各种优化算法求解函数优化问题

合集下载

求解函数优化问题的混合连续优化算法

求解函数优化问题的混合连续优化算法
问题。 与最新的有 关研 究成 果相 比, 该算 法不仅 寻优 精度 高 , 而且收敛速 度 大幅提 高 , 效果 十分令人 满意 。 关键 词 :函数优化 ;连续蚁群 算法 ;微 粒群 算法 ;混合 算法 中图分 类号 :T 3 1 6 P0. 文 献标志码 :A 文章编 号 :10 — 6 5 2 1 ) 0 3 8 - 5 0 13 9 (0 0 1 —6 6 0
MA We ,Z U Xa H i .a。 i H i ,Z U Qn bo n g
( . et fE gnen ehooy, af gIstt o orm & H si ly aj g2 10 ,C i 1 Dp.o n ier gTcnl i g N nn ntuefTui i i s o t i ,N nn 1 10 hn pat i a;2 Dp.o C m ue, onC l . et f o p t Z ' o r i — l e Naj gU iri f Si c & Tcnl y N ni 10 6 C i ;3 Sho o C m u r c ne Tcnl y N nn e , ni nv syo c ne eh o , aj g204 , hn g n et e o g n a . col o p t i & eh o , af gNo l n- f eSe c o g i r i ma U
vrt,N nn 10 7, hn ) ei sy aj g2 0 9 C ia i
Absr c : S c r be s so c n e g n e a a y flig t h o a pi z to r b e e d o e iti h o i — ta t u h p o lms a lw o v r e c nd e s aln ot e lc lo tmiain p o l mstn t xs n t e c nt nu O So tmiain b a so n oo y a g rt m . n o d rt e lwih te e p o l ms,hi pe r s ntd a n w ntc ln U p i z to y me n fa tc ln o ih I r e o d a t h s r b e l t spa rp ee e e a oo y

常见的优化算法

常见的优化算法

常见的优化算法
摘要:
1.优化算法的定义和分类
2.最大化和最小化问题
3.梯度下降法
4.牛顿法
5.拟牛顿法
6.共轭梯度法
7.遗传算法
8.模拟退火算法
9.人工神经网络
正文:
优化算法是数学和计算机科学的一个分支,主要研究如何找到一个函数的最小值或最大值。

在实际应用中,优化问题可以分为最大化和最小化两种类型。

为了求解这类问题,人们研究了许多优化算法,下面我们来介绍一些常见的优化算法。

首先,我们来了解一些基本的优化算法。

梯度下降法是一种非常常见的优化算法,它通过计算目标函数的梯度来不断更新参数,从而使函数值逐渐下降。

牛顿法和拟牛顿法则是基于牛顿- 莱布尼茨公式来求解优化问题的方法,它们具有比梯度下降法更快的收敛速度。

共轭梯度法则是一种高效的线性规划算法,它可以在保证解全局收敛的同时,大幅提高求解速度。

除了这些传统的优化算法,还有一些新兴的优化算法。

遗传算法是一种模
拟自然界生物进化过程的优化方法,它通过基因的遗传、变异和选择来逐步改进解的质量。

模拟退火算法则是一种模拟金属冶炼过程的优化算法,它通过模拟金属冶炼过程中的退火过程来寻找全局最优解。

人工神经网络是一种模拟人脑神经网络进行信息处理的优化算法,它通过调整神经网络中的权重和阈值来逼近目标函数。

总之,优化算法是解决实际问题的重要工具,不同的优化算法适用于不同的问题。

了解这些算法的原理和特点,可以帮助我们更好地选择合适的方法来求解实际问题。

使用Matlab进行优化与最优化问题求解

使用Matlab进行优化与最优化问题求解

使用Matlab进行优化与最优化问题求解引言:优化与最优化问题在科学、工程和金融等领域中具有重要的应用价值。

在解决这些问题时,选择一个合适的优化算法是至关重要的。

Matlab提供了许多用于求解优化问题的函数和工具箱,能够帮助我们高效地解决各种复杂的优化与最优化问题。

一、优化问题的定义优化问题是通过选择一组最佳的决策变量值,使目标函数在约束条件下达到最优值的问题。

通常,我们将优化问题分为线性优化问题和非线性优化问题。

在Matlab中,可以使用线性规划(Linear Programming)工具箱和非线性规划(Nonlinear Programming)工具箱来解决这些问题。

其中,线性规划工具箱包括linprog函数,而非线性规划工具箱则包括fmincon和fminunc等函数。

二、线性规划问题的求解线性规划问题的数学模型可以表示为:```minimize f'*xsubject to A*x ≤ blb ≤ x ≤ ub```其中,f是目标函数的系数矩阵,A是不等式约束条件的系数矩阵,b是不等式约束条件的右侧向量,lb和ub是变量的上下界。

在Matlab中,可以使用linprog函数来求解线性规划问题。

该函数的调用格式为:```[x, fval, exitflag, output] = linprog(f, A, b, Aeq, beq, lb, ub)```其中,x是最优解向量,fval是目标函数的最优值,exitflag标志着求解的结果状态,output包含了详细的求解过程。

三、非线性规划问题的求解非线性规划问题的数学模型可以表示为:```minimize f(x)subject to c(x) ≤ 0ceq(x) = 0lb ≤ x ≤ ub```其中,f(x)是目标函数,c(x)和ceq(x)分别是不等式约束条件和等式约束条件,lb和ub是变量的上下界。

在Matlab中,可以使用fmincon函数来求解非线性规划问题。

数据科学中的最优化方法

数据科学中的最优化方法

数据科学中的最优化方法在数据科学领域,最优化方法是一种重要的数学工具,用于解决各种问题,如参数估计、模型选择、特征选择等。

最优化方法的目标是找到使得目标函数取得最大或最小值的变量取值。

本文将介绍几种常用的最优化方法,并探讨它们在数据科学中的应用。

一、梯度下降法梯度下降法是一种常用的优化算法,它通过迭代的方式逐步优化目标函数。

其基本思想是沿着目标函数的负梯度方向进行搜索,直到找到最优解。

梯度下降法有多种变体,如批量梯度下降法、随机梯度下降法和小批量梯度下降法等。

在数据科学中,梯度下降法广泛应用于模型参数的估计。

例如,在线性回归中,我们可以使用梯度下降法来估计回归系数,使得模型的预测误差最小化。

此外,梯度下降法还可以用于神经网络的训练、支持向量机的优化等。

二、牛顿法牛顿法是一种迭代的优化算法,它通过近似目标函数的二阶导数来更新变量的取值。

牛顿法的基本思想是通过二次近似来逼近目标函数,并求得使得二次近似函数取得最小值的变量取值。

牛顿法的收敛速度较快,但计算复杂度较高。

在数据科学中,牛顿法常用于解决非线性优化问题。

例如,在逻辑回归中,我们可以使用牛顿法来估计模型的参数,以最大化似然函数。

此外,牛顿法还可以用于求解无约束优化问题、非线性方程组的求解等。

三、拟牛顿法拟牛顿法是一种改进的牛顿法,它通过近似目标函数的梯度来更新变量的取值。

拟牛顿法的基本思想是通过一系列的迭代步骤来逼近目标函数,并求得最优解。

拟牛顿法的计算复杂度较低,收敛速度较快。

在数据科学中,拟牛顿法常用于解决大规模优化问题。

例如,在深度学习中,我们可以使用拟牛顿法来训练神经网络,以最小化损失函数。

此外,拟牛顿法还可以用于求解约束优化问题、非线性方程组的求解等。

四、遗传算法遗传算法是一种模拟自然进化过程的优化算法,它通过模拟生物进化的过程来求解最优解。

遗传算法的基本思想是通过选择、交叉和变异等操作来不断改进种群的适应度,并逐步逼近最优解。

遗传算法具有全局搜索能力,但计算复杂度较高。

常用的优化方法和优化函数

常用的优化方法和优化函数

常用的优化方法和优化函数优化方法和优化函数是在解决问题时常用的数学工具和方法。

优化是一种数学问题,目标是找到一些函数的最优解或近似最优解。

一、优化方法:1.初等方法:初等方法是最直接的一种优化方法,包括插值法、拟合法、曲线拟合法等,通过数学公式来估计函数的取值。

2.单变量优化方法:单变量优化方法是对单一变量进行优化的方法,常见的有二分法、黄金分割法和牛顿迭代法等。

这些方法适用于单调函数和凸函数的优化问题。

3.多变量优化方法:多变量优化方法是对多个变量进行优化的方法,常见的有梯度下降法、共轭梯度法和牛顿法等。

这些方法适用于非线性函数的优化问题。

4.线性规划:线性规划是一种常用的优化方法,通过线性函数和线性约束来确定最优解。

线性规划问题可以通过单纯形法或内点法求解。

5.整数规划:整数规划是一种在决策变量为整数时的优化方法,常用的算法有分支界限法、整数规划近似算法等。

6.动态规划:动态规划是一种将复杂问题分解为简单子问题的方法,通过递推关系求解最优解。

常用的动态规划算法有最短路径算法、背包问题算法等。

7.模拟退火算法:模拟退火算法是一种通过模拟物质在退火过程中的行为来进行全局的算法。

它能够在一定程度上跳出局部最优解,常见的变种有遗传算法和粒子群优化算法等。

8.遗传算法:遗传算法是一种基于自然选择和遗传机制的优化算法,通过模拟自然界的进化过程来优化问题。

它常用于求解复杂的问题,如函数逼近、组合优化等。

9.神经网络:神经网络是一种通过模拟神经元之间的连接和传输信息来建立模型的方法。

通过训练网络参数,可以实现优化目标函数。

二、常用的优化函数:1. Rosenbrock函数:Rosenbrock函数是一个经典优化函数,用于测试优化算法的性能。

其函数形式为 f(x,y) = (1-x)^2 + 100(y-x^2)^2,目标是找到函数的全局最小值。

2. Ackley函数:Ackley函数是另一个经典的优化函数,用于测试优化算法的鲁棒性。

几种常见的优化算法

几种常见的优化算法

⼏种常见的优化算法⼏种常见的优化算法:参考:我们每个⼈都会在我们的⽣活或者⼯作中遇到各种各样的最优化问题,⽐如每个企业和个⼈都要考虑的⼀个问题“在⼀定成本下,如何使利润最⼤化”等。

最优化⽅法是⼀种数学⽅法,它是研究在给定约束之下如何寻求某些因素(的量),以使某⼀(或某些)指标达到最优的⼀些学科的总称。

随着学习的深⼊,博主越来越发现最优化⽅法的重要性,学习和⼯作中遇到的⼤多问题都可以建模成⼀种最优化模型进⾏求解,⽐如我们现在学习的机器学习算法,⼤部分的机器学习算法的本质都是建⽴优化模型,通过最优化⽅法对⽬标函数(或损失函数)进⾏优化,从⽽训练出最好的模型。

常见的最优化⽅法有梯度下降法、⽜顿法和拟⽜顿法、共轭梯度法等等。

1. 梯度下降法(Gradient Descent)梯度下降法是最早最简单,也是最为常⽤的最优化⽅法。

梯度下降法实现简单,当⽬标函数是凸函数时,梯度下降法的解是全局解。

⼀般情况下,其解不保证是全局最优解,梯度下降法的速度也未必是最快的。

梯度下降法的优化思想是⽤当前位置负梯度⽅向作为搜索⽅向,因为该⽅向为当前位置的最快下降⽅向,所以也被称为是”最速下降法“。

最速下降法越接近⽬标值,步长越⼩,前进越慢。

梯度下降法的搜索迭代⽰意图如下图所⽰:梯度下降法的缺点: (1)靠近极⼩值时收敛速度减慢,如下图所⽰; (2)直线搜索时可能会产⽣⼀些问题; (3)可能会“之字形”地下降。

从上图可以看出,梯度下降法在接近最优解的区域收敛速度明显变慢,利⽤梯度下降法求解需要很多次的迭代。

在机器学习中,基于基本的梯度下降法发展了两种梯度下降⽅法,分别为随机梯度下降法和批量梯度下降法。

⽐如对⼀个线性回归(Linear Logistics)模型,假设下⾯的h(x)是要拟合的函数,J(theta)为损失函数,theta是参数,要迭代求解的值,theta求解出来了那最终要拟合的函数h(theta)就出来了。

其中m是训练集的样本个数,n是特征的个数。

优化问题的Matlab求解方法

优化问题的Matlab求解方法

优化问题的Matlab求解方法引言优化问题在实际生活中有着广泛应用,可以用来解决很多实际问题。

Matlab作为一款强大的数学计算软件,提供了多种求解优化问题的方法。

本文将介绍在Matlab中求解优化问题的常见方法,并比较它们的优缺点。

一、无约束无约束优化问题是指没有约束条件的优化问题,即只需要考虑目标函数的最大或最小值。

在Matlab中,可以使用fminunc函数来求解无约束优化问题。

该函数使用的是拟牛顿法(quasi-Newton method),可以迭代地逼近最优解。

拟牛顿法是一种迭代方法,通过逐步近似目标函数的梯度和Hessian矩阵来求解最优解。

在使用fminunc函数时,需要提供目标函数和初始点,并可以设置其他参数,如迭代次数、容差等。

通过不断迭代,拟牛顿法可以逐步逼近最优解。

二、有约束有约束优化问题是指在优化问题中加入了约束条件。

对于有约束优化问题,Matlab提供了多种求解方法,包括线性规划、二次规划、非线性规划等。

1. 线性规划线性规划是指目标函数和约束条件都为线性的优化问题。

在Matlab中,可以使用linprog函数来求解线性规划问题。

该函数使用的是单纯形法(simplex method),通过不断迭代来逼近最优解。

linprog函数需要提供目标函数的系数矩阵、不等式约束矩阵和约束条件的右手边向量。

通过调整这些参数,可以得到线性规划问题的最优解。

2. 二次规划二次规划是指目标函数为二次型,约束条件线性的优化问题。

在Matlab中,可以使用quadprog函数来求解二次规划问题。

该函数使用的是求解二次规划问题的内点法(interior-point method),通过迭代来求解最优解。

quadprog函数需要提供目标函数的二次项系数矩阵、线性项系数矩阵、不等式约束矩阵和约束条件的右手边向量。

通过调整这些参数,可以得到二次规划问题的最优解。

3. 非线性规划非线性规划是指目标函数或者约束条件中至少有一个是非线性的优化问题。

求解目标函数不连续的优化问题 启发式算法

求解目标函数不连续的优化问题 启发式算法

求解目标函数不连续的优化问题启发式算法优化问题常常涉及到目标函数的最大化或最小化,然而有时这些函数并非连续的。

这种问题难以通过传统的算法求解,只能通过启发式算法获得较好的解决方案。

启发式算法是指通过启发式策略获得近似最优或次优解的一类算法。

启发式算法并不保证获得最优解,但在实际应用中通常能取得良好的效果。

对于目标函数不连续的优化问题,启发式算法可以采用以下几种方法:1. 遗传算法:遗传算法是一种通过模拟生物进化过程获得最优解的算法。

该算法采用染色体编码的方式来表示问题,每个染色体代表一组解,通过交叉、变异等操作产生新的解。

遗传算法具有较好的鲁棒性,同时能处理目标函数不连续的问题。

2. 模拟退火:模拟退火是一种通过模拟物理系统退火过程获得最优解的算法。

该算法通过引入温度参数,并不断降低温度来实现跳出局部最优解的目的。

模拟退火算法具有较好的全局寻优能力,能处理目标函数不连续的问题。

3. 禁忌搜索:禁忌搜索是一种通过规避已经搜索过的解来避免陷入局部最优解的算法。

该算法通过维护一个禁忌表来记录已经搜索过的解,然后根据禁忌表的信息来决定下一次搜索的方向。

禁忌搜索算法具有较好的局部优化能力,能处理目标函数不连续的问题。

以上三种算法都是比较常用的启发式算法,它们在实际应用中都有较好的表现。

但需要注意的是,启发式算法并不保证获得最优解,只能获得近似最优或次优解,因此在使用时需要根据实际情况进行权衡。

另外,对于目标函数不连续的优化问题,还可以通过问题转化、插值等方法来将其转化为目标函数连续的问题,然后使用传统的优化算法进行求解。

不过,这种方法需要对问题有较深入的了解,并且可能会引入一定的误差。

总之,对于目标函数不连续的优化问题,启发式算法是一种较好的求解方法,它能够有效地处理这种问题,并获得较好的优化效果。

但需要注意的是,启发式算法并不保证获得最优解,需要根据实际需求进行权衡和选择。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

各种优化算法求解函数优化问题1.遗传算法的简单介绍及流程1.1遗传算法的基本原理遗传算法 ( Genetic Algorithm ,简称 GA) 是近年来迅速发展起来的一种全新的随机搜索优化算法。

与传统搜索算法不同 ,遗传算法从一组随机产生的初始解 (称为群体 )开始搜索。

群体中的每个个体是问题的一个解 ,称为染色体。

这些染色体在后续迭代中不断进化 , 称为遗传。

遗传算法主要通过交叉、变异、选择运算实现。

交叉或变异运算生成下一代染色体,称为后代。

染色体的好坏用适应度来衡量。

根据适应度的大小从上一代和后代中选择一定数量的个体 ,作为下一代群体 ,再继续进化 ,这样经过若干代之后 ,算法收敛于最好的染色体 ,它很可能就是问题的最优解或次优解。

遗传算法中使用适应度这个概念来度量群体中的各个个体在优化计算中有可能达到最优解的优良程度。

度量个体适应度的函数称为适应度函数。

适应度函数的定义一般与具体求解问题有关。

1.2遗传算法的流程第一步:确定决策变量及各种约束条件,即确定出个体的表现型X和问题的解空间;第二步:确定出目标函数的类型,即求目标函数的最大值还是最小值,以及其数学描述形式或量化方法,建立其优化模型;第三步:确定表示可行解的染色体编码方法,即确定出个体的基因型X和遗传算法的搜索空间。

第四步:确定解码方法,即确定出个体的基因型 X和个体的表现型 X的对应关系或转换方法;第五步:确定个体时候适应度的量化评价方法,即确定出由目标函数 f(X) 值到个体适应度F(X) 的转换规则;第六步:设计遗传算子,即确定出选择运算、交叉运算、变异运算等遗传算子的具体操作方法;第七步:确定出遗传算法的运行参数,即确定出遗传算法的M、 T、 Pc、 Pm等参数。

1.3 遗传算法求解函数优化问题中的参数分析目前,函数优化是遗传算法的经典应用领域,也是对遗传算法进行性能评价的常用范例。

对于函数优化中求解实数型变量的问题,一般采用动态编码和实数编码的方法来提高其搜索效率,所以是求解各类函数优化问题比较适合的算法。

1.3.1编码方案在用遗传算法求解函数优化问题时,把解空间中的数据点都映射到遗传中对应的基因型数据,采用二进制编码,在给定函数的变量上下界和编码精度内,求得单个变量的编码长度,然后随机生成一些固定长度为的二进制数作为作为初始种群。

1.3.2适应度函数先用解码函数将二进制代码转换为解空间中的数据,把数据带入测试函数中,得到种群中每个个体的适应值,然后以种群中函数值取得最大值的个体的函数值与每个个体的函数值之差,再与最大函数值的 n倍(假设种群粒子数为 n) 和种群中所有个体的函数值之和的比值,得到每个个体的适应度。

如果求函数最小值问题,则适应度值越大其函数值越小。

1.3.3选择算子遗传算法最常用的选择策略就是正比选择策略,即每个个体被选中进行遗传运算的概率为该个体的适应值和群体中所有个体适应值总和的比例。

对于个体 i ,其适应度值为 F i,种群规模为 NP,则该个体的选择概率可以表示为P i NP F ii NPF ii1得到选择概率后,采用旋轮法来实现选择操作,令PP0=0iPP i PP jj1共转轮 NP 次,每次转轮时,随机产生k U (0,1) ,当PP i 1 k <PP i,则选择个体 i。

适应度越高的个体的选择概率越大,越容易被选择参与交叉变异运算。

1.3.4交叉算子在遗传算法中,最常用的交叉策略就是单点交叉和双切点交叉。

在这个算法中,先从种群中随机选择两个要进行交叉的个体,然后随机生成一个数据点,对两个父串中对应位的数值进行交换,得到两个字串。

1.3.5变异算子变异是在种群中按照变异概率 P m任选若干基因位改变其位值,对于 0-1编码来说,就是反转位值。

在这个算法中,先在父串中随机生成一个数,如果这个数对应的位值为0,则将它变为 1;如果这个数上的位值为 1,则将它变为 0.1.4遗传算法求解函数优化问题流程Step 1:初始化选择、交叉、变异概率,设置初始代数和最大迭代次数,随机生成若干个初始个体构成初始种群;Step 2:利用解码函数将初始种群的二进制编码转化为解空间中便于计算的数据,然后用测试函数以及适应度函数求得每个个体的适应度。

Step 3 :采用轮盘赌选择种群中的个体进行遗传运算;Step 4 :对种群中的个体进行交叉,变异运算,产生下一代新的种群。

Step 5:如果当前的迭代次数达到设置的最大迭代次数,则算法停止,进行Step 6;若未达到最大迭代次数,则转入 Step 2.Step 6:保存种群中每一代的选择函数值最小个体作为最优个体,并保存其对应的函数值。

1.5 测试函数运行结果及算法参数对结果影响分析1.5.1各种函数测试结果(1)Quadric 函数状种群动态变化图 (-100,100)第1代种群动态变化第50代种群动态变化第 100代种群动态变化图第 200代种群动态变化图2) Tablet 函数测试种群变化图 (-100,100)第100代种群动态变化图3) Rosenbrock 测试函数的种群动态变化图第200代种群动态变化图第1代种群动态变化图 第 50代种群动态变化第1代种群动态变化图 第50代种群动态变化图第100 代种群动态变化图第200代种群动态变化图名称 最优值 最差值 目标平均值 Tablet 2.2737e-009 0.2951 0.0015 Quadric3.7719e-00529.71381.7039(4) Griewank 函数种群动态变化图第100代种群动态变化图第200代种群动态变化图第1代种群动态变化图 第50代种群动态变化图从上面的实验结果中,我们可以发现遗传算法在求解函数优化问题时,对于大部分测试函数,搜索速度都比较快,能很快收敛到最优解上,获得的最优解也比较好,因此是一种比较有效的优化算法。

2. 粒子群算法求解函数优化问题2.1粒子群算法介绍粒子群算法是一种基于迭代的优化方法。

进行优化时,粒子在一个 n 维空间中搜索,每个粒子的位置对应于问题的一个解,粒子通过不断调整自己的位置来搜索新解。

每个粒子根据自己的飞行经验和其他粒子的飞行经验来调整自己的飞行。

每个粒子在飞行过程所经历的最好位置,就是粒子本身找到的最优解,称为个体极值( P best);整个种群所经历过的最好位置,就是整个群体目前找到的最优解,称为全局极值(g best)。

每个粒子都通过上述两个极值不断更新自己,从而产生新一代群体。

设粒子的群体规模为 N,粒子当前的位置表示为X i k(x1k,x2k,...,x n k,x N k),kx n k[l n,u n],1 n N,l n 和 Un 分别表示第 n 维空间的上下边界;当前速度表示为V i k(v1k,..., v n k,..., v k N ),V i k被钳位在最大值V m k ax(v m k ax,1,...,v m k ax,n,...,v m k ax,N)和最小值k k k kV m k in (v m k in,1,...v m k in,n,...v m k in,N)之间,粒子的速度和位置更新方程如式( 1)和式( 2)所示:V i k 1V i k c1r1(P i k X i k) c2r2(P g k X i k)(1)Xi k 1Xi kVi k 1(2)其中,P i k, P g k分别表示粒子第 k 次迭代的个体极值点位置和全局极值点位置。

c1,c2为常数,称为学习因子,用来调节向 Pi 和 Pg 方向飞行的最大步长; r1,r2 是( 0, 1)上均匀分布的随机数;式( 1)中第一部分是粒子上一步的速度,表明粒子目前的状态;第二部分是粒子对本身的思考,是认知部分,粒子通过对本身位置的思考来调整自己下一步的速度和位置,这样可以是粒子有足够强的全局搜索能力,避免陷入局部最小;第三部分表示粒子通过与其他粒子之间进行信息交流来更新自己的下一步。

2.2基本粒子群算法流程(1)在初始化范围内,对粒子群进行随机初始化,包括随机位置和速度。

(2)计算每个粒子的适应值。

(3)对于每个粒子,将其适应值与所经历过的最好位置的适应值进行比较,如果更好则将其作为粒子的个体历史最优值,用当前位置更新个体历史最好位置(4)对每个粒子,将其历史最优适应值与群体内或邻域内所经历的最好位置的适应值进行比较,若更好,则将其作为当前的全局最好位置。

(5)根据上面公式( 1)和( 2)更新粒子的速度和位置。

(6)若未达到终止条件,则进行步骤(2)。

一般将终止条件设定为一个足够好的适应值或达到一个预设的最大迭代次数。

2.3粒子群算法求解函数优化问题的参数分析2.3.1编码方法在用粒子群求解函数优化问题时,采用实数编码来表示解空间内的粒子的位置,开始时随机初始化 n个二维解空间内的数据点,这些数据点对应了每个粒子的位置。

粒子的速度也是随机产生的,与粒子的位置的维数相同。

2.3.2适应度函数这里用测试函数作为目标函数来对算法进行评价,把每个粒子的位置带入测试函数,得到每个粒子的适应值,然后分别与粒子的个体极值以及种群中所有粒子的全局极值进行比较,如果比当前的个体极值好,就更新这个个体的个体极值的位置 pbestpop 以及对应的个体极值 pbestfit ,如果比上一代得到的全局极值好,则更新当代的全局极值的位置 gbestpop 以及对应的全局极值 gbestfit 。

2.4标准粒子群算法的几种改进方法惯性权重法:惯性权重 w 是与前一次速度有关的一个比例因子,其速度更新方程为:V i k 1* V i k c1r1(P i k X i k) c2r2 (P g k X i k)用惯性权重来控制前面的速度对当前速度的影响,较大的 w 可以加强 PSO 的全局搜索能力,而较小的 w 能加强局部搜索能力。

基本的 PSO 可以看作 w=1,因此在迭代后期缺少局部搜索能力。

通常取 w 为[0.8,1.2] 之间的数。

2.5粒子群算法测试函数结果2.5.1 利用标准 PSO算法对测试函数结果根据粒子群求解函数优化算法的流程,编写程序pso.m文件,然后用函数来测试算法的好坏优劣。

下表中列出了常用的几个测试函数:对上表中几个测试函数用标准粒子群算法求最优值,设定群体规模为50,最大速度Vmax=0.5 ,迭代次数 N=200 ,学习因子 c1=c2=2,画出种群的动态变化图。

1) Quadric 函数状态变化图 (-100,100)第 1代种群变化图第50代种群变化图第100代种群变化图第 200代种群变化图2)Rastrigin 的测试函数 (-5.12,5.12)第 200 代种群动态变化图3)Tablet 函数 (-100,100)第49代种群动态变化图第99代种群动态变化图第49代种群动态变化图第 99代种群动态变化图第 200 代种群动态变化图从以上三个函数的种群动态变化图可以看出,粒子在200代的时候已经将近收敛于一个点了。

相关文档
最新文档