2018年中考数学第一轮复习---一次方程(组)
2025年湖南省中考数学一轮复习 第二单元 第五讲 整式方程(组)的概念及解法(含答案)

2025年湖南省中考数学一轮复习第五讲 整式方程(组)的概念及解法学生版知识要点对点练习1.整式方程(组)的定义 1.(1)下列是一元一次方程的是( )A.3-2xB.6+2=8C.x2-49=0D.5x-7=3(x+1)(2)下列是二元一次方程组的是( )A.{x2-y3=1y-z=2B.{2x2+y=13y-x=4C.{3x-y3=2x+y=5D.{x+y=73y+x=0(3)(教材再开发·湘教九上P28练习T1改编)下列方程中,不是一元二次方程的是( )A.x2-1=0B.x2+1x+3=0C.x2+2x+1=0D.3x2+ 2x+1=02.方程(组)的解(1)方程的解:使方程两边的的值.只含一个未知数的方程的解,也叫 2.如果方程x-y=3与下面方程中的一个组成的方程组的解为{x=4y=1,那么这个方程可以是( )A.3x-4y=16B.14x+2y=5方程的.(2)方程组的解:使方程组中的各个方程都的未知数的值. C.12x+3y=8D.2(x-y)=6y3.等式的性质(1)等式两边同时(或)同一个整式,等式仍然成立.(2)等式两边同时或同一个的整式,等式仍然成立. 3.下列变形不正确的是( )A.若x=y,则x+5=y+5B.若x=y,则xa=yaC.若x=y,则1-3x=1-3yD.若a=b,则ac=bc续表知识要点对点练习4.整式方程(组)的解法 4.(1)研究下面解方程1+4(2x-3)=5x-(1-3x)的过程:去括号,得1+8x-12=5x-1-3x,①移项,得8x-5x+3x=-1-1+12,②合并同类项,得6x=10,③系数化为1,得x=53.对于上面的解法,你认为( )A.完全正确B.变形错误的是①C.变形错误的是②D.变形错误的是③(2)(教材再开发·湘教九上P33例3改编)一元二次方程x 2-4x -8=0的解是()A .x 1=-2+2 3,x 2=-2-2 3B .x 1=2+2 3,x 2=2-2 3C .x 1=2+2 2,x 2=2-2 2D .x 1=2 3,x 2=-2 3(3)关于x 的一元二次方程(m +1)x |m |+1+4x +2=0的解为()A .x 1=1,x 2=-1B .x 1=x 2=1C .x 1=x 2=-1 D.无解(4)下列关于x 的一元二次方程没有实数根的是( )A .x 2+2x -5=0B .x 2-6=xC .5x 2+1=5D .x 2-2x +2=0(5)方程组{2x +y =1x -2y =8的解是{x =2y =-3.(6)已知x 1,x 2是一元二次方程2x 2+3x -5=0的两个根,则x 1+x 2=32,x 1x 2=52.(7)目前以5G 为代表的新兴产业蓬勃发展,某市2021年底有5G 用户20万户,计划到2023年底该市5G 用户数累计达到33.8万户.设该市5G 用户数年平均增长率为x ,则x 的值是 .考点1 整式方程(组)的解【例1】(1)(2024·聊城模拟)已知方程组{ax +by =0x +2by =-3c 的解是{x =3y =-1则a -b +c 的值为()A .1B .0C .-2D .-1(2)(2024·凉山州中考)若关于x 的一元二次方程(a +2)x 2+x +a 2-4=0的一个根是x =0,则a 的值为()A .2B .-2C .2或-2D .12【方法技巧】“让根回家”来求值 已知方程的根,一般将其代回原方程,得到关于未知系数(参数)的方程(组)求解,注意还要符合“二次项系数不为0”等隐含条件.【变式训练】1.(2024·聊城模拟)关于x 的一元一次方程2x -3m =6-x 的解是负数,则m 的取值范围是()A .m <-1B .m <-2C .m >1D .m >02.(2024·吉林模拟)若方程组{2x +y =m 2x -y =10的解为{x =3y =n ,小亮求解时不小心滴上了两滴墨水,刚好遮住了m 和n 两个数,则这两个数分别为( )A .6和4B .10和0C .2和-4D .4和23.(2024·深圳中考)一元二次方程x 2-3x +a =0的一个解为x =1,则a = .考点2 一次方程(组)的解法【例2】(1)解方程:x -12-2x +36=1.(2)解方程组:{2x +3y =83x -2y =-14.【自主解答】(1)x -12-2x +36=1,去分母得,3(x -1)-(2x +3)=6,去括号得,3x -3-2x -3=6,移项得,3x -2x =6+3+3,合并同类项得,x =12.(2){2x +3y =8①3x -2y =-14②,①×2得4x +6y =16③,②×3得9x -6y =-42④,③+④得13x =-26,解得x =-2,把x =-2代入①得-2×2+3y =8,解得y =4,所以原方程组的解是{x =-2y =4.【变式训练】1.(2024·西安模拟)已知关于x ,y 的方程组{2x -y =5ax +by =2和{x +y =4ax +2by =10有相同的解,那么2a +b 值是( )A .3B .4C .5D .62.(2024·南阳模拟)解方程(组).(1)x 2=2-x 3+1.(2){3x +2y =122x -y =1.考点3 一元二次方程的解法【例3】(1)(2024·阜阳模拟)4位同学以接龙的方式解一元二次方程,每人负责完成一个步骤,如图所示,其中有一位同学所负责的步骤是错误的,则这位同学是()A .小张B .小王C .小李D .小赵(2)(2023·新疆中考)用配方法解一元二次方程x 2-6x +8=0,配方后得到的方程是()A .(x +6)2=28B .(x -6)2=28C .(x +3)2=1D .(x -3)2=1【方法技巧】方程解法选择的“优胜劣汰”1.未指明用什么方法的前提下,优先考虑因式分解法.2.特殊形式,如a(x+b)2=b(b≥0),可用直接开平方法.3.判断不明时,当选公式法.提醒:配方法烦琐,但二次项系数为1,且一次项系数为偶数时,一般运用配方法.【变式训练】1.(2024·贵州中考)一元二次方程x2-2x=0的解是( )A.x1=3,x2=1B.x1=2,x2=0C.x1=3,x2=-2D.x1=-2,x2=-12.(2024·滨州中考)解方程:x2-4x=0.3.(2024·齐齐哈尔中考)解方程:x2-5x+6=0.考点4 根的判别式及根与系数的关系【例4】(2023·岳阳二模)已知m,n是关于x的一元二次方程x2-3x+a=0的两个解,若(m-1)(n-1)=-6,则a的值为( )A.-10B.4C.-4D.10【方法技巧】判别式的“双向应用”1.正向:系数已知,可以判断方程根的情况.2.逆向:已知方程根的情况,可以求未知系数或参数的值.提醒:要根据a ≠0和Δ≥0这两个前提进行所求参数值的检验和取舍.【变式训练】1.(2024·自贡中考)关于x 的方程x 2+mx -2=0根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根2.(2024·乐山中考)若关于x 的一元二次方程x 2+2x +p =0两根为x 1,x 2,且1x 1+1x 2=3,则p 的值为()A .-23 B .23 C .-6 D .61.(2022·株洲中考)对于二元一次方程组{y =x -1①x +2y =7②,将①式代入②式,消去y 可以得到( )A .x +2x -1=7B .x +2x -2=7C .x +x -1=7D .x +2x +2=72.(2022·常德中考)关于x 的一元二次方程x 2-4x +k =0无实数解,则k 的取值范围是()A .k >4B .k <4C .k <-4D .k >13.(2023·怀化中考)已知关于x 的一元二次方程x 2+mx -2=0的一个根为-1,则m 的值为,另一个根为.4.(2024·湖南中考)若关于x的一元二次方程x2-4x+2k=0有两个相等的实数根,则k 的值为.5.(2024·长沙中考)为庆祝中国改革开放46周年,某中学举办了一场精彩纷呈的庆祝活动,现场参与者均为在校中学生,其中有一个活动项目是“选数字猜出生年份”,该活动项目主持人要求参与者从1,2,3,4,5,6,7,8,9这九个数字中任取一个数字,先乘10,再加上4.6,将此时的运算结果再乘10,然后加上1978,最后减去参与者的出生年份(注:出生年份是一个四位数,比如2010年对应的四位数是2010),得到最终的运算结果.只要参与者报出最终的运算结果,主持人立马就知道参与者的出生年份.若某位参与者报出的最终的运算结果是915,则这位参与者的出生年份是.6.(2023·岳阳中考)已知关于x的一元二次方程x2+2mx+m2-m+2=0有两个不相等的实数根,且x1+x2+x1·x2=2,则实数m=.7.(2023·常德中考)解方程组:{x-2y=1①3x+4y=23②.2025年湖南省中考数学一轮复习第五讲 整式方程(组)的概念及解法 教师版知识要点对点练习1.整式方程(组)的定义1.(1)下列是一元一次方程的是(D)A .3-2x B .6+2=8C .x 2-49=0D .5x -7=3(x +1)(2)下列是二元一次方程组的是(D)A .{x 2-y3=1y -z =2B .{2x 2+y =13y -x =4C .{3x-y 3=2x +y =5D .{x +y =73y +x =0(3)(教材再开发·湘教九上P28练习T1改编)下列方程中,不是一元二次方程的是(B)A .x 2-1=0B .x 2+1x+3=0C .x 2+2x +1=0D .3x 2+ 2x +1=02.方程(组)的解(1)方程的解:使方程两边 相等 的 未知数 的值.只含一个未知数的方程的 2.如果方程x -y =3与下面方程中的一个组成的方程组的解为{x =4y =1,那么这个方程可以是(D)A .3x -4y =16B .14x +2y =5解,也叫方程的 根 .(2)方程组的解:使方程组中的各个方程都 成立 的未知数的值.C .12x +3y =8 D .2(x -y )=6y 3.等式的性质(1)等式两边同时 加上 (或 减去 )同一个整式,等式仍然成立. (2)等式两边同时 乘 或 除以 同一个 不为0 的整式,等式仍然成立.3.下列变形不正确的是(B)A .若x =y ,则x +5=y +5B .若x =y ,则x a =y aC .若x =y ,则1-3x =1-3yD .若a =b ,则ac =bc续表知识要点对点练习4.整式方程(组)的解法 4.(1)研究下面解方程1+4(2x -3)=5x -(1-3x )的过程:去括号,得1+8x -12=5x -1-3x ,①移项,得8x -5x +3x =-1-1+12,②合并同类项,得6x =10,③系数化为1,得x =53.对于上面的解法,你认为(B)A.完全正确B.变形错误的是①C.变形错误的是②D.变形错误的是③(2)(教材再开发·湘教九上P33例3改编)一元二次方程x 2-4x -8=0的解是(B)A .x 1=-2+2 3,x 2=-2-2 3B .x 1=2+2 3,x 2=2-2 3C .x 1=2+2 2,x 2=2-2 2D .x 1=2 3,x 2=-2 3(3)关于x 的一元二次方程(m +1)x |m |+1+4x +2=0的解为(C)A .x 1=1,x 2=-1B .x 1=x 2=1C .x 1=x 2=-1 D.无解(4)下列关于x 的一元二次方程没有实数根的是(D)A .x 2+2x -5=0B .x 2-6=xC .5x 2+1=5D .x 2-2x +2=0(5)方程组{2x +y =1x -2y =8的解是 {x =2y =-3 . (6)已知x 1,x 2是一元二次方程2x 2+3x -5=0的两个根,则x 1+x 2= -32 ,x 1x 2= -52 .(7)目前以5G 为代表的新兴产业蓬勃发展,某市2021年底有5G 用户20万户,计划到2023年底该市5G 用户数累计达到33.8万户.设该市5G 用户数年平均增长率为x ,则x 的值是 30% .考点1 整式方程(组)的解【例1】(1)(2024·聊城模拟)已知方程组{ax +by =0x +2by =-3c 的解是{x =3y =-1则a -b +c 的值为(D)A .1B .0C .-2D .-1(2)(2024·凉山州中考)若关于x 的一元二次方程(a +2)x 2+x +a 2-4=0的一个根是x =0,则a 的值为(A)A .2B .-2C .2或-2D .12【方法技巧】“让根回家”来求值 已知方程的根,一般将其代回原方程,得到关于未知系数(参数)的方程(组)求解,注意还要符合“二次项系数不为0”等隐含条件.【变式训练】1.(2024·聊城模拟)关于x 的一元一次方程2x -3m =6-x 的解是负数,则m 的取值范围是(B)A .m <-1B .m <-2C .m >1D .m >02.(2024·吉林模拟)若方程组{2x +y =m 2x -y =10的解为{x =3y =n ,小亮求解时不小心滴上了两滴墨水,刚好遮住了m 和n 两个数,则这两个数分别为(C)A .6和4 B .10和0C .2和-4D .4和23.(2024·深圳中考)一元二次方程x 2-3x +a =0的一个解为x =1,则a = 2 . 考点2 一次方程(组)的解法【例2】(1)解方程:x -12-2x +36=1.(2)解方程组:{2x +3y =83x -2y =-14.【自主解答】(1)x -12-2x +36=1,去分母得,3(x -1)-(2x +3)=6,去括号得,3x -3-2x -3=6,移项得,3x -2x =6+3+3,合并同类项得,x =12.(2){2x +3y =8①3x -2y =-14②,①×2得4x +6y =16③,②×3得9x -6y =-42④,③+④得13x =-26,解得x =-2,把x =-2代入①得-2×2+3y =8,解得y =4,所以原方程组的解是{x =-2y =4.【变式训练】1.(2024·西安模拟)已知关于x ,y 的方程组{2x -y =5ax +by =2和{x +y =4ax +2by =10有相同的解,那么2a +b 值是(B)A .3B .4C .5D .62.(2024·南阳模拟)解方程(组).(1)x 2=2-x 3+1.(2){3x +2y =122x -y =1.【解析】(1)x 2=2-x 3+1,去分母得,3x =2(2-x )+6,去括号得,3x =4-2x +6,移项,合并同类项得,5x =10,系数化为1得,x =2,∴原方程的解为x =2.(2){3x +2y =12①2x -y =1②,由①+②×2得,7x =14,解得x =2,将x =2代入②式得,2×2-y =1,解得y =3,∴原方程组的解为{x =2y =3.考点3 一元二次方程的解法【例3】(1)(2024·阜阳模拟)4位同学以接龙的方式解一元二次方程,每人负责完成一个步骤,如图所示,其中有一位同学所负责的步骤是错误的,则这位同学是(D)A .小张B .小王C .小李D .小赵(2)(2023·新疆中考)用配方法解一元二次方程x 2-6x +8=0,配方后得到的方程是(D)A .(x +6)2=28B .(x -6)2=28C.(x+3)2=1D.(x-3)2=1【方法技巧】方程解法选择的“优胜劣汰”1.未指明用什么方法的前提下,优先考虑因式分解法.2.特殊形式,如a(x+b)2=b(b≥0),可用直接开平方法.3.判断不明时,当选公式法.提醒:配方法烦琐,但二次项系数为1,且一次项系数为偶数时,一般运用配方法.【变式训练】1.(2024·贵州中考)一元二次方程x2-2x=0的解是(B)A.x1=3,x2=1B.x1=2,x2=0C.x1=3,x2=-2D.x1=-2,x2=-12.(2024·滨州中考)解方程:x2-4x=0.【解析】∵x2-4x=0,∴x(x-4)=0,∴x=0或x-4=0,解得x1=0,x2=4.3.(2024·齐齐哈尔中考)解方程:x2-5x+6=0.【解析】∵x2-5x+6=0,∴(x-2)(x-3)=0,则x-2=0或x-3=0,解得x1=2,x2=3.考点4 根的判别式及根与系数的关系【例4】(2023·岳阳二模)已知m ,n 是关于x 的一元二次方程x 2-3x +a =0的两个解,若(m -1)(n -1)=-6,则a 的值为(C)A.-10B.4C.-4D.10【方法技巧】判别式的“双向应用”1.正向:系数已知,可以判断方程根的情况.2.逆向:已知方程根的情况,可以求未知系数或参数的值.提醒:要根据a ≠0和Δ≥0这两个前提进行所求参数值的检验和取舍.【变式训练】1.(2024·自贡中考)关于x 的方程x 2+mx -2=0根的情况是(A)A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根2.(2024·乐山中考)若关于x 的一元二次方程x 2+2x +p =0两根为x 1,x 2,且1x 1+1x 2=3,则p 的值为(A)A .-23B .23C .-6D .61.(2022·株洲中考)对于二元一次方程组{y =x -1①x +2y =7②,将①式代入②式,消去y 可以得到(B)A .x +2x -1=7B .x +2x -2=7C .x +x -1=7D .x +2x +2=72.(2022·常德中考)关于x的一元二次方程x2-4x+k=0无实数解,则k的取值范围是(A)A.k>4B.k<4C.k<-4D.k>13.(2023·怀化中考)已知关于x的一元二次方程x2+mx-2=0的一个根为-1,则m的值为 -1 ,另一个根为 2 .4.(2024·湖南中考)若关于x的一元二次方程x2-4x+2k=0有两个相等的实数根,则k 的值为 2 .5.(2024·长沙中考)为庆祝中国改革开放46周年,某中学举办了一场精彩纷呈的庆祝活动,现场参与者均为在校中学生,其中有一个活动项目是“选数字猜出生年份”,该活动项目主持人要求参与者从1,2,3,4,5,6,7,8,9这九个数字中任取一个数字,先乘10,再加上4.6,将此时的运算结果再乘10,然后加上1978,最后减去参与者的出生年份(注:出生年份是一个四位数,比如2010年对应的四位数是2010),得到最终的运算结果.只要参与者报出最终的运算结果,主持人立马就知道参与者的出生年份.若某位参与者报出的最终的运算结果是915,则这位参与者的出生年份是 2009 .6.(2023·岳阳中考)已知关于x的一元二次方程x2+2mx+m2-m+2=0有两个不相等的实数根,且x1+x2+x1·x2=2,则实数m= 3 .7.(2023·常德中考)解方程组:{x-2y=1①3x+4y=23②.【解析】①×2+②得5x=25,解得x=5,将x=5代入①得5-2y=1,解得y=2,所以原方程组的解是{x=5y=2.。
中考数学第一轮考点系统复习第二章方程(组)与不等式(组)第8讲一元一次不等式(组)及其应用(练本)课

4、享受阅读快乐,提高生活质量。下午12时36分6秒下午12时36分12:36:0622.3.11
谢谢观独具赏方为先
匠心可成锋 Y o u m a d e m y d a y !
我们,还在路上……
场最多能购买50个甲种奖品.
(2)学校计划购买甲、乙两种奖品共100个,且此次购买奖品的费用不超过2 000元.正逢商场促销,所有商品一律八折销售,求学校在商场最多能购买 多少个甲种奖品.
解:设学校在商场购买m个甲种奖品,则购买(100-m)个乙种奖品. 根据题意,得30×0.8m+20×0.8(100-m)≤2 000, 解得m≤50. 答:学校在商场最多能购买50个甲种奖品.
解:设购进电视机x台,则购进洗衣机(100-x)台.
根据题意,得
x
1 (100 x), 2
1800x 1500(100 x) 161800,
解得 33 1 x 39 1 .
3
3
∵x为整数,
∴x可以取34,35,36,37,38,39,
∴商店共有6种进货方案.
11.学校准备为“趣味数学”比赛购买奖品.已知在商场购买3个甲种奖品和2 个乙种奖品共需130元,购买6个甲种奖品和5个乙种奖品共需280元.
3倍,购进A,B两种风扇的总金额不超过1 170元.根据以上信息,小丹共
有哪些进货方案? 解:设购进A型风扇m台,则购进B型风扇(100-m)台.
根据题意,得
m 3(100 m),
10m
16(100
m)
解得71 2
1170,
3
m 75.
∵m为正整数,∴m可以取72,73,74,75,∴小丹共有4种进货方案:
12.(2020·德州)若关于x的不等式组
中考数学复习第二章方程组与不等式组讲义

第二章 方程(组)与不等式(组)第一节 一次方程与一次方程组【考点1】一元一次方程定义:只含有 未知数,并且未知数的次数都是 。
(系数不为0)的整式方程。
形式:一般形式ax+b=0 ; 最简形式 ax=b (a ≠0) 解 :abx(a ≠0) 【提示】判断一个方程是否为一元一次方程,一定要先把方程化简以后再用定义进行判别。
解一元一次方程的一般步骤:去分母;去括号;移项(移项要变号);合并同类项;化系数为1【考点2】二元一次方程组 1.二元一次方程定义:含有 个未知数,并且含有未知数的项的次数都是 的整式方程。
一般形式: ax+by=c ,有无数组解。
2. 二元一次方程组的解法⑴代入消元法:多适用于方程组中有一个未知数的系数是 或 的情形。
⑵ :多适用于方程组的两个方程中相同未知数的系数 或互为 的情形。
【考点3】一次方程(组)的应用 1.列方程组解应用题的一般步骤:⑴审:即审清题意,分清题中的已知量、未知量; ⑵设:即设关键未知数;⑶列:即找出适当等量关系,列出方程(组); ⑷解:即解方程(组);⑸验:即检验所解答案是否正确或是否符合题意; ⑹答:即规范作答,注意单位名称。
2.列一元一次方程常见的应用题类型及关系式 ⑴ 利润率问题:利润=售价-进价 ;利润率=进价利润×100﹪ (先确定售价、进价、再计算利润率,其中打折、降价的词义应清楚)⑵ 利息问题:利息=本金×利率×期数 ;本息和=本金+利息 ;利息税=利息×税率 ; 贷款利息=贷款数额×利率×期数⑶ 工程问题:工作量=工作效率× (把全部工作量看作单位1,各部分工作量之和=1)⑷ 浓度问题:浓度=溶液质量溶质质量×100﹪⑸ 行程问题:路程=速度×时间 ① 追击问题(追击过程时间相等)② 相遇问题 (甲走的路程 乙走的路程=A 、B 两地间的路程)③ 航行问题:顺水(风)速度= +静水(风);逆水(风)速度=船速-【中考试题精编】1.练习本比水性笔的单价少2元,小刚买了5本练习本和3支水性笔正好花去14元,如果设水性笔的单价为x 元,那么下列方程正确的是( )A. 5(x-2)+3x=14B. 5(x+2)+3x=14C. 5x+3(x+2)=14D. 5x+3(x-2)=142.某班在学校组织的某场篮球比赛中,小杨和小方一共投进篮球21个,小杨比小方多投进5个。
人教版中考数学考点系统复习 第二章 方程(组)与不等式(组) 第一节 一次方程(组)及其应用

∴原方程组的解为y=1,将y=1 代入 2kx-3y<5 得 2×k×2-3<5,解得 k<2.
命题点 2:一次方程(组)的应用(近 3 年考查 15 次)
7.(数学文化)(2021·武汉第 7 题 3 分)我国古代数学名著《九章算术》
中记载:“今有共买物,人出八,盈三;人出七,不足四,问人数,物价
32 人.2 艘大船与 1 艘小船一次共可以满载游客 46 人.则 1 艘大船与 1
艘小船一次共可以满载游客的人数为
( B)
A.30
B.26
C.24
D.22
11.★(2022·武汉第 10 题 3 分)幻方是古老的数学问题,我国古代的《洛 书》中记载了最早的幻方——九宫格.将 9 个数填入幻方的空格中,要 求每一横行、 每一竖列以及两条对角线上的 3 个数之和相等,例如图① 就是一个幻方.图②是一个未完成的幻方,则 x 与 y 的和是 ( D ) A.9 B.10 C.11 D.12
14.(2020·仙桃第 12 题 3 分)篮球联赛中,每场比赛都要分出胜负,每 队胜 1 场得 2 分,负 1 场得 1 分.某队 14 场比赛得到 23 分,则该队胜 了__99__场.
15.(2020·黄冈第 19 题 6 分)为推广黄冈各县市名优农产品,市政府组 织创办了“黄冈地标馆”,一顾客在“黄冈地标馆”发现,如果购买 6 盒 羊角春牌绿茶和 4 盒九孔牌藕粉,共需 960 元,如果购买 1 盒羊角春牌 绿茶和 3 盒九孔牌藕粉共需 300 元,请问每盒羊角春牌绿茶和每盒九孔 牌藕粉分别需要多少元?
【分层分析】设购进创意文具袋 x 个,由题干信息①得购进笔记本为
((2x2+x+10)个,由题干信息②可列方程为 xx++(2(x2+x1+0)1=0)190.
中考数学知识点总结(完整版)-第一轮

中考数学总复习资料代数部分第一章:实数基础知识点:一、实数的分类:正整数整数零负整数有理数有限小数或无限循环小数实数分数正分数负分数无理数正无理数负无理数无限不循环小数1、有理数:任何一个有理数总可以写成pq的形式,其中p、q 是互质的整数,这是有理数的重要特征。
2、无理数:初中遇到的无理数有三种:开不尽的方根,如 2 、 3 4 ;特定结构的不循环无限小数,如1.101001000100001⋯⋯;特定意义的数,如π、sin 45°等。
3、判断一个实数的数性不能仅凭表面上的感觉,往往要经过整理化简后才下结论。
二、实数中的几个概念1、相反数:只有符号不同的两个数叫做互为相反数。
(1)实数 a 的相反数是-a ;(2)a 和b 互为相反数a+b=02、倒数:(1)实数a(a≠0)的倒数是注意0 没有倒数3、绝对值:1a;(2)a 和b 互为倒数ab 1;(3)a, a 0: a 0, a 0(1)一个数 a 的绝对值有以下三种情况a, a 0(2)实数的绝对值是一个非负数,从数轴上看,一个实数的绝对值,就是数轴上表示这个数的点到原点的距离。
性(正、(3)去掉绝对值符号(化简)必须要对绝对值符号里面的实数进行数负)确认,再去掉绝对值符号。
4、n 次方根(1)平方根,算术平方根:设a≥0,称 a 叫a 的平方根, a 叫a 的算术平方根。
(2)正数的平方根有两个,它们互为相反数;0 的平方根是0;负数没有平方根。
(3)立方根:3a 叫实数a的立方根。
(4)一个正数有一个正的立方根;0 的立方根是0;一个负数有一个负的立方根。
三、实数与数轴1、数轴:规定了原点、正方向、单位长度的直线称为数轴。
原点、正方向、。
单位长度是数轴的三要素2、数轴上的点和实数的对应关系:数轴上的每一个点都表示一个实数,而每一个实数都可以用数轴上的唯一的点来表示。
实数和数轴上的点是一一对应的关系。
四、实数大小的比较1、在数轴上表示两个数,右边的数总比左边的数大。
(完整word版)初中数学一轮复习用书

初中数学一轮复习2019初中数学板块(完整word 版)初中数学一轮复习用书⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧概率统计称)图形变换(平移旋转对四边形三角形几何初步几何二次函数反比例函数一次函数函数一元二次方程分式方程一元一次不等式(组)二元一次方程(组)一元一次方程方程与不等式分式整式实数计算数与式 目录第一节 实数 第二节 整式与分式第三节 一元一次方程、二元一次方程(组) 第四节 一元一次不等式(组)与分式方程 第五节 一元二次方程 第六节 函数基础第七节 一次函数与反比例函数 第八节 二次函数第九节几何初步第十节三角形第十一节直角三角形与三角函数第十二节四边形与多边形第十三节投影与视图及图形变换(平移、旋转、对称)第十四节统计第十五节概率(二轮复习预告)专题一、第15、16题计算(分式、不等式、方程组)作图专题二、第17、18、19统计概率专题三、第20题建模(函数与方程大题)专题四、第21题图几何证明专题五、第22题函数综合(二次为主)专题六、第23题阅读理解专题七、第24题动点专题八、第13、14阴影面积、找规律第一节实数考点一、实数的概念及分类1、实数的分类________实数2、无理数:在理解无理数时,要抓住“无限不循环”这一点,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定结构的数,如0.1010010001…等;π+8;(4)某些三角函数,如sin60o。
(3)有特定意义的数,如π,或化简后含有π的数,如3练习B.π C.9D.|-2|1. 下列实数中,无理数是( )A.-522.实数tan45°,,0,﹣π,,﹣,sin60°,0.3131131113…(相邻两个3之间依次多一个1),其中无理数的个数是()A.4 B.2 C.1 D.33. 在 3.14,,0.101001中,无理数的个数是()A.2 B.3 C.4 D.54. 写出一个比-3大的无理数是_______.考点二、实数的倒数、相反数和绝对值1、相反数:只有符号不同的两个数叫做互为相反数;零的相反数是零,从数轴上看,互为相反数的两个数所对应的点关于_______对称;如果a与b互为相反数,则有a+b=____,a=______,反之亦成立。
中考数学复习第6课时《一次方程组及其应用》教案
中考数学复习第6课时《一次方程组及其应用》教案一. 教材分析《一次方程组及其应用》是中考数学复习的第6课时,主要内容是让学生掌握一次方程组的解法和应用。
通过本节课的学习,学生能够理解一次方程组的概念,掌握解一次方程组的方法,并能运用一次方程组解决实际问题。
二. 学情分析学生在学习本节课之前,已经掌握了整数、分数、小数的基本运算,并学习了一次函数的知识。
但是,部分学生对于解一次方程组的方法还不够熟练,对于如何将实际问题转化为方程组解决问题还有一定的困难。
三. 教学目标1.让学生掌握一次方程组的概念和解法。
2.培养学生将实际问题转化为方程组解决问题的能力。
3.提高学生的数学思维能力和解决问题的能力。
四. 教学重难点1.一次方程组的概念和解法。
2.将实际问题转化为方程组解决问题。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法,引导学生主动探究、积极参与,提高学生的学习兴趣和解决问题的能力。
六. 教学准备1.准备相关的教学案例和问题。
2.准备多媒体教学设备。
七. 教学过程1.导入(5分钟)通过一个实际问题引入一次方程组的概念,激发学生的学习兴趣。
问题:小明和妈妈去超市购物,小明购买了一支铅笔和一块巧克力,妈妈购买了一袋大米和一瓶饮料。
已知铅笔的价格是3元,巧克力的价格是8元,大米的价格是20元,饮料的价格是5元。
问:小明和妈妈一共花了多少钱?2.呈现(10分钟)呈现一次方程组的概念和解法,引导学生理解并掌握一次方程组的解法。
一次方程组的概念:含有两个未知数的一次方程叫做一次方程组。
一次方程组的解法:代入法、消元法。
3.操练(10分钟)让学生分组合作,解决一些关于一次方程组的问题,巩固所学知识。
问题1:小明和妈妈一共花了多少钱?问题2:一个正方形的边长是多少?问题3:一个人在跑步过程中的速度和时间的关系。
4.巩固(10分钟)让学生独立完成一些关于一次方程组的问题,巩固所学知识。
问题1:小明和妈妈一共花了多少钱?问题2:一个正方形的边长是多少?问题3:一个人在跑步过程中的速度和时间的关系。
中考数学总复习《一次方程(组)》专项测试卷含答案
中考数学总复习《一次方程(组)》专项测试卷含答案学校:___________班级:___________姓名:___________考号:___________【A 层·基础过关】1.把方程x 2-x -13=1去分母后,正确的是( )A .3x -2(x -1)=1B .3x -2(x -1)=6C .3x -2x -2=6D .3x +2x -2=62.下面4组数值中,哪组是二元一次方程x +2y =5的解( ) A.{x =1y =1 B.{x =1y =2 C.{x =2y =2 D.{x =-1y =-23.(2024·毕节织金一模)程大位的《算法统宗》是我国古代数学名著,其中有一道这样的题目:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.问房客各几何?题目大意是:一些客人到李三公的店中住宿,若每间房里住7人,就会有7人没地方住;若每间房住9人,则空出一间房.问有多少房间,多少客人?如果设房间有x 间,客人y 人,由题意可列方程组( ) A.{y =7x -7y =9(x +1) B.{y =7x +7y =9(x -1)C.{x =7y -7x =9(y -1)D.{y =7x -9y =9x -74.(2024·滨州中考)解方程:2x -13=x+12.5.(2024·连云港中考)我市将5月21日设立为连云港市“人才日”,以最大诚意礼遇人才,让人才与城市“双向奔赴”.活动主办方分两次共邮购了200把绘有西游文化的折扇作为当天一项活动的纪念品.折扇单价为8元,其中邮费和优惠方式如表所示:邮购数量1~99100以上(含100)邮寄费用 总价的10% 免费邮寄 折扇价格不优惠打九折若两次邮购折扇共花费1504元,求两次邮购的折扇各多少把?【B 层·能力提升】6.已知关于x ,y 的二元一次方程组{2x -y =2m +1-x +2y =m -4,的解满足x +y =3,则m 的值为( ) A.0B.1C.2D.37.某社区为了打造“书香社区”,丰富小区居民的业余文化生活,计划出资500元全部用于采购A ,B ,C 三种图书,A 种每本30元,B 种每本25元,C 种每本20元,其中A 种图书至少买5本,最多买6本(三种图书都要买),此次采购的方案有( ) A.5种B.6种C.7种D.8种8.(2024·宜宾中考)某果农将采摘的荔枝分装为大箱和小箱销售,其中每个大箱装4千克荔枝,每个小箱装3千克荔枝.该果农现采摘有32千克荔枝,根据市场销售需求,大小箱都要装满,则所装的箱数最多为( ) A.8箱B.9箱C.10箱D.11箱9.幻方,最早源于我国,古人称之为纵横图.如图所示的幻方中,各行、各列及各条对角线上的三个数字之和均相等,则图中a 的值为 .-1 -6 1 0 a -4 -52-310.关于x ,y 的二元一次方程组{2x +3y =3+a x +2y =6,的解满足x +y >2√2,写出a 的一个整数值.11.(2024·河南中考)为响应“全民植树增绿,共建美丽中国”的号召,学校组织学生到郊外参加义务植树活动,并准备了A,B两种食品作为午餐.这两种食品每包质量均为50 g,营养成分表如下.(1)若要从这两种食品中摄入4 600 kJ热量和70 g蛋白质,应选用A,B两种食品各多少包?(2)运动量大的人或青少年对蛋白质的摄入量应更多.若每份午餐选用这两种食品共7包,要使每份午餐中的蛋白质含量不低于90 g,且热量最低,应如何选用这两种食品?【C层·素养挑战】12.某大型物流公司急需将170吨物资运送到甲、乙两地,现有A,B两种车型可供选择,每辆车的运载能力和运费表示如下:(假设每辆车均达到最大满载量)车型A B汽车运载量(吨/辆)58汽车运费(元/辆)600800(1)若要将全部物资用A,B两种车型来运送,运费恰好是18 000元,问需A,B两种车型各几辆?(2)因特殊情况安排,部分司机参与其他活动,该物流公司经理调拨一种载重量为10吨的C 型车加入运送,恰好一次性全部运送完成,已知车辆总数为22辆(三种车辆都有),试通过计算判断有几种运送方案.参考答案【A 层·基础过关】1.把方程x 2-x -13=1去分母后,正确的是(B)A .3x -2(x -1)=1B .3x -2(x -1)=6C .3x -2x -2=6D .3x +2x -2=62.下面4组数值中,哪组是二元一次方程x +2y =5的解(B) A.{x =1y =1 B.{x =1y =2 C.{x =2y =2 D.{x =-1y =-23.(2024·毕节织金一模)程大位的《算法统宗》是我国古代数学名著,其中有一道这样的题目:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.问房客各几何?题目大意是:一些客人到李三公的店中住宿,若每间房里住7人,就会有7人没地方住;若每间房住9人,则空出一间房.问有多少房间,多少客人?如果设房间有x 间,客人y 人,由题意可列方程组(B) A.{y =7x -7y =9(x +1) B.{y =7x +7y =9(x -1)C.{x =7y -7x =9(y -1)D.{y =7x -9y =9x -74.(2024·滨州中考)解方程:2x -13=x+12.【解析】去分母,得2(2x -1)=3(x +1) 去括号,得4x -2=3x +3 移项,得4x -3x =3+2 合并同类项,得x =5.5.(2024·连云港中考)我市将5月21日设立为连云港市“人才日”,以最大诚意礼遇人才,让人才与城市“双向奔赴”.活动主办方分两次共邮购了200把绘有西游文化的折扇作为当天一项活动的纪念品.折扇单价为8元,其中邮费和优惠方式如表所示:邮购数量 1~99 100以上(含100)邮寄费用 总价的10% 免费邮寄 折扇价格不优惠打九折若两次邮购折扇共花费1504元,求两次邮购的折扇各多少把? 【解析】如果每次购买都是100把 则200×8×0.9=1 440(元)≠1 504(元)∴一次购买多于100把,另一次购买少于100把 设一次邮购折扇x (x >100)把,则另一次邮购折扇(200-x )把 ∴0.9×8x +8×(1+10%)(200-x )=1 504 ∴x =160 ∴200-x =40.答:两次邮购的折扇分别是160把和40把.【B 层·能力提升】6.已知关于x ,y 的二元一次方程组{2x -y =2m +1-x +2y =m -4,的解满足x +y =3,则m 的值为(C) A.0B.1C.2D.37.某社区为了打造“书香社区”,丰富小区居民的业余文化生活,计划出资500元全部用于采购A ,B ,C 三种图书,A 种每本30元,B 种每本25元,C 种每本20元,其中A 种图书至少买5本,最多买6本(三种图书都要买),此次采购的方案有(B) A.5种B.6种C.7种D.8种8.(2024·宜宾中考)某果农将采摘的荔枝分装为大箱和小箱销售,其中每个大箱装4千克荔枝,每个小箱装3千克荔枝.该果农现采摘有32千克荔枝,根据市场销售需求,大小箱都要装满,则所装的箱数最多为(C) A.8箱B.9箱C.10箱D.11箱9.幻方,最早源于我国,古人称之为纵横图.如图所示的幻方中,各行、各列及各条对角线上的三个数字之和均相等,则图中a 的值为 -2 .-1 -6 1 0 a -4 -52-310.关于x ,y 的二元一次方程组{2x +3y =3+a x +2y =6,的解满足x +y >2√2,写出a 的一个整数值 6(答案不唯一) .11.(2024·河南中考)为响应“全民植树增绿,共建美丽中国”的号召,学校组织学生到郊外参加义务植树活动,并准备了A ,B 两种食品作为午餐.这两种食品每包质量均为50 g,营养成分表如下.(1)若要从这两种食品中摄入4 600 kJ 热量和70 g 蛋白质,应选用A ,B 两种食品各多少包?【解析】(1)设选用A 种食品x 包,B 种食品y 包 根据题意得:{700x +900y =4 60010x +15y =70,解得{x =4y =2.答:应选用A 种食品4包,B 种食品2包.(2)运动量大的人或青少年对蛋白质的摄入量应更多.若每份午餐选用这两种食品共7包,要使每份午餐中的蛋白质含量不低于90 g,且热量最低,应如何选用这两种食品?【解析】(2)设选用A 种食品m 包,则选用B 种食品(7-m )包 根据题意得:10m +15(7-m )≥90,解得m ≤3.设每份午餐的总热量为w kJ,则w =700m +900(7-m ),即w =-200m +6 300 ∵-200<0∴w 随m 的增大而减小∴当m =3时,w 取得最小值,此时7-m =7-3=4. 答:应选用A 种食品3包,B 种食品4包.【C 层·素养挑战】12.某大型物流公司急需将170吨物资运送到甲、乙两地,现有A ,B 两种车型可供选择,每辆车的运载能力和运费表示如下:(假设每辆车均达到最大满载量)车型A B汽车运载量(吨/辆)58汽车运费(元/辆)600800(1)若要将全部物资用A,B两种车型来运送,运费恰好是18 000元,问需A,B两种车型各几辆?【解析】(1)设需A型车x辆,B型车y辆由题意得:{5x+8y=170600x+800y=18000解得{x=10y=15.答:需A型车10辆,需B型车15辆.(2)因特殊情况安排,部分司机参与其他活动,该物流公司经理调拨一种载重量为10吨的C型车加入运送,恰好一次性全部运送完成,已知车辆总数为22辆(三种车辆都有),试通过计算判断有几种运送方案.【解析】(2)设需A型车a辆,B型车b辆,C型车(22-a-b)辆由题意得:5a+8b+10(22-a-b)=170整理得:a=10-25b∵a,b均为正整数,且a+b<22∴{a=8b=5或{a=6b=10或{a=4b=15有3种运送方案:①A型车8辆,B型车5辆,C型车9辆;②A型车6辆,B型车10辆,C型车6辆;③A型车4辆,B型车15辆,C型车3辆.。
历年初三数学中考二元一次方程组复习及答案
中考数学二元一次方程组复习一、知识点1.二元一次方程(组)定义及其解;2.解二元一次方程组;3.简单的三元一次方程组的解法;4.列二元一次方程组解应用题.1.二元一次方程(组)及解的应用注意:方程(组)的解适合于方程,任何一个二元一次方程都有无数个解,有时考查其整数解的情况,还经常应用方程组的概念巧求代数式的值。
2.解二元一次方程组解方程组的基本思想是消元,常用方法是代入消元和加减消元,转化思想和整体思想也是本章考查重点。
3.二元一次方程组的应用列二元一次方程组的关键是能正确分析出题目中的等量关系,题目内容往往与生活实际相贴近,与社会关系的热点问题相联系,请平时注意搜集、观察与分析。
四、中考题型例析题型一方程组解的判定例1已知二元一次方程组225x yx y+=⎧⎨-+=⎩的解是()A.16xy=⎧⎨=⎩B.14xy=-⎧⎨=⎩C.32xy=-⎧⎨=⎩D.32xy=⎧⎨=⎩分析:本题有两种解法:一种是解方程组,求出其解;另一种是将被选答案代入方程组,逐个验证。
答案:B题型二求待定系数或代数式的值例2已知二元一次方程组45ax bybx ay+=⎧⎨+=⎩的解是21xy=⎧⎨=⎩,则a+b的值为________。
分析:根据方程组的定义,把x=2,y=1代入方程组,转化为关于a、b的方程组,解出a与b的值,问题就解决了,也可应用整体思想,直接求出a+b的值。
解法1:把x=2,y=1代入方程组,得2425a bb a+=⎧⎨+=⎩解得12ab=⎧⎨=⎩∴a+b=3解法2:把x=2,y=1代入原方程组,得24(1) 25(2)a bb a+=⎧⎨+=⎩(1)+(2)得3(a+b)=9,∴a+b=3点评:运用整体思想巧求代数式的值是中考常考内容,解题时,注意观察方程组的特点,灵活运用方程组的变形技巧而进行合理、正确的解答。
题型三解方程组例3 解方程组325 28 x yx y+=⎧⎨-=⎩分析:因为y的系数绝对值是1,所以用代入消元法解较简单。
中考数学复习第6课时《一次方程组及其应用》教学设计
中考数学复习第6课时《一次方程组及其应用》教学设计一. 教材分析《一次方程组及其应用》是中考数学复习的第6课时,主要内容是探讨一次方程组的解法和应用。
教材从实际问题出发,引导学生认识方程组,并通过例题和练习题让学生掌握解方程组的方法和技巧。
本节课的内容是中考的重点,也是学生容易出错的环节,因此需要教师详细讲解和引导。
二. 学情分析学生在学习本节课之前,已经掌握了方程的基本概念和解一元一次方程的方法。
但部分学生对解方程组的理解不够深入,容易混淆概念和方法。
因此,教师在教学过程中要注意引导学生明确方程组的概念,并通过实例让学生理解方程组的解法和应用。
三. 教学目标1.了解一次方程组的概念,掌握解一次方程组的方法和技巧。
2.能运用一次方程组解决实际问题,提高解决问题的能力。
3.培养学生的逻辑思维能力和团队合作精神。
四. 教学重难点1.一次方程组的概念和解法。
2.一次方程组在实际问题中的应用。
五. 教学方法1.采用问题驱动法,引导学生从实际问题中发现方程组,激发学生的学习兴趣。
2.使用案例分析法,通过例题和练习题让学生掌握解方程组的方法和技巧。
3.采用小组合作学习法,培养学生的团队合作精神和沟通能力。
六. 教学准备1.准备相关的例题和练习题,涵盖各种类型的一次方程组。
2.准备多媒体教学设备,用于展示问题和解答过程。
3.准备小组合作学习的任务单,引导学生进行合作学习。
七. 教学过程1.导入(5分钟)教师通过展示一个实际问题,引导学生认识方程组,并激发学生的学习兴趣。
示例:小明的妈妈买了3千克苹果和2千克香蕉,一共花了25元。
请问苹果和香蕉的单价分别是多少?2.呈现(15分钟)教师引导学生列出方程组,并展示解方程组的过程。
解方程组的过程:(1)将第二个方程代入第一个方程,得到:3y + 2y = 25(2)解得:y = 5(3)将y的值代入第二个方程,得到:x = 53.操练(10分钟)教师给出几个练习题,让学生独立解答,巩固解方程组的方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1页 共 4 页
1
2018年中考数学第一轮复习--- 一元一次方程与二元一次方程组
【复习目标】
1. 了解一元一次方程及二元一次方程(组)的有关概念,会解一元一次方程及二元一次
方程组。
2. 进一步掌握用一元一次方程及二元一次方程组解决实际问题。
【复习回顾】
考点一 一元一次方程
1. 叫方程。 是方程的解。
2.一元一次方程是指含有一个_______,并且未知数的最高次数是______次的整式方程.
3.等式的基本性质一:等式两边同加(或同减)同一个数(或同一个整式),所得结果仍
为________.
等式的基本性质二:等式两边同乘(或同除)同一个数(或同一个整式),其中除数(或
除式)不为零,所得结果仍为________.
3.解一元一次方程的依据是________________.
4.解一元一次方程的基本步骤是________________________________.
例1.(2014•滨州,第19题)解方程:2﹣ =
例2.关于x的方程xkx21的解为正实数,则k的取值范围是
巩固练习:
1、已知2x+5y=3,用含y的代数式表示x,则x=________;当y=1时,x=________.
2、当k=_______时,方程5x-k=3x+8的解是-2
3、已知关于x的方程432xm的解是xm,则m的值是______________。
4、当 x 为何值时,代数式x+12的值比5-x3的值大1.
考点二 二元一次方程及二元一次方程组
1.二元一次方程是指含有_______个未知数,并且_______的最高次数为_______次的整式
方程.
2. 二元一次方程组求解的基本思想是_________,常用方法有_________消元法和
_________消元法.
第2页 共 4 页
2
例1.(2014•孝感)已知是二元一次方程组的解,则m﹣n的值是( )
A. 1 B. 2 C. 3 D
. 4
例2、若关于x,y的二元一次方程组kyx,kyx95的解也是二元一次方程632yx 的解,
则k的值为( )
A.43 B.43 C.34 D.34
例3.(2014•毕节地区)若﹣2amb4与5an+2b2m+n可以合并成一项,则mn的值是( )
A. 2 B. 0 C. ﹣1 D
. 1
例4. 方程 2x+y=5 的所有正整数解为_________。
例5.解方程组:(1)x+23+y-12=3x+23+1-y2=1 (2)392334322632zyxzyxzyx
巩固练习
1、如果|21||25|0xyxy,求xy的值
2、(2014•襄阳)若方程mx+ny=6的两个解是,,则m,n的值为( )
A. 4,2 B. 2,4 C. ﹣4,﹣2 D
. ﹣2,﹣4
第3页 共 4 页
3
3、(2014·台湾)若二元一次联立方程式5x-y=5,y=15x 的解为x=a,y=b,则a+b之值
为何?( )
A.54 B.7513 C.3125 D
.2925
4.(2014年山东泰安)方程5x+2y=﹣9与下列方程构成的方程组的解为的是( )
A.x+2y=1 B. 3x+2y=﹣8 C. 5x+4y=﹣3 D. 3x﹣4y
=﹣8
5.解方程组:(2014•滨州,第19题3分)解方程组:.
考点三 实际应用:
例1 .(2014·浙江金华,第20题8分)一种长方形餐桌的四周可坐6 从用餐,现把若
干张这样的餐桌按如图方式拼接.
(1)若把4张、8张这样的餐桌拼接起来,四周分别可坐多少人?
(2)若用餐的人数有90人,则这样的餐桌需要多少张?
例2.(2014•泰州,第20题,8分)某篮球运动员去年共参加40场比赛,其中3分球的
命中率为0.25,平均每场有12次3分球未投中.
(1)该运动员去年的比赛中共投中多少个3分球?
第4页 共 4 页
4
(2)在其中的一场比赛中,该运动员3分球共出手20次,小亮说,该运动员这场比赛中
一定投中了5个3分球,你认为小亮的说法正确吗?请说明理由.
巩固练习:
1、一家商店将某件商品按成本价提高50%后,标价为450元,又以8折出售,则售出这件
商品可获利润______元.
3. (2014•泰州,第21题,10分)今年“五一”小长假期间,某市外来与外出旅游的总
人数为226万人,分别比去年同期增长30%和20%,去年同期外来旅游比外出旅游的人数
多20万人.求该市今年外来和外出旅游的人数.
【作业】
1.(2017年湖南省长沙市第14题)方程组331yxyx的解是 .
2.(2017年湖北省荆州市第19题)(本题满分10分)(1)解方程组:23328yxxy
3.(2017年山东省东营市第23题)为解决中小学大班额问题,东营市各县区今年将改扩
建部分中小学,某县计划对A、B两类学校进行改扩建,根据预算,改扩建2所A类学校
和3所B类学校共需资金7800万元,改扩建3所A类学校和1所B类学校共需资金5400
万元.
(1)改扩建1所A类学校和1所B类学校所需资金分别是多少万元?
(2)该县计划改扩建A、B两类学校共10所,改扩建资金由国家财政和地方财政共同承
担.若国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元,其中
地方财政投入到A、B两类学校的改扩建资金分别为每所300万元和500万元.请问共有
哪几种改扩建方案?