算法 3、遗传算法的特点
1、智能优化算法
智能优化算法又称为现代启发式算法, 是一种具有全局优化性能、通用性强、 且适合于并行处理的算法。这种算法一 般具有严密的理论依据,而不是单纯凭 借专家经验,理论上可以在一定的时间 内找到最优解或近似最优解。
均点交叉运算 交叉前: 00000|01110|00000|00100|00 11100|00000|11111|10001|01 交叉后: 00000|00000|00000|10001|00 11100|01110|11111|00100|01 交叉点
均匀交叉又称“驻点交叉”,在交叉前先进行基因的变异 检测,通过后再行交叉。
(2) 利用比例选择算子的公式,计算每个个体被
选中遗传到下一代群体的概率;
(3) 采用模拟赌盘操作(即生成0到1之间的随机
数与每个个体遗传到下一代群体的概率进行匹配) 来确定各个个体是否遗传到下一代群体中。
以赌轮盘的方式來看,把一个轮盘分成若干扇形, 面积越大的编号,越容易中奖,因此奖金会比較低。 以适应性函数來看,其值越大者所占的面积就越大, 其选中的机率就越大。
轮盘赌选择又称比例选择算子,它的基本思想 是:各个个体被选中的概率与其适应度函数值大小 成正比。设群体大小为n ,个体i 的适应度为 Fi, 则个体i 被选中遗传到下一代群体的概率为:
P i F i / F i
i 1
n
轮盘赌选择方法的实现步骤
(1) 计算群体中所有个体的适应度函数值(需要 解码);
身的要求而定。
选择算子
遗传算法使用选择运算来实现对群体中的个 体进行优胜劣汰操作:适应度高的个体被遗传到

遗传算法及应用

遗传算法及应用

遗传算法将问题的求解表示成“染色体”(用编码 表示字符串)。该算法从一群“染色体”串出发, 将它们置于问题的“环境”中,根据适者生存的原 则,从中选择出适应环境的“染色体”进行复制, 通过交叉、变异两种基因操作产生出新的一代更适 应环境的“染色体”种群。随着算法的进行,优良 的品质被逐渐保留并加以组合,从而不断产生出更 佳的个体。这一过程就如生物进化那样,好的特征 被不断的继承下来,坏的特征被逐渐淘汰。新一代 个体中包含着上一代个体的大量信息,新一代的个 体不断地在总体特性上胜过旧的一代,从而使整个 群体向前进化发展。对于遗传算法,也就是不断接 近最优解。
优势
总的来说,遗传算法与其他寻优算法相比的主要特点可以归纳如下: 1)遗传算法是对参数的编码进行操作,而不是对参数本身。 2)遗传算法是从许多初始点开始并行操作,而不是从一个点开始。因而 可以有效地防止搜索过程收敛于局部最优解,而且有较大可能求得全部 最优解。 3)遗传算法通过目标函数来计算适配度,而不要求其他的推导和附属信 息,从而对问题的依赖性较小。 4)遗传算法使用概率的转变原则,而不是确定性原则。 5)遗传算法在解空间内不是盲目地穷举或完全随机测试,而是一种启发 式搜索,其搜索效率往往优于其他算法。 6)遗传算法对于待寻优的函数基本无限制,它既不要求函数连续,更不 要求可微;既可以是数学解析式所表达的显函数,又可以是映射矩阵甚 至是神经网络等隐函数,因而应用范围很广。 7)遗传算法更适合大规模复杂问题的优化。
6.2遗传算法的基本操作与模式理论
下面通过一个简单的例子,详细描述遗传算法的基 本操作过程,然后给出简要的理论分析,从而清晰 地展现遗传算法的原理和特点。 6.2.1遗传算法的基本操作 例:设需要求解的优化问题为当自变量x在0~31之间 取整数值时寻找f(x)=x^2函数的最大值。枚举的方 法是将x取尽所有可能值,观察能否得到最高的目标 函数值。尽管对如此简单的问题该法是可靠的,但 这是一种效率很低的方法。下面运用遗传算法来求 解这个问题。

MATLAB遗传算法工具箱在函数优化中的应用

MATLAB遗传算法工具箱在函数优化中的应用

[x, fval] = ga(fun, 1,,,,,,,, options);
%输出结果
disp(['x = ', num2str(x)]);
disp(['f(x) = ', num2str(fval)]);
在上述代码中,我们首先定义了目标函数,然后设置了遗传算法的参数,包 括种群规模、最大迭代次数、交叉概率和变异概率。接下来,我们使用 optimoptions函数初始化遗传算法,并传入目标函数和参数设置。最后,我们使 用ga函数求解最小值点,并输出结果。
在使用遗传算法工具箱进行函数优化时,需要注意以下问题:
1、适应度函数的设计:适应度函数是评价个体优劣程度的指标,必须合理 设计以满足优化问题的需求。
2、种群规模和迭代次数的设定:种群规模和迭代次数是影响遗传算法性能 的关键参数,需要根据问题规模和复杂度进行合理设定。
3、交叉和变异操作的控制:交叉和变异操作是遗传算法的核心操作,需要 合理控制以保持算法的搜索能力和避免陷入局部最优解。
在定义了目标函数和约束条件之后,我们可以使用Matlab提供的ga函数来运 行遗传算法。ga函数将根据指定的目标函数和约束条件,使用遗传算法搜索最优 解。在运行过程中,我们可以使用Matlab提供的动画功能来实时查看遗传算法的 迭代过程。
除了使用Matlab遗传算法优化工具箱来解决常规的优化问题外,还可以将其 应用于其他领域。例如,在机器学习领域中,可以使用遗传算法来优化神经网络 的连接权值和结构;在控制系统领域中,可以使用遗传算法优化控制系统的参数 和结构;在图像处理领域中,可以使用遗传算法优化图像处理的算法和参数等。
通过本次演示的介绍,希望能使读者更好地理解和应用遗传算法工具箱解决 实际优化问题。

非线性规划的遗传算法在多峰函数优化中的应用

非线性规划的遗传算法在多峰函数优化中的应用
实施 局 部搜 索 , 以 得 到 函数 优化 问题 的全 局 最 优 解 . 通过 测 试 函数 证 明 , 结合 非线 性 规 划 后 , 遗 传 算 法 不 仅 能 解 决 多 峰 函数 寻优 过 程 中 易陷 人 局 部 最 优 的 问 题 , 而 且 具 有 很 高 的寻 优 效 率 . 取 得 满 意 的结 果 .
优解 。 并 提 高 迭代 寻 优 效 率 .
1 算法简介
遗传算法 【 8 ] , 作为一种随机搜 索算法 , 基于随机产生的初始种群 , 通过选择 、 交叉 、 变异操作开始搜 索优
化 问题 的最 优 解 而产 生 新 种 群 . 经过逐步进化 , 遗传 算 法 准 确 或 大概 率 收 敛 于优 化 问题 的全 局 最优 解 。 从 而 获 得 优 化 问 题 的最 优 解 或 次 优 解 . 由于 遗传 算 法 具 有 良好 的全 局 搜 索 能力 和易 于 实 现 等 优 点 , 对 传 统 搜 索 算 法难 以解 决 的复 杂 和 非 线 性 优 化 问 题 , 遗 传 算 法 具 有 较 强 的处 理 能 力 . 目前该 算 法 已广 泛 应 用 于 组 合 优 化 等 领域 , 并 取 得 了 良好 的 应用 效 果 . 但在应用过程 中, 人 们 也 发 现 遗 传算 法 也具 有 局部 搜 索 能 力 较 差 和 收敛 速 度 缓 慢 等缺 点 . 特别 是 对 于 多 峰 函数 的优 化 问题 , 往往 不 能 得 到 问题 的 最 优解 . 为 了提 高算 法 的局
第2 4卷 第 2期 2 0 1 3年 6月
广 西 科 技 大 学 学 报
J OU RNAL OF GUANG XI U NI VERS I T Y OF S C I E NC E AN D I EC HNOL 0GY

(完整word版)遗传算法及在物流配送路径优化中的应用

(完整word版)遗传算法及在物流配送路径优化中的应用

遗传算法及在物流配送路径优化中的应用一、遗传算法1.1遗传算法定义遗传算法(Genetic Algorithm)是模拟达尔文的遗传选择和自然淘汰的生物进化过程的计算模型, 是一种通过模拟自然进化过程搜索最优解的方法, 它是有美国Michigan大学J.Holland教授于1975年首先提出来的, 并出版了颇有影响的专著《Adaptation in Natural and Artificial Systems》, GA这个名称才逐渐为人所知, J.Holland教授所提出的GA通常为简单遗传算法(SGA)。

遗传算法是从代表问题可能潜在的解集的一个种群(population)开始的, 而一个种群则由经过基因(gene)编码的一定数目的个体(individual)组成。

每个个体实际上是染色体(chromosome)带有特征的实体。

染色体作为遗传物质的主要载体, 即多个基因的集合, 其内部表现(即基因型)是某种基因组合, 它决定了个体的形状的外部表现, 如黑头发的特征是由染色体中控制这一特征的某种基因组合决定的。

因此, 在一开始需要实现从表现型到基因型的映射即编码工作。

由于仿照基因编码的工作很复杂, 我们往往进行简化, 如二进制编码, 初代种群产生之后, 按照适者生存和优胜劣汰的原理, 逐代(generation)演化产生出越来越好的近似解, 在每一代, 根据问题域中个体的适应度(fitness)大小选择(selection)个体, 并借助于自然遗传学的遗传算子(genetic operators)进行组合交叉(crossover)和变异(mutation), 产生出代表新的解集的种群。

这个过程将导致种群像自然进化一样的后生代种群比前代更加适应于环境, 末代种群中的最优个体经过解码(decoding), 可以作为问题近似最优解。

1.2遗传算法特点遗传算法是一类可用于复杂系统优化的具有鲁棒性的搜索算法, 与传统的优化算法相比, 主要有以下特点:1. 遗传算法以决策变量的编码作为运算对象。

基本遗传算法及的应用举例

基本遗传算法及的应用举例

基本遗传算法及应用举例遗传算法(Genetic Algorithms)是一种借鉴生物界自然选择和自然遗传机制的随机、高度并行、自适应搜索算法。

遗传算法是多学科相互结合与渗透的产物。

目前它已发展成一种自组织、自适应的多学科技术。

针对各种不同类型的问题,借鉴自然界中生物遗传与进化的机理,学者们设计了不同的编码方法来表示问题的可行解,开发出了许多不同环境下的生物遗传特征。

这样由不同的编码方法和不同的遗传操作方法就构成了各种不同的遗传算法。

但这些遗传算法有共同的特点,即通过对生物的遗传和进化过程中的选择、交叉、变异机理的模仿来完成对最优解的自适应搜索过程。

基于此共同点,人们总结出了最基本的遗传算法——基本遗传算法。

基本遗传算法只使用选择、交叉、变异三种基本遗传操作。

遗传操作的过程也比较简单、容易理解。

同时,基本遗传算法也是其他一些遗传算法的基础与雏形。

1.1.1 编码方法用遗传算法求解问题时,不是对所求解问题的实际决策变量直接进行操作,而是对表示可行解的个体编码的操作,不断搜索出适应度较高的个体,并在群体中增加其数量,最终寻找到问题的最优解或近似最优解。

因此,必须建立问题的可行解的实际表示和遗传算法的染色体位串结构之间的联系。

在遗传算法中,把一个问题的可行解从其解空间转换到遗传算法所能处理的搜索空间的转换方法称之为编码。

反之,个体从搜索空间的基因型变换到解空间的表现型的方法称之为解码方法。

编码是应用遗传算法是需要解决的首要问题,也是一个关键步骤。

迄今为止人们已经设计出了许多种不同的编码方法。

基本遗传算法使用的是二进制符号0和1所组成的二进制符号集{0,1},也就是说,把问题空间的参数表示为基于字符集{0,1}构成的染色体位串。

每个个体的染色体中所包含的数字的个数L 称为染色体的长度或称为符号串的长度。

一般染色体的长度L 为一固定的数,如X=10011100100011010100表示一个个体,该个体的染色体长度L=20。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档