2015新课标A版数学文一轮复习课时作业:4-4 Word版含解析
2015新课标A版数学文一轮复习课时作业:8-1 Word版含解析

课时作业(四十四)一、选择题1.已知直线l 经过点P (-2,5),且斜率为-34,则直线l 的方程为( )A .3x +4y -14=0B .3x -4y +14=0C .4x +3y -14=0D .4x -3y +14=0解析:由y -5=-34(x +2),得: 3x +4y -14=0,故选A. 答案:A2.过点(3,-2)的直线l 经过圆x 2+y 2-2y =0的圆心,则直线l 的倾斜角大小为( )A .30°B .60°C .120°D .150°解析:圆心坐标为(0,1),斜率k =tan α=-2-13-0=-3,∴倾斜角α=120°. 答案:C3.直线x -2y cos α+3=0⎝ ⎛⎭⎪⎫α∈⎣⎢⎡⎦⎥⎤π6,π3的倾斜角的变化范围是( )A.⎣⎢⎡⎦⎥⎤π6,π4 B.⎣⎢⎡⎦⎥⎤π6,π3 C.⎣⎢⎡⎦⎥⎤π4,2π3 D.⎣⎢⎡⎦⎥⎤π4,π3解析:直线x -2y cos α+3=0的斜率k =12cos α,∵α∈⎣⎢⎡⎦⎥⎤π6,π3,∴12≤cos α≤32,故k =12cos α∈⎣⎢⎡⎦⎥⎤33,1. 设直线的倾斜角为θ,则有tan θ∈⎣⎢⎡⎦⎥⎤33,1,由于θ∈[0,π],∴θ∈⎣⎢⎡⎦⎥⎤π6,π4.答案:A4.经过点P (1,4)的直线在两坐标轴上的截距都是正的,且截距之和最小,则直线的方程为( )A .x +2y -6=0B .2x +y -6=0C .x -2y +7=0D .x -2y -7=0解析:法一:直线过P (1,4),代入,排除A 、D ,又在两坐标轴上的截距为正,排除C ,故选B.法二:设方程为x a +y b =1,将(1,4)代入得1a +4b =1,a +b =(a +b )⎝ ⎛⎭⎪⎫1a +4b =5+⎝ ⎛⎭⎪⎫b a +4a b ≥9, 当且仅当b =2a ,即a =3,b =6时,截距之和最小, ∴直线方程为x 3+y6=1,即2x +y -6=0. 答案:B5.若直线l :y =kx -3与直线2x +3y -6=0的交点位于第一象限,则直线l 的倾斜角的取值范围是( )A.⎣⎢⎡⎭⎪⎫π6,π3 B.⎝ ⎛⎭⎪⎫π6,π2C.⎝ ⎛⎭⎪⎫π3,π2D.⎣⎢⎡⎦⎥⎤π6,π2解析:如图,直线l :y =kx -3,过定点P (0,-3),又A (3,0),∴k P A =33,则直线P A 的倾斜角为π6,满足条件的直线l 的倾斜角的范围是⎝ ⎛⎭⎪⎫π6,π2.答案:B6.(2013·新课标全国卷Ⅱ)已知点A (-1,0),B (1,0),C (0,1),直线y =ax +b (a >0)将△ABC 分割为面积相等的两部分,则b 的取值范围是( )A .(0,1)B.⎝ ⎛⎭⎪⎫1-22,12C.⎝⎛⎦⎥⎤1-22,13D.⎣⎢⎡⎭⎪⎫13,12 解析:由⎩⎪⎨⎪⎧x +y =1y =ax +b 消去x ,得y =a +ba +1,当a >0时,直线y =ax +b 与x 轴交于点⎝ ⎛⎭⎪⎫-b a ,0,结合图形知12×a +b a +1×⎝ ⎛⎭⎪⎫1+b a =12,化简得(a +b )2=a (a +1),则a =b 21-2b .∵a >0,∴b 21-2b>0,解得b <12.考虑极限位置,即a =0,此时易得b =1-22,故答案为B.答案:B 二、填空题7.直线x =π3的倾斜角为________.解析:∵直线x =π3与x 轴垂直,∴其倾斜角为90°. 答案:90°8.若A (2,2),B (a,0),C (0,b )(ab ≠0)三点共线,则1a +1b =________. 解析:设直线方程为x a +yb =1,因为A (2,2)在直线上, 所以2a +2b =1,即1a +1b =12. 答案:129.不论m 取何值,直线(m -1)x -y +2m +1=0恒过定点________.解析:把直线方程(m -1)x -y +2m +1=0整理得(x +2)m -(x +y -1)=0,则⎩⎪⎨⎪⎧ x +2=0,x +y -1=0,得⎩⎪⎨⎪⎧x =-2,y =3.答案:(-2,3) 三、解答题10.已知△ABC 中,A (1,-4),B (6,6),C (-2,0).求: (1)△ABC 中平行于BC 边的中位线所在直线的一般式方程和截距式方程;(2)BC 边的中线所在直线的一般式方程,并化为截距式方程.解:(1)平行于BC 边的中位线就是AB 、AC 中点的连线.因为线段AB 、AC 中点坐标为⎝ ⎛⎭⎪⎫72,1,⎝ ⎛⎭⎪⎫-12,-2,所以这条直线的方程为y +21+2=x +1272+12,整理得,6x -8y -13=0,化为截距式方程为x 136-y138=1.(2)因为BC 边上的中点为(2,3),所以BC 边上的中线所在直线的方程为y +43+4=x -12-1,即7x -y -11=0,化为截距式方程为x 117-y11=1.11.如图,射线OA 、OB 分别与x 轴正半轴成45°和30°角,过点P (1,0)作直线AB 分别交OA 、OB 于A 、B 两点,当AB 的中点C 恰好落在直线y =12x 上时,求直线AB 的方程.解:由题意可得k OA =tan 45°=1,k OB =tan(180°-30°)=-33, 所以直线l OA :y =x ,l OB :y =-33x . 设A (m ,m ),B (-3n ,n ),所以AB 的中点C ⎝ ⎛⎭⎪⎫m -3n 2,m +n 2, 由点C 在y =12x 上,且A 、P 、B 三点共线得⎩⎪⎨⎪⎧m +n 2=12·m -3n 2,m -0m -1=n -0-3n -1,解得m =3,所以A (3,3).又P (1,0),所以k AB =k AP =33-1=3+32,所以l AB :y =3+32(x -1),即直线AB 的方程为(3+3)x -2y -3-3=0. 12.已知直线l :kx -y +1+2k =0(k ∈R ). (1)证明:直线l 过定点;(2)若直线不经过第四象限,求k 的取值范围;(3)若直线l 交x 轴负半轴于A ,交y 轴正半轴于B ,△AOB 的面积为S ,求S 的最小值并求此时直线l 的方程.解:(1)证明:直线l 的方程是:k (x +2)+(1-y )=0,令⎩⎪⎨⎪⎧x +2=01-y =0,解之得⎩⎪⎨⎪⎧x =-2,y =1,∴无论k 取何值,直线总经过定点(-2,1).(2)由方程知,当k ≠0时直线在x 轴上的截距为-1+2kk ,在y 轴上的截距为1+2k ,要使直线不经过第四象限,则必须有⎩⎨⎧-1+2k k ≤-21+2k ≥1,解之得k >0;当k =0时,直线为y =1,符合题意,故k ≥0.(3)由l 的方程,得A ⎝⎛⎭⎪⎫-1+2k k ,0,B (0,1+2k ).依题意得⎩⎨⎧-1+2k k <0,1+2k >0,解得k >0.∵S =12·|OA |·|OB |=12·⎪⎪⎪⎪⎪⎪1+2k k ·|1+2k |=12·(1+2k )2k =12⎝ ⎛⎭⎪⎫4k +1k +4≥12×(2×2+4)=4,“=”成立的条件是k >0且4k =1k ,即k =12,∴S min =4,此时l :x -2y +4=0.[热点预测]13.(1)若点P (1,1)为圆(x -3)2+y 2=9的弦MN 的中点,则弦MN 所在直线方程为( )A .2x +y -3=0B .x -2y +1=0C .x +2y -3=0D .2x -y -1=0(2)经过抛物线y 2=4x 的焦点,且以d =(1,1)为方向向量的直线的方程是__________ .解析:(1)圆心C (3,0),k CP =-12,由k CP ·k MN =-1,得k MN =2,所以MN所在直线方程是2x-y-1=0,故选D.(2)抛物线焦点(1,0),斜率k=1,由点斜式,得y-0=x-1,即x -y-1=0.答案:(1)D(2)x-y-1=0。
高三数学(文)一轮复习夯基提能作业本:第二章 函数 第五节 指数与指数函数 Word版含解析

第五节指数与指数函数A组基础题组1.若a=(2+)-1,b=(2-)-1,则(a+1)-2+(b+1)-2的值是( )A.1B.C.D.2.已知a=,b=,c=2,则( )A.b<a<cB.a<b<cC.b<c<aD.c<a<b3.若函数f(x)=a|2x-4|(a>0,且a≠1)满足f(1)=,则f(x)的单调递减区间是( )A.(-∞,2]B.2,+∞)C.-2,+∞)D.(-∞,-2]4.函数f(x)=a|x+1|(a>0,且a≠1)的值域为1,+∞),则f(-4)与f(1)的大小关系是( )A.f(-4)>f(1)B.f(-4)=f(1)C.f(-4)<f(1)D.不能确定5.定义区间x1,x2]的长度为x2-x1,已知函数f(x)=3|x|的定义域为a,b],值域为1,9],则区间a,b]的长度的最大值为,最小值为.6.若指数函数y=a x在-1,1]上的最大值与最小值的差是1,则底数a= .7.(2016安徽江淮十校第一次联考)已知max{a,b}表示a,b两数中的最大值.若f(x)=max{e|x|,e|x-2|},则f(x)的最小值为.8.已知函数f(x)=b·a x(其中a,b为常数,a>0,且a≠1)的图象经过点A(1,6),B(3,24).(1)求f(x)的表达式;(2)若不等式+-m≥0在x∈(-∞,1]时恒成立,求实数m的取值范围.9.已知函数f(x)=2a·4x-2x-1.(1)当a=1时,求函数f(x)在x∈-3,0]上的值域;(2)若关于x的方程f(x)=0有解,求a的取值范围.B组提升题组10.已知奇函数y=如果f(x)=a x(a>0,且a≠1)对应的图象如图所示,那么g(x)=( )A. B.- C.2-x D.-2x11.已知函数f(x)=e x,如果x1,x2∈R,且x1≠x2,则下列关于f(x)的性质:①(x1-x2)f(x1)-f(x2)]>0;②y=f(x)不存在反函数;③f(x1)+f(x2)<2f;④方程f(x)=x2在(0,+∞)上没有实数根,其中正确的是( )A.①②B.①④C.①③D.③④12.设f(x)=|3x-1|,c<b<a,且f(c)>f(a)>f(b),则下列关系中一定成立的是( )A.3c>3aB.3c>3bC.3c+3a>2D.3c+3a<213.若函数f(x)=a x-1(a>0,且a≠1)的定义域和值域都是0,2],则实数a= .14.若函数f(x)=a x(a>0,且a≠1)在-1,2]上的最大值为4,最小值为m,且函数g(x)=(1-4m)在0,+∞)上是增函数,则a= .15.已知函数f(x)=e x-e-x(x∈R,且e为自然对数的底数).(1)判断函数f(x)的单调性与奇偶性;(2)是否存在实数t,使不等式f(x-t)+f(x2-t2)≥0对一切x∈R都成立?若存在,求出t的值;若不存在,请说明理由.答案全解全析A组基础题组1.Da=(2+)-1=2-,b=(2-)-1=2+,∴(a+1)-2+(b+1)-2=(3-)-2+(3+)-2=+=. 2.A 因为a==,c=2=,函数y=在(0,+∞)上单调递增,所以<,即a<c,又因为函数y=4x在R上单调递增,所以<,即b<a,所以b<a<c,故选A.3.B 由f(1)=得a2=,又a>0,所以a=,因此f(x)=.根据复合函数的单调性可知f(x)的单调递减区间是2,+∞).4.A 由题意知a>1,所以f(-4)=a3,f(1)=a2,由y=a x(a>1)的单调性知a3>a2,所以f(-4)>f(1).5.答案4;2解析由3|x|=1得x=0,由3|x|=9得x=±2,故满足题意的定义域可以为-2,m](0≤m≤2)或n,2](-2≤n≤0),故区间a,b]的最大长度为4,最小长度为2.6.答案解析若0<a<1,则a-1-a=1,即a2+a-1=0,解得a=或a=(舍去).若a>1,则a-a-1=1,即a2-a-1=0,解得a=或a=(舍去).综上所述,a=.7.答案e解析由于f(x)=max{e|x|,e|x-2|}=当x≥1时,f(x)≥e,且当x=1时,取得最小值e;当x<1时,f(x)>e.故f(x)的最小值为f(1)=e.8.解析(1)因为f(x)的图象过点A(1,6),B(3,24),所以解得a2=4,又a>0,所以a=2,则b=3.所以f(x)=3·2x.(2)由(1)知a=2,b=3,则当x∈(-∞,1]时,+-m≥0恒成立,即m≤+在x∈(-∞,1]时恒成立.因为y=与y=均为减函数,所以y=+也是减函数,所以当x=1时,y=+在(-∞,1]上取得最小值,且最小值为.所以m≤,即m的取值范围是.9.解析(1)当a=1时,f(x)=2·4x-2x-1=2(2x)2-2x-1,令t=2x,则t∈.故y=2t2-t-1=2-,t∈,故y∈.即f(x)在x∈-3,0]上的值域为.(2)令m=2x,则m∈(0,+∞).关于x的方程2a(2x)2-2x-1=0有解等价于方程2am2-m-1=0在(0,+∞)上有解.记g(m)=2am2-m-1,当a=0时,m=-1<0,不符合题意.当a<0时,g(m)图象的开口向下,对称轴m=<0,过点(0,-1),不符合题意.当a>0时,g(m)图象的开口向上,对称轴m=>0,过点(0,-1),必有一个根为正,所以a>0.综上所述,a的取值范围是(0,+∞).B组提升题组10.D 由题图知f(1)=,∴a=,则f(x)=,由题意得g(x)=-f(-x)=-=-2x,故选D.11.B 因为e>1,所以f(x)=e x为定义域内的增函数,故①正确;函数f(x)=e x的反函数为y=lnx(x>0),故②错误;f(x 1)+f(x2)=+>2=2=2f,故③错误;作出函数f(x)=e x和y=x2的图象(图略)可知,两函数图象在(0,+∞)内无交点,故④正确.选B.12.D 画出f(x)=|3x-1|的图象,如图所示,要使c<b<a,且f(c)>f(a)>f(b)成立,则有c<0,且a>0.∴f(c)=1-3c,f(a)=3a-1,又f(c)>f(a),∴1-3c>3a-1,即3a+3c<2.13.答案解析当a>1时,f(x)=a x-1在0,2]上为增函数,则a2-1=2,∴a=±.又∵a>1,∴a=.当0<a<1时,f(x)=a x-1在0,2]上为减函数,又∵f(0)=0≠2,∴不满足条件.综上可知,a=.14.答案解析g(x)=(1-4m)在0,+∞)上是增函数,应有1-4m>0,即m<.当a>1时,f(x)=a x为增函数,由题意知⇒m=,与m<矛盾.当0<a<1时,f(x)=a x为减函数,由题意知⇒m=,满足m<.故a=.15.解析(1)∵f(x)=e x-,∴f'(x)=e x+,∴f'(x)>0对任意x∈R都成立,∴f(x)在R上是增函数.∵f(x)的定义域为R,且f(-x)=e-x-e x=-f(x),∴f(x)是奇函数.(2)存在.由(1)知f(x)在R上是增函数和奇函数,则f(x-t)+f(x2-t2)≥0对一切x∈R都成立⇔f(x2-t2)≥f(t-x)对一切x∈R都成立⇔x2-t2≥t-x对一切x∈R都成立⇔t2+t≤x2+x=-对一切x∈R都成立⇔t2+t≤(x2+x)min=-⇔t2+t+=≤0,又≥0,∴=0,∴t=-,∴存在t=-,使不等式f(x-t)+f(x2-t2)≥0对一切x∈R都成立.。
高考新课标数学(理)大一轮复习课时作业52直线的倾斜角与斜率、直线方程 Word版含解析

第八章平面解析几何课时作业直线的倾斜角与斜率、直线方程一、选择题.直线++=的倾斜角α是( ).-解析:由已知可得α=-=-,因α∈[,π),所以α=,故选.答案:.过点(,-)的直线经过圆+-=的圆心,则直线的倾斜角大小为( ).°.°.°.°解析:圆心坐标为(,),斜率=α==-,∴倾斜角α=°.答案:.直线++=同时要经过第一、第二、第四象限,则,,应满足( ).>,< .>,>.<,> .<,<解析:由于直线++=经过第一、二、四象限,所以直线存在斜率,将方程变形为=--.易知-<且->,故>,<.答案:.若实数,满足+=,则直线--=必过定点( ).(-,) .(,).(-,-) .(,-)解析:+=⇒+-=,又--=,比较可知=,=-,故选.答案:.过点(,)作圆(-)+=的两条切线,切点分别为,,则直线的方程为( ).+-=.--=.--=.+-=解析:根据平面几何知识,直线一定与点(,),(,)的连线垂直,这两点连线的斜率为,故直线的斜率一定是-,只有选项中直线的斜率为-.答案:.在同一平面直角坐标系中,直线:++=和直线:++=有可能是( )解析:直线:++=的斜率=-,在轴上的截距为-;直线:++=的斜率=-,在轴上的截距为-.在选项中的斜率-<,而在轴上截距->,所以不正确.同理可排除、.答案:.函数=-的一条对称轴为=,则直线:-+=的倾斜角为().°.°.°.°解析:由函数=()=-的一条对称轴为=知,()=,即-=,∴直线的斜率为-,∴倾斜角为°.答案:二、填空题。
新课标A版高中数学选修2-3课时作业4 Word版含答案

课时作业(四).某班新年联欢会原定的个节目已排成节目单,开演前又临时增加了两个新节目,如果将这两个节目插入原节目单中,那么不同插法的种数为( )....答案解析本题相当于个节目中选定两个节目(位置)排入新节目,另五个节目相对顺序已确定,故排法种数为=种..用、、、、这五个数字,组成没有重复数字的三位数,其中奇数的个数为( )....答案.从人中选人分别到巴黎、伦敦、悉尼、莫斯科四个城市游览,要求每个城市有一人游览,每人只游览一个城市,且这人中甲、乙两人不去巴黎游览,则不同的选择方案共有( ) .种.种.种.种答案解析巴黎是特殊位置,先安排人去游览巴黎,有种方法;从剩余人中选人分别去三个城市有种,共有×=种..用数字可以组成没有重复数字,并且比大的五位偶数共有( ).个.个.个.个答案解析个位上是时,有×=(个);个位上不是时,有××=(个).∴由分类计数原理得,共有+=(个)符合要求的五位偶数..将列火车停在条不同的轨道上,其中列火车不停在第一道上,列火车不停在第二道上,那么不同的停车方法共有( ).种.种.种.种答案解析(间接法)-+=(种)..名学生站成一排,其中不能站在两端,不能站在中间,则不同的排法有( ).种.种.种.种答案解析首先排有三个位置可供选择有种排法;第二步,其余四个元素有种排法.由分步计数原理,不在两端的排法有·=(种).这里,包含在中间时的情形,而在中间(如下表),又不在两端的排法种数为=(种),则符合条件的排法种数为-=(种)..从、、、、、六个数中任取两个不同的数分别作为一个对数的底数和真数,得到不同的对数值有( )....答案解析把所取的数分两类:一是必须选时,因为只能作为真数且对数值恒为,所以对数值只有个;二是不选时,则有选法种,但由于=,=,=,=,所以共有+-=个.故选..乒乓球队的名队员中有名主力队员,派名参加比赛,名主力队员要安排在第一、三、五位置,其余名队员选名安排在第二、四位置,那么不同的出场安排共有种.答案解析安排名主力队员有种方法;安排另外两名队员有种方法;共有×=种..将红、黄、蓝、白、黑种颜色的小球,分别放入红、黄、蓝、白、黑种颜色的小口袋中,若不允许空袋且红口袋中不能装入红球,则有种不同的放法.答案解析(排除法)红球放入红口袋中共有种放法,则满足条件的放法种数为-=!-!=(种)..从班委会名成员中选出名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有种.(用数字作答)答案解析·=..由共六个数字可组成没有重复数字且能被整除的六位数的个数为.答案解析组成的六位数与顺序有关,但首位不能排,个位必须排或,因此分两类:第一类:个位数排,此时前五位数由共五个数字组成,这五个数字的每一个排列对应一个六位数,故。
《高考调研》大一轮复习(新课标,数学理)题组训练第二章函数与基本初等函数题组4 Word版含解析

题组层级快练(四)1.下列表格中的x与y能构成函数的是()A.B.C.D.答案 C解析A中0既是非负数又是非正数;B中0又是偶数;D中自然数也是整数,也是有理数.2.下列图像中不能作为函数图像的是()答案 B解析B项中的图像与垂直于x轴的直线可能有两个交点,显然不满足函数的定义.故选B.3.已知f(x 5)=lgx ,则f(2)等于( ) A .lg2 B .lg32 C .lg 132D.15lg2 答案 D解析 令x 5=t ,则x =t 15(t>0), ∴f(t)=lgt 15=15lgt.∴f(2)=15lg2,故选D.4.(2016·江南十校联考)设函数f(x)=⎩⎪⎨⎪⎧-x ,x ≤0,x 2,x>0.若f(a)=4,则实数a =( )A .-4或-2B .-4或2C .-2或4D .-2或2 答案 B解析 当a>0时,有a 2=4,∴a =2;当a ≤0时,有-a =4,∴a =-4,因此a =-4或a =2.5.设f ,g 都是由A 到A 的映射,其对应法则如下表(从上到下): 表1 映射f 的对应法则表2 映射g 的对应法则则与f[g(1)]相同的是( ) A .g[f(1)] B .g[f(2)] C .g[f(3)] D .g[f(4)]答案 A解析 f[g(1)]=f(4)=1,g[f(1)]=g(3)=1.故选A.6.若二次函数g(x)满足g(1)=1,g(-1)=5,且图像过原点,则g(x)的解析式为( ) A .g(x)=2x 2-3x B .g(x)=3x 2-2x C .g(x)=3x 2+2x D .g(x)=-3x 2-2x答案 B解析 用待定系数法,设g(x)=ax 2+bx +c(a ≠0), ∵g(1)=1,g(-1)=5,且图像过原点,∴⎩⎪⎨⎪⎧a +b +c =1,a -b +c =5,c =0,解得⎩⎪⎨⎪⎧a =3b =-2,c =0,∴g(x)=3x 2-2x ,选B. 7.(2016·山东临沂一中月考)如图所示是张校长晨练时所走的离家距离(y)与行走时间(x)之间的函数关系的图像.若用黑点表示张校长家的位置,则张校长散步行走的路线可能是( )答案 D解析 由y 与x 的关系知,在中间时间段y 值不变,只有D 符合题意.8.已知A ={x|x =n 2,n ∈N },给出下列关系式:①f(x)=x ;②f(x)=x 2;③f(x)=x 3;④f(x)=x 4;⑤f(x)=x 2+1,其中能够表示函数f :A →A 的个数是( ) A .2 B .3 C .4 D .5答案 C解析 对⑤,当x =1时,x 2+1∉A ,故⑤错误,由函数定义可知①②③④均正确. 9.(2014·江西理)已知函数f(x)=5|x|,g(x)=ax 2-x(a ∈R ).若f[g(1)]=1,则a =( ) A .1 B .2 C .3 D .-1答案 A解析 由已知条件可知:f[g(1)]=f(a -1)=5|a -1|=1,∴|a -1|=0,得a =1.故选A. 10.已知f :x →2sinx 是集合A(A ⊆[0,2π])到集合B 的一个映射,若B ={0,1,2},则A 中的元素个数最多为( ) A .6 B .5 C .4 D .3答案 A解析 ∵A ⊆[0,2π],由2sinx =0,得x =0,π,2π;由2sinx =1,得x =π6,5π6;由2sinx=2,得x =π2.故A 中最多有6个元素.故选A.11.已知f(x -1x )=x 2+1x 2,则f(3)=______.答案 11解析 ∵f(x -1x )=(x -1x )2+2,∴f(x)=x 2+2(x ∈R ),∴f(3)=32+2=11. 12.已知x ∈N *,f(x)=⎩⎪⎨⎪⎧x 2-35,x ≥3,f (x +2),x<3,其值域设为D.给出下列数值:-26,-1,9,14,27,65,则其中属于集合D 的元素是________.(写出所有可能的数值) 答案 -26,14,65解析 注意函数的定义域是N *,由分段函数解析式可知,所有自变量的函数值最终都是转化为大于等于3的对应自变量函数值计算的f(3)=9-35=-26,f(4)=16-35=-19,f(5)=25-35=-10,f(6)=36-35=1,f(7)=49-35=14,f(8)=64-35=29,f(9)=81-35=46,f(10)=100-35=65.故正确答案应填-26,14,65. 13.已知f(1-cosx)=sin 2x ,则f(x)=________. 答案 -x 2+2x(0≤x ≤2)解析 令1-cosx =t(0≤t ≤2),则cosx =1-t. ∴f(1-cosx)=f(t)=sin 2x =1-cos 2x =1-(1-t)2=-t 2+2t. 故f(x)=-x 2+2x(0≤x ≤2).14.(2016·沧州七校联考)已知函数f(x)=⎩⎪⎨⎪⎧(12)x -2,x ≤0,f (x -2)+1,x >0,则f(2 016)=________.答案 1 007解析 根据题意:f(2 016)=f(2 014)+1=f(2 012)+2=…=f(2)+1 007=f(0)+1 008=1 007. 15.(2016·衡水调研卷)具有性质:f(1x )=-f(x)的函数,我们称为满足“倒负”变换的函数,下列函数:①y =x -1x ;②y =x +1x ;③y =⎩⎪⎨⎪⎧x ,0<x<1,0,x =1,-1x ,x>1.其中满足“倒负”变换的函数是________.答案 ①③解析 对于①,f(x)=x -1x ,f(1x )=1x -x =-f(x),满足;对于②,f(1x )=1x+x =f(x),不满足;对于③,f(1x)=⎩⎪⎨⎪⎧1x ,0<1x<1,0,1x =1,-x ,1x >1,即f(1x)=⎩⎪⎨⎪⎧1x ,x>1,0,x =1,-x ,0<x<1.故f(1x)=-f(x),满足.综上可知,满足“倒负”变换的函数是①③.16.(2015·浙江理)已知函数f(x)=⎩⎪⎨⎪⎧x +2x -3,x ≥1,lg (x 2+1),x<1,则f(f(-3))=________,f(x)的最小值是________. 答案 0 22-3解析 ∵-3<1,∴f(-3)=lg[(-3)2+1]=lg10=1, ∴f(f(-3))=f(1)=1+21-3=0.当x ≥1时,f(x)=x +2x -3≥22-3(当且仅当x =2时,取“=”);当x<1时,x 2+1≥1,∴f(x)=lg(x 2+1)≥0.又∵22-3<0,∴f(x)min =22-3.17.一个圆柱形容器的底面直径为d cm ,高度为h cm ,现以S cm 3/s 的速度向容器内注入某种溶液,求容器内溶液高度y(cm)与注入时间t(s)的函数关系式及定义域. 答案 y =4Sπd2·t , [0,πhd 24S ]解析 依题意,容器内溶液每秒升高4Sπd 2 cm.于是y =4Sπd2·t.又注满容器所需时间h÷(4Sπd 2)=πhd 24S (秒),故函数的定义域是 [0,πhd 24S].18.已知函数f(x)=⎩⎪⎨⎪⎧cx +1,0<x<c ,2-x c2+1,c ≤x<1满足f(c 2)=98. (1)求常数c 的值; (2)解不等式f(x)>28+1. 答案 (1)12 (2)⎩⎨⎧⎭⎬⎫x|24<x<58解析 (1)∵0<c<1,∴c 2<c.由f(c 2)=98,即c 3+1=98,∴c =12.(2)由(1)得f(x)=⎩⎨⎧12x +1,0<x<12,2-4x+1,12≤x<1.由f(x)>28+1,得当0<x<12时,解得24<x<12. 当12≤x<1时,解得12≤x<58. ∴f(x)>28+1的解集为⎩⎨⎧⎭⎬⎫x|24<x<58.1.(2016·浙江杭州质检)已知函数f(x)=⎩⎪⎨⎪⎧2x -1(x>0),1-2x (x ≤0),则f(1)+f(-1)的值是( )A .0B .2C .3D .4答案 D解析 由已知得,f(1)=1,f(-1)=3,则f(1)+f(-1)=4.故选D.2.下列各图中,不可能表示函数y =f(x)的图像的是( )答案 B解析 B 中一个x 对应两个函数值,不符合函数定义. 3.若定义x ⊙y =3x -y ,则a ⊙(a ⊙a)等于( ) A .-a B .3a C .a D .-3a答案 C解析 由题意知:a ⊙a =3a -a ,则a ⊙(a ⊙a)=3a -(a ⊙a)=3a -(3a -a)=a.选C.4.已知函数f(x)=⎩⎪⎨⎪⎧2x ,x>0,x +1,x ≤0.若f(a)+f(1)=0,则实数a 的值等于( )A .-3B .-1C .1D .3答案 A解析 方法一:当a>0时,由f(a)+f(1)=0,得2a +2=0,可见不存在实数a 满足条件;当a<0时,由f(a)+f(1)=0,得a +1+2=0,解得a =-3,满足条件,故选A.方法二:由指数函数的性质可知:2x >0,又因为f(1)=2,所以a<0,所以f(a)=a +1,即a +1+2=0,解得a =-3,故选A.方法三:验证法,把a =-3代入f(a)=a +1=-2,又因为f(1)=2,所以f(a)+f(1)=0,满足条件,从而选A.。
(福建专用)高考数学一轮复习 课时规范练54 变量间的相关关系、统计案例 理 新人教A版-新人教A版

课时规X练54 变量间的相关关系、统计案例一、基础巩固组1.设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(x i,y i)(i=1,2,…,n),用最小二乘法建立的回归方程为y=0.85x-85.71,则下列结论不正确的是()A.y与x具有正的线性相关关系B.回归直线过样本点的中心()C.若该大学某女生身高增加1 cm,则其体重约增加0.85 kgD.若该大学某女生身高为170 cm,则可断定其体重必为58.79 kg2.根据如下样本数据:x 3 4 5 6 7 8y4.0 2.5 -0.5 0.5 -2.0 -3.0得到的回归方程为x+,则()A.>0,>0B.>0,<0C.<0,>0D.<0,<03.在吸烟与患肺病这两个分类变量的计算中,下列说法正确的是()A.若K2的观测值为6.635,则在犯错误的概率不超过0.01的前提下认为吸烟与患肺病有关系,因此在100个吸烟的人中必有99个患有肺病B.由独立性检验知,在犯错误的概率不超过0.01的前提下认为吸烟与患肺病有关系时,我们说某人吸烟,则他有99%的可能患肺病C.若在统计量中求出在犯错误的概率不超过0.05的前提下认为吸烟与患肺病有关系,是指有5%的可能性使得推断出现错误D.以上三种说法都不正确〚导学号21500769〛4.两个随机变量x,y的取值如下表:x0 1 3 4y2.2 4.3 4.8 6.7若x,y具有线性相关关系,且x+2.6,则下列结论错误的是()A.x与y是正相关B.当x=6时,y的估计值为8.3C.x每增加一个单位,y大约增加0.95个单位D.样本点(3,4.8)的残差为0.565.2017年春节期间,“厉行节约,反对浪费”之风悄然吹开,某市通过随机询问100名性别不同的居做不到“光盘”能做到“光盘”男45 10女30 15则下面的结论正确的是()A.在犯错误的概率不超过0.1的前提下,认为“该市居民能否做到‘光盘’与性别有关”B.在犯错误的概率不超过0.01的前提下,认为“该市居民能否做到‘光盘’与性别无关”C.在犯错误的概率不超过0.01的前提下,认为“该市居民能否做到‘光盘’与性别有关”D.在犯错误的概率不超过0.1的前提下,认为“该市居民能否做到‘光盘’与性别无关”6.(2017某某潍坊二模,理12)某公司未来对一种新产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:单价x/元 4 5 6 7 8 9销量y/件90 84 83 80 75 68由表中数据,求得线性回归方程为=-4x+,当产品销量为76件时,产品定价大致为元.7.从某居民区随机抽取10个家庭,获得第i个家庭的月收入x i(单位:千元)与月储蓄y i(单位:千元)的数据资料,算得x i=80,y i=20,x i y i=184,=720.(1)求家庭的月储蓄对月收入x的线性回归方程x+;(2)判断变量x与y之间是正相关还是负相关;(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.〚导学号21500770〛二、综合提升组8.通过随机询问110名性别不同的学生是否爱好某项运动,得到如下的列联表:男女总计爱好40 20 60不爱好20 30 50总计60 50 110附表:P(K2≥k0) 0.050 0.010 0.001k03.841 6.635 10.828参照附表,得到的正确结论是()A.在犯错误的概率不超过0.01的前提下,认为“爱好该项运动与性别有关”B.在犯错误的概率不超过0.01的前提下,认为“爱好该项运动与性别无关”C.在犯错误的概率不超过0.001的前提下,认为“爱好该项运动与性别有关”D.在犯错误的概率不超过0.001的前提下,认为“爱好该项运动与性别无关”9.已知x与y之间的几组数据如下表:x 1 2 3 4 5 6y0 2 1 3 3 4假设根据上表数据所得线性回归直线方程x+,若某同学根据上表中的前两组数据(1,0)和(2,2)求得的直线方程为y=b'x+a',则以下结论正确的是()A.>b',>a'B.>b',<a'C.<b',>a'D.<b',<a'10.某数学老师身高176 cm,他爷爷、父亲和儿子的身高分别是173 cm,170 cm和182 cm.因儿子的身高与父亲的身高有关,该老师用线性回归分析的方法预测他孙子的身高为 cm.11.(2017某某某某第三中学模拟)为推行“新课堂”教学法,某化学老师分别用传统教学和“新课堂”两种不同的教学方式,在甲、乙两个平行班进行教学实验,为了解教学效果,期中考试后,分别从两个班级中各随机抽取20名学生的成绩进行统计,作出的茎叶图如下图,记成绩不低于70分者为“成绩优良”.(1)分别计算甲、乙两班20个样本中,化学成绩前十的平均分,并据此判断哪种教学方式的教学效果更佳;(2)由以上统计数据填写下面2×2列联表,并判断能否在犯错误的概率不超过0.05的前提下认为“成绩优良与教学方式有关”?甲班乙班总计成绩优良成绩不优良总计附:K2=(n=a+b+c+d).独立性检验临界值表:P(K2≥k 0) 0.10.050.0250.010k02.7063.8415.0246.635〚导学号21500771〛12.年份2011 2012 2013 2014 2015 2016 2017年份代号t 1 2 3 4 5 6 7人均纯收入y2.9 3.3 3.6 4.4 4.8 5.2 5.9(1)求y关于t的线性回归方程;(2)利用(1)中的回归方程,分析2011年至2017年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2019年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘估计公式分别为:.三、创新应用组13.某地10户家庭的年收入和年饮食支出的统计资料如表所示:年收入x/万元 2 4 4 6 6 6 7 7 8 10年饮食支出y/万元0.9 1.4 1.6 2.0 2.1 1.9 1.8 2.1 2.2 2.3(1)根据表中数据,确定家庭的年收入和年饮食支出的相关关系;(2)如果某家庭年收入为9万元,预测其年饮食支出.14.(2017某某某某一模)某单位N名员工参加“我爱阅读”活动,他们的年龄在25岁至50岁之间,按年龄分组:第1组[25,30),第2组[30,35),第3组[35,40),第4组[40,45),第5组[45,50],得到的频率分布直方图如图所示.区间[25,30) [30,35) [35,40) [40,45) [45,50]人数28 a b(1)求正整数a,b,N的值;(2)现要从年龄低于40岁的员工中用分层抽样的方法抽取42人,则年龄在第1,2,3组的员工分别抽多少?(3)为了了解该单位员工的阅读习惯,对第1,2,3组中抽出的42人是否喜欢阅读国学类书籍进行了调查,喜欢阅读国学类不喜欢阅读国学类合计男16 4 20女8 14 22合计24 18 42根据表中数据,能否在犯错误的概率不超过0.5%的前提下认为该单位员工“是否喜欢阅读国学类书籍和性别有关系”?附:K2=P(K2≥k0) 0.05 0.025 0.010 0.005 0.001k03.841 5.024 6.635 7.879 10.828〚导学号21500772〛课时规X练54变量间的相关关系、统计案例1.D由于线性回归方程中x的系数为0.85,因此y与x具有正的线性相关关系,故A正确;又线性回归方程必过样本点中心(),因此B正确;由线性回归方程中系数的意义知,x每增加1 cm,其体重约增加0.85 kg,故C正确;当某女生的身高为170 cm时,其体重估计值是58.79 kg,而不是具体值,因此D不正确.2.B由题表中数据画出散点图,如图,由散点图可知<0,>0,故选B.3.C独立性检验只表明两个分类变量的相关程度,而不是事件是否发生的概率估计.4.D由表格中的数据可知选项A正确;(0+1+3+4)=2,(2.2+4.3+4.8+6.7)=4.5,∴4.5=2+2.6,解得=0.95,=0.95x+2.6.当x=6时,=0.95×6+2.6=8.3,故选项B正确;由=0.95+2.6可知选项C正确;当x=3时,=0.95×3+2.6=5.45,残差是5.45-4.8=0.65,故选项D错误.5.A由2×2列联表得到a=45,b=10,c=30,d=15,则a+b=55,c+d=45,a+c=75,b+d=25,ad=675,bc=300,n=100,计算得K2的观测值k=3.030.因为3.030>2.706,所以在犯错误的概率不超过0.1的前提下,认为“该市居民能否做到‘光盘’与性别有关”,故选A.6.7.5=6.5,=80,=80-(-4)×6.5,解得=106,∴回归方程为=-4x+106.当y=76时,76=-4x+106,∴x=7.5,故答案为7.5.7.解 (1)由题意知n=10,x i==8,y i==2,又=720-10×82=80,x i y i-10=184-10×8×2=24,由此得=0.3,=2-0.3×8=-0.4,故所求线性回归方程为=0.3x-0.4.(2)由于变量y的值随x值的增加而增加(=0.3>0),因此x与y之间是正相关.(3)将x=7代入回归方程可以预测该家庭的月储蓄为=0.3×7-0.4=1.7(千元).8.A依题意,由K2=,得K2=7.8>6.635.所以在犯错误的概率不超过0.01的前提下,认为“爱好该项运动与性别有关”,故选A.9.C由题意可知,b'=2,a'=-2,=-,故<b',>a',故选C.10.185由题意,得父亲身高x cm与儿子身高y cm对应关系如下表:x173 170 176y170 176 182则=173,=176,(x i-)(y i-)=(173-173)×(170-176)+(170-173)×(176-176)+(176-173)×(182-176)=18, (x i-)2=(173-173)2+(170-173)2+(176-173)2=18.=1=176-173=3.∴线性回归直线方程x+=x+3.∴可估计孙子身高为182+3=185(cm).11.解 (1)甲班化学成绩前十的平均分(72+74+74+79+79+80+81+85+89+96)=80.9;乙班化学成绩前十的平均分(78+80+81+85+86+93+96+97+99+99)=89.4.,∴大致可以判断新课堂教学的教学效果更佳.(2)甲班乙班总计成绩优良10 16 26成绩不优良10 4 14总计20 20 40根据2×2列联表中的数据,得K2的观测值为k=3.956>3.841,∴能在犯错误的概率不超过0.05的前提下认为“成绩优良与教学方式有关”.12.解 (1)由所给数据计算得(1+2+3+4+5+6+7)=4,(2.9+3.3+3.6+4.4+4.8+5.2+5.9)=4.3,(t i-)2=9+4+1+0+1+4+9=28,(t i-)(y i-)=(-3)×(-1.4)+(-2)×(-1)+(-1)×(-0.7)+0×0.1+1×0.5+2×0.9+3×1.6=14,=0.5,=4.3-0.5×4=2.3,所求回归方程为=0.5t+2.3.(2)由(1)知,=0.5>0,故2011年至2017年该地区农村居民家庭人均纯收入逐年增加,平均每年约增加0.5千元.将2019年的年份代号t=9代入(1)中的回归方程,得=0.5×9+2.3=6.8,故预测该地区2019年农村居民家庭人均纯收入为6.8千元.13.解 (1)由题意,得年收入x为解释变量,年饮食支出y为预报变量,作散点图如图.从图中可以看出,样本点呈条状分布,年收入和年饮食支出有比较好的线性相关关系,因此可以用线性回归方程刻画它们之间的关系.因为=6,=1.83,=406,x i y i=117.7,所以0.172,x≈1.83-0.172×6=0.798.从而得到线性回归方程为=0.172x+0.798.(2)=0.172×9+0.798=2.346(万元).所以某家庭年收入为9万元时,可以预测其年饮食支出为2.346万元.14.解 (1)总人数N==280,a=280×0.02×5=28.第3组的频率是1-5×(0.02+0.02+0.06+0.02)=0.4,所以b=280×0.4=112.(2)因为年龄低于40岁的员工在第1,2,3组,共有28+28+112=168(人),利用分层抽样在168人中抽取42人,每组抽取的人数分别为:第1组抽取的人数为28=7(人),第2组抽取的人数为28=7(人),第3组抽取的人数为112=28(人),所以第1,2,3组分别抽7人、7人、28人.(3)假设H0:“是否喜欢阅读国学类书籍和性别无关系”,根据表中数据,求得K2的观测值k=8.145>7.879.从而能在犯错误的概率不超过0.5%的前提下,认为该单位的员工“是否喜欢阅读国学类书籍和性别有关系”.。
2022版高考数学(文理通用新课标)一轮复习教师用书:选修4-4 坐标系与参数方程 Word版含解析
选修4-4⎪⎪⎪坐标系与参数方程 第一节 坐 标 系突破点(一) 平面直角坐标系下图形的伸缩变换基础联通 抓主干学问的“源”与“流”设点P (x ,y )是平面直角坐标系中的任意一点,在变换φ:⎩⎪⎨⎪⎧x ′=λ·x (λ>0),y ′=μ·y (μ>0)的作用下,点P (x ,y )对应到点P ′(x ′,y ′),称φ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.考点贯穿 抓高考命题的“形”与“神”平面直角坐标系下图形的伸缩变换典例] 求椭圆x 24+y 2=1,经过伸缩变换⎩⎪⎨⎪⎧x ′=12x ,y ′=y 后的曲线方程.解] 由⎩⎪⎨⎪⎧x ′=12x ,y ′=y得到⎩⎪⎨⎪⎧x =2x ′,y =y ′.①将①代入x 24+y 2=1,得4x ′24+y ′2=1,即x ′2+y ′2=1.因此椭圆x 24+y 2=1经伸缩变换后得到的曲线方程是x 2+y 2=1.方法技巧]应用伸缩变换公式时的两个留意点(1)曲线的伸缩变换是通过曲线上任意一点的坐标的伸缩变换实现的,解题时肯定要区分变换前的点P 的坐标(x ,y )与变换后的点P ′的坐标(X ,Y ),再利用伸缩变换公式⎩⎪⎨⎪⎧X =ax (a >0),Y =by (b >0)建立联系.(2)已知变换后的曲线方程f (x ,y )=0,一般都要改写为方程f (X ,Y )=0,再利用换元法确定伸缩变换公式.力量练通 抓应用体验的“得”与“失”1.在同一平面直角坐标系中,已知伸缩变换φ:⎩⎪⎨⎪⎧x ′=3x ,2y ′=y .求点A ⎝⎛⎭⎫13,-2经过φ变换所得的点A ′的坐标.解:设A ′(x ′,y ′),由伸缩变换φ:⎩⎪⎨⎪⎧x ′=3x ,2y ′=y ,得到⎩⎪⎨⎪⎧x ′=3x ,y ′=12y ,由于点A 的坐标为⎝⎛⎭⎫13,-2, 于是x ′=3×13=1,y ′=12×(-2)=-1,所以A ′(1,-1)为所求.2.求直线l :y =6x 经过φ:⎩⎪⎨⎪⎧x ′=3x ,2y ′=y 变换后所得到的直线l ′的方程.解:设直线l ′上任意一点P ′(x ′,y ′), 由题意,将⎩⎪⎨⎪⎧x =13x ′,y =2y ′代入y =6x 得2y ′=6×⎝⎛⎭⎫13x ′, 所以y ′=x ′,即直线l ′的方程为y =x . 3.求双曲线C :x 2-y 264=1经过φ:⎩⎪⎨⎪⎧x ′=3x ,2y ′=y 变换后所得曲线C ′的焦点坐标. 解:设曲线C ′上任意一点P ′(x ′,y ′), 由题意,将⎩⎪⎨⎪⎧x =13x ′,y =2y ′代入x 2-y 264=1得x ′29-4y ′264=1,化简得x ′29-y ′216=1,本节主要包括2个学问点: 1.平面直角坐标系下图形的伸缩变换; 2.极坐标系.即x 29-y 216=1为曲线C ′的方程,可见经变换后的曲线仍是双曲线, 则所求焦点坐标为F 1(-5,0),F 2(5,0).4.将圆x 2+y 2=1变换为椭圆x 29+y 24=1的一个伸缩变换公式为φ:⎩⎪⎨⎪⎧X =ax (a >0),Y =by (b >0),求a ,b 的值.解:由⎩⎪⎨⎪⎧X =ax ,Y =by知⎩⎨⎧x =1a X ,y =1b Y ,代入x 2+y 2=1中得X 2a 2+Y 2b2=1,所以a 2=9,b 2=4,即a =3,b =2.突破点(二) 极坐标系基础联通 抓主干学问的“源”与“流” 1.极坐标系的概念 (1)极坐标系如图所示,在平面内取一个定点O ,点O 叫做极点,自极点O 引一条射线Ox ,Ox 叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.(2)极坐标一般地,没有特殊说明时,我们认为ρ≥0,θ可取任意实数. (3)点与极坐标的关系一般地,极坐标(ρ,θ)与(ρ,θ+2k π)(k ∈Z)表示同一个点,特殊地,极点O 的坐标为(0,θ)(θ∈R),和直角坐标不同,平面内一个点的极坐标有很多种表示.假如规定ρ>0,0≤θ<2π,那么除极点外,平面内的点可用唯一的极坐标(ρ,θ) 表示;同时,极坐标(ρ,θ)表示的点也是唯一确定的.2.极坐标与直角坐标的互化点M直角坐标(x ,y )极坐标(ρ,θ)互化公式⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ ⎩⎪⎨⎪⎧ρ2=x 2+y 2,tan θ=y x (x ≠0)考点贯穿 抓高考命题的“形”与“神”极坐标与直角坐标的互化1.极坐标方程化为直角坐标方程的步骤第一步推断极坐标的极点与直角坐标系的原点是否重合,且极轴与x 轴正半轴是否重合,若上述两个都重合,则极坐标方程与直角坐标方程可以互化其次步通过极坐标方程的两边同乘ρ或同时平方构造ρcos θ,ρsin θ,ρ2的形式,肯定要留意变形过程中方程要保持同解,不要消灭增解或漏解第三步 依据极坐标方程与直角坐标方程的互化公式⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ及ρ2=x 2+y 2将极坐标方程转化为直角坐标方程2.直角坐标方程化为极坐标方程或直角坐标系中的点的坐标化为极坐标(1)直角坐标方程化为极坐标方程较为简洁,只需将直角坐标方程中的x ,y 分别用ρcos θ,ρsin θ代替即可得到相应极坐标方程.(2)求直角坐标系中的点(x ,y )对应的极坐标的一般步骤:第一步,依据直角坐标系中两点间的距离公式计算该点与坐标原点的距离,即计算ρ;其次步,依据角θ的正切值tan θ=yx (x ≠0)求出角θ(若正切值不存在,则该点在y 轴上),问题即解.例1] 在极坐标系下,已知圆O :ρ=cos θ+sin θ和直线l :ρsin ⎝⎛⎭⎫θ-π4=22. (1)求圆O 和直线l 的直角坐标方程;(2)当θ∈(0,π)时,求直线l 与圆O 公共点的一个极坐标. 解] (1)圆O :ρ=cos θ+sin θ,即ρ2=ρcos θ+ρsin θ,圆O 的直角坐标方程为:x 2+y 2=x +y ,即x 2+y 2-x -y =0,直线l :ρsin ⎝⎛⎭⎫θ-π4=22,即ρsin θ-ρcos θ=1,则直线l 的直角坐标方程为:y -x =1,即x -y +1=0.(2)由⎩⎪⎨⎪⎧ x 2+y 2-x -y =0,x -y +1=0得⎩⎪⎨⎪⎧x =0,y =1,则直线l 与圆O 公共点的一个极坐标为⎝⎛⎭⎫1,π2. 方法技巧]1.应用互化公式的三个前提条件 (1)取直角坐标系的原点为极点. (2)以x 轴的正半轴为极轴. (3)两种坐标系规定相同的长度单位. 2.直角坐标化为极坐标时的两个留意点(1)依据终边相同的角的意义,角θ的表示方法具有周期性,故点M 的极坐标(ρ,θ)的形式不唯一,即一个点的极坐标有无穷多个.当限定ρ≥0,θ∈0,2π)时,除极点外,点M 的极坐标是唯一的.(2)当把点的直角坐标化为极坐标时,求极角θ应留意推断点M 所在的象限(即角θ的终边的位置),以便正确地求出角θ(θ∈0,2π))的值.极坐标方程的应用例2] (2021·福州五校联考)已知曲线C 的极坐标方程为ρ2-22ρcos ⎝⎛⎭⎫θ+π4-2=0.以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系xOy .(1)若直线l 过原点,且被曲线C 截得的弦长最小,求直线l 的直角坐标方程; (2)若M 是曲线C 上的动点,且点M 的直角坐标为(x ,y ),求x +y 的最大值. 解] (1)ρ2-22ρcos ⎝⎛⎭⎫θ+π4-2=0,即ρ2-2ρcos θ+2ρsin θ-2=0, 将⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ代入得曲线C 的直角坐标方程为(x -1)2+(y +1)2=4, 圆心C (1,-1),若直线l 被曲线C 截得的弦长最小,则直线l 与OC 垂直, 即k l ·k OC =-1,k OC =-1,因而k l =1,故直线l 的直角坐标方程为y =x .(2)由于M 是曲线C 上的动点,因而利用圆的参数方程可设⎩⎪⎨⎪⎧x =1+2cos φ,y =-1+2sin φ(φ为参数),则x +y =2sinφ+2cos φ=22sin ⎝⎛⎭⎫φ+π4,当sin ⎝⎛⎭⎫φ+π4=1时,x +y 取得最大值2 2.易错提示]用极坐标系解决问题时要留意题目中的几何关系,假如几何关系不简洁通过极坐标表示时,可以先化为直角坐标方程,将不生疏的问题转化为生疏的问题加以解决.力量练通 抓应用体验的“得”与“失”1.考点一、二]已知直线l 的极坐标方程为2ρsin ⎝⎛⎭⎫θ+π4=2,点A 的极坐标为A ⎝⎛⎭⎫22,7π4,求点A 到直线l 的距离.解:由2ρsin ⎝⎛⎭⎫θ+π4=2, 得2ρ⎝⎛⎭⎫22sin θ+22cos θ=2,由坐标变换公式,得直线l 的直角坐标方程为y +x =1,即x +y -1=0. 由点A 的极坐标为⎝⎛⎭⎫22,7π4得点A 的直角坐标为(2,-2),所以点A 到直线l 的距离d =|2-2-1|2=22.2.考点一]已知圆C 的极坐标方程为ρ2+22ρsin θ-π4-4=0,求圆C 的半径.解:以极坐标系的极点为平面直角坐标系的原点O ,以极轴为x 轴的正半轴,建立直角坐标系xOy . 圆C 的极坐标方程为ρ2+22ρ⎝⎛⎭⎫22sin θ-22cos θ-4=0,化简,得ρ2+2ρsin θ-2ρcos θ-4=0.由坐标变换公式,得圆C 的直角坐标方程为x 2+y 2-2x +2y -4=0, 即(x -1)2+(y +1)2=6, 所以圆C 的半径为 6.3.考点二]在极坐标系中,直线ρ(sin θ-cos θ)=a 与曲线ρ=2cos θ-4sin θ相交于A ,B 两点,若|AB |=23,求实数a 的值.解:直线的极坐标方程化为直角坐标方程为x -y +a =0,曲线的极坐标方程化为直角坐标方程为(x -1)2+(y +2)2=5,所以圆心C 的坐标为(1,-2),半径r =5,所以圆心C 到直线的距离为|1+2+a |2=r 2-⎝⎛⎭⎫|AB |22=2,解得a =-5或a =-1.故实数a 的值为-5或-1.4.考点一、二](2021·洛阳统考)已知圆O 1和圆O 2的极坐标方程分别为ρ=2,ρ2-22ρcos ⎝⎛⎭⎫θ-π4=2. (1)将圆O 1和圆O 2的极坐标方程化为直角坐标方程; (2)求经过两圆交点的直线的极坐标方程.解:(1)由ρ=2知ρ2=4,由坐标变换公式,得x 2+y 2=4. 由于ρ2-22ρcos ⎝⎛⎭⎫θ-π4=2, 所以ρ2-22ρ⎝⎛⎭⎫cos θcos π4+sin θsin π4=2. 由坐标变换公式, 得x 2+y 2-2x -2y -2=0.(2)将两圆的直角坐标方程相减,得经过两圆交点的直线方程为x +y =1.化为极坐标方程为ρcos θ+ρsin θ=1,即ρsin ⎝⎛⎭⎫θ+π4=22. 全国卷5年真题集中演练——明规律]1.(2022·全国乙卷)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =a cos t ,y =1+a sin t (t 为参数,a >0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ.(1)说明C 1是哪一种曲线,并将C 1的方程化为极坐标方程;(2)直线C 3的极坐标方程为θ=α0,其中α0满足tan α0=2,若曲线C 1与C 2的公共点都在C 3上,求a . 解:(1)消去参数t 得到C 1的一般方程为x 2+(y -1)2=a 2, 则C 1是以(0,1)为圆心,a 为半径的圆.将x =ρcos θ,y =ρsin θ代入C 1的一般方程中,得到C 1的极坐标方程为ρ2-2ρsin θ+1-a 2=0. (2)曲线C 1,C 2的公共点的极坐标满足方程组⎩⎪⎨⎪⎧ρ2-2ρsin θ+1-a 2=0,ρ=4cos θ. 若ρ≠0,由方程组得16cos 2θ-8sin θcos θ+1-a 2=0,由已知tan θ=2,可得16cos 2θ-8sin θcos θ=0, 从而1-a 2=0,解得a =-1(舍去)或a =1.当a =1时,极点也为C 1,C 2的公共点,且在C 3上. 所以a =1.2.(2021·新课标全国卷Ⅰ)在直角坐标系xOy 中,直线C 1:x =-2,圆C 2:(x -1)2+(y -2)2=1,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.(1)求C 1,C 2的极坐标方程;(2)若直线C 3的极坐标方程为θ=π4(ρ∈R),设C 2与C 3的交点为M ,N ,求△C 2MN 的面积.解:(1)由于x =ρcos θ,y =ρsin θ, 所以C 1的极坐标方程为ρcos θ=-2, C 2的极坐标方程为ρ2-2ρcos θ-4ρsin θ+4=0. (2)将θ=π4代入ρ2-2ρcos θ-4ρsin θ+4=0,得ρ2-32ρ+4=0, 解得ρ1=22,ρ2= 2. 故ρ1-ρ2=2,即|MN |= 2. 由于C 2的半径为1, 所以△C 2MN 的面积为12.课时达标检测] 基础送分题——高考就考那几点,练通就能把分捡1.在极坐标系中,已知圆C 经过点P ⎝⎛⎭⎫2,π4,圆心为直线ρsin ⎝⎛⎭⎫θ-π3=-32与极轴的交点,求圆C 的极坐标方程.解:在ρsin ⎝⎛⎭⎫θ-π3=-32中,令θ=0,得ρ=1,所以圆C 的圆心坐标为(1,0). 由于圆C 经过点P ⎝⎛⎭⎫2,π4, 所以圆C 的半径PC = (2)2+12-2×1×2cos π4=1,于是圆C 过极点,所以圆C 的极坐标方程为ρ=2cos θ.2.设M ,N 分别是曲线ρ+2sin θ=0和ρsin ⎝⎛⎭⎫θ+π4=22上的动点,求M ,N 的最小距离. 解:由于M ,N 分别是曲线ρ+2sin θ=0和ρsin ⎝⎛⎭⎫θ+π4=22上的动点,即M ,N 分别是圆x 2+y 2+2y =0和直线x +y -1=0上的动点,要求M ,N 两点间的最小距离,即在直线x +y -1=0上找一点到圆x 2+y 2+2y =0的距离最小,即圆心(0,-1)到直线x +y -1=0的距离减去半径,故最小值为|0-1-1|2-1=2-1.3.在极坐标系中,求直线ρ(3cos θ-sin θ)=2与圆ρ=4sin θ的交点的极坐标. 解:ρ(3cos θ-sin θ)=2化为直角坐标方程为3x -y =2,即y =3x -2. ρ=4sin θ可化为x 2+y 2=4y , 把y =3x -2代入x 2+y 2=4y ,得4x 2-83x +12=0,即x 2-23x +3=0, 所以x =3,y =1.所以直线与圆的交点坐标为(3,1),化为极坐标为⎝⎛⎭⎫2,π6. 4.(2021·山西质检)在极坐标系中,曲线C 的方程为ρ2=31+2sin 2θ,点R ⎝⎛⎭⎫22,π4. (1)以极点为原点,极轴为x 轴的正半轴,建立平面直角坐标系,把曲线C 的极坐标方程化为直角坐标方程,R 点的极坐标化为直角坐标;(2)设P 为曲线C 上一动点,以PR 为对角线的矩形PQRS 的一边垂直于极轴,求矩形PQRS 周长的最小值,及此时P 点的直角坐标.解:(1)曲线C :ρ2=31+2sin 2θ,即ρ2+2ρ2sin 2θ=3,从而ρ2cos 2θ3+ρ2sin 2θ=1. ∵x =ρcos θ,y =ρsin θ,∴曲线C 的直角坐标方程为x 23+y 2=1,点R 的直角坐标为R (2,2). (2)设P (3cos θ,sin θ),依据题意可得|PQ |=2-3cos θ,|QR |=2-sin θ, ∴|PQ |+|QR |=4-2sin ⎝⎛⎭⎫θ+π3, 当θ=π6时,|PQ |+|QR |取最小值2,∴矩形PQRS 周长的最小值为4, 此时点P 的直角坐标为⎝⎛⎭⎫32,12.5.(2021·南京模拟)已知直线l :ρsin ⎝⎛⎭⎫θ-π4=4和圆C :ρ=2k cos ⎝⎛⎭⎫θ+π4(k ≠0),若直线l 上的点到圆C 上的点的最小距离等于2.求实数k 的值并求圆心C 的直角坐标.解:圆C 的极坐标方程可化为ρ=2k cos θ-2k sin θ, 即ρ2=2kρcos θ-2kρsin θ,所以圆C 的直角坐标方程为x 2+y 2-2kx +2ky =0, 即⎝⎛⎭⎫x -22k 2+⎝⎛⎭⎫y +22k 2=k 2, 所以圆心C 的直角坐标为⎝⎛⎭⎫22k ,-22k .直线l 的极坐标方程可化为ρsin θ·22-ρcos θ·22=4,所以直线l 的直角坐标方程为x -y +42=0,所以⎪⎪⎪⎪22k +22k +422-|k |=2.即|k +4|=2+|k |, 两边平方,得|k |=2k +3,所以⎩⎪⎨⎪⎧ k >0,k =2k +3或⎩⎪⎨⎪⎧k <0,-k =2k +3,解得k =-1,故圆心C 的直角坐标为⎝⎛⎭⎫-22,22. 6.已知圆C :x 2+y 2=4,直线l :x +y =2.以O 为极点,x 轴的正半轴为极轴,取相同的单位长度建立极坐标系.(1)将圆C 和直线l 方程化为极坐标方程;(2)P 是l 上的点,射线OP 交圆C 于点R ,又点Q 在OP 上,且满足|OQ |·|OP |=|OR |2,当点P 在l 上移动时,求点Q 轨迹的极坐标方程.解:(1)将x =ρcos θ,y =ρsin θ分别代入圆C 和直线l 的直角坐标方程得其极坐标方程为C :ρ=2,l :ρ(cos θ+sin θ)=2.(2)设P ,Q ,R 的极坐标分别为(ρ1,θ),(ρ,θ),(ρ2,θ),则由|OQ |·|OP |=|OR |2,得ρρ1=ρ22. 又ρ2=2,ρ1=2cos θ+sin θ,所以2ρcos θ+sin θ=4,故点Q 轨迹的极坐标方程为ρ=2(cos θ+sin θ)(ρ≠0).7.(2021·贵州联考)已知在一个极坐标系中点C 的极坐标为⎝⎛⎭⎫2,π3. (1)求出以C 为圆心,半径长为2的圆的极坐标方程(写出解题过程);(2)在直角坐标系中,以圆C 所在极坐标系的极点为原点,极轴为x 轴的正半轴建立直角坐标系,点P 是圆C 上任意一点,Q (5,-3),M 是线段PQ 的中点,当点P 在圆C 上运动时,求点M 的轨迹的一般方程.解:(1)如图,设圆C 上任意一点A (ρ,θ),则∠AOC =θ-π3或π3-θ.由余弦定理得,4+ρ2-4ρcos θ-π3=4,所以圆C 的极坐标方程为ρ=4cos ⎝⎛⎭⎫θ-π3. (2)在直角坐标系中,点C 的坐标为(1,3),可设圆C 上任意一点P (1+2cos α,3+2sin α), 又令M (x ,y ),由Q (5,-3),M 是线段PQ 的中点, 得点M 的轨迹的参数方程为⎩⎪⎨⎪⎧x =6+2cos α2,y =2sin α2(α为参数),即⎩⎪⎨⎪⎧x =3+cos α,y =sin α(α为参数), ∴点M 的轨迹的一般方程为(x -3)2+y 2=1.8.在平面直角坐标系中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =2cos φ,y =sin φ(φ为参数),以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2是圆心在极轴上且经过极点的圆,射线θ=π3与曲线C 2交于点D ⎝⎛⎭⎫2,π3. (1)求曲线C 1的一般方程和曲线C 2的直角坐标方程;(2)已知极坐标系中两点A (ρ1,θ0),B ⎝⎛⎭⎫ρ2,θ0+π2,若A ,B 都在曲线C 1上,求1ρ21+1ρ22的值. 解:(1)∵C 1的参数方程为⎩⎪⎨⎪⎧x =2cos φ,y =sin φ,∴C 1的一般方程为x 24+y 2=1.由题意知曲线C 2的极坐标方程为ρ=2a cos θ(a 为半径), 将D ⎝⎛⎭⎫2,π3 代入,得2=2a ×12, ∴a =2,∴圆C 2的圆心的直角坐标为(2,0),半径为2, ∴C 2的直角坐标方程为(x -2)2+y 2=4.(2)曲线C 1的极坐标方程为ρ2cos 2θ4+ρ2sin 2θ=1,即ρ2=44sin 2θ+cos 2θ. ∴ρ21=44sin 2θ0+cos 2θ0,ρ22=44sin 2⎝⎛⎭⎫θ0+π2+cos 2⎝⎛⎭⎫θ0+π2=4sin 2θ0+4cos 2θ0.∴1ρ21+1ρ22=4sin 2θ0+cos 2θ04+4cos 2θ0+sin 2θ04=54. 其次节 参数方程突破点(一) 参数方程基础联通 抓主干学问的“源”与“流”1.参数方程一般地,在平面直角坐标系中,假如曲线上任意一点的坐标x ,y 都是某个变数t 的函数:⎩⎪⎨⎪⎧x =f (t ),y =g (t ),并且对于t 的每一个允许值,由方程组⎩⎪⎨⎪⎧x =f (t ),y =g (t )所确定的点M (x ,y )都在这条曲线上,那么方程⎩⎪⎨⎪⎧x =f (t ),y =g (t )就本节主要包括2个学问点: 1.参数方程;2.参数方程与极坐标方程的综合问题.叫做这条曲线的参数方程,变数t 叫做参变数,简称参数.相对于参数方程而言,直接给出点的坐标间关系的方程叫做一般方程.2.直线、圆、椭圆的参数方程(1)过点M (x 0,y 0),倾斜角为α的直线l 的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数).(2)圆心在点M 0(x 0,y 0),半径为r 的圆的参数方程为⎩⎪⎨⎪⎧x =x 0+r cos θ,y =y 0+r sin θ(θ为参数).(3)椭圆x 2a 2+y 2b 2=1(a >b >0)的参数方程为⎩⎪⎨⎪⎧x =a cos φ,y =b sin φ(φ为参数).考点贯穿 抓高考命题的“形”与“神”参数方程与一般方程的互化1.参数方程化为一般方程基本思路是消去参数,常用的消参方法有:①代入消元法;②加减消元法;③恒等式(三角的或代数的)消元法;④平方后再加减消元法等.其中代入消元法、加减消元法一般是利用解方程的技巧,三角恒等式消元法常利用公式sin 2θ+cos 2θ=1等.2.一般方程化为参数方程 (1)选择参数的一般原则曲线上任意一点的坐标与参数的关系比较明显且关系相对简洁;当参数取某一值时,可以唯一确定x ,y 的值;(2)具体步骤第一步,引入参数,但要选定合适的参数t ;其次步,确定参数t 与变量x 或y 的一个关系式x =f (t )(或y =φ(t ));第三步,把确定的参数与一个变量的关系式代入一般方程F (x ,y )=0,求得另一关系y =g (t )(或x =ψ(t )),问题得解.例1] 将下列参数方程化为一般方程.(1)⎩⎨⎧x =1t,y =1tt 2-1(t 为参数);(2)⎩⎪⎨⎪⎧x =2+sin 2θ,y =-1+cos 2θ(θ为参数). 解] (1)∵⎝⎛⎭⎫1t 2+⎝⎛⎭⎫1t t 2-12=1, ∴x 2+y 2=1.∵t 2-1≥0,∴t ≥1或t ≤-1.又x =1t ,∴x ≠0. 当t ≥1时,0<x ≤1, 当t ≤-1时,-1≤x <0,∴所求一般方程为x 2+y 2=1,其中⎩⎨⎧0<x ≤1,0≤y <1或⎩⎪⎨⎪⎧-1≤x <0,-1<y ≤0.(2)∵y =-1+cos 2θ=-1+1-2sin 2θ=-2sin 2θ,sin 2θ=x -2, ∴y =-2x +4,∴2x +y -4=0. ∵0≤sin 2θ≤1,∴0≤x -2≤1,∴2≤x ≤3,∴所求的一般方程为2x +y -4=0(2≤x ≤3). 易错提示](1)将曲线的参数方程化为一般方程时务必要留意x ,y 的取值范围,保证消参前后的方程的全都性. (2)将参数方程化为一般方程时,要留意参数的取值范围对一般方程中x ,y 的取值范围的影响.直线与圆锥曲线的参数方程及应用1第一步,把直线和圆锥曲线的参数方程都化为一般方程; 其次步,依据直线与圆锥曲线的位置关系解决问题.2.当直线经过点P (x 0,y 0),且直线的倾斜角为α,求直线与圆锥曲线的交点、弦长问题时,可以把直线的参数方程设成⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数),交点A ,B 对应的参数分别为t 1,t 2,计算时把直线的参数方程代入圆锥曲线的直角坐标方程,求出t 1+t 2,t 1·t 2,得到|AB |=|t 1-t 2|=(t 1+t 2)2-4t 1·t 2.例2] (2021·豫南九校联考)在直角坐标系xOy 中,设倾斜角为α的直线l :⎩⎨⎧x =2+t cos α,y =3+t sin α(t 为参数)与曲线C :⎩⎪⎨⎪⎧x =2cos θ,y =sin θ(θ为参数)相交于不同的两点A ,B .(1)若α=π3,求线段AB 的中点M 的坐标;(2)若|PA |·|PB |=|OP |2,其中P (2,3),求直线l 的斜率. 解] (1)将曲线C 的参数方程化为一般方程是x 24+y 2=1.当α=π3时,设点M 对应的参数为t 0.直线l 的方程为⎩⎨⎧x =2+12t ,y =3+32t(t 为参数),代入曲线C 的一般方程x 24+y 2=1,得13t 2+56t +48=0,设直线l 上的点A ,B 对应参数分别为t 1,t 2. 则t 0=t 1+t 22=-2813,所以点M 的坐标为⎝⎛⎭⎫1213,-313.(2)将⎩⎪⎨⎪⎧x =2+t cos α,y =3+t sin α代入曲线C 的一般方程x 24+y 2=1,得(cos 2α+4sin 2α)t 2+(83sin α+4cos α)t +12=0, 由于|PA |·|PB |=|t 1t 2|=12cos 2α+4sin 2α,|OP |2=7, 所以12cos 2α+4sin 2α=7,得tan 2α=516.由于Δ=32cos α(23sin α-cos α)>0, 故tan α=54.所以直线l 的斜率为54.方法技巧]1.解决直线与圆的参数方程的应用问题时一般是先化为一般方程再依据直线与圆的位置关系来解决问题.2.对于形如⎩⎪⎨⎪⎧x=x 0+at ,y =y 0+bt(t 为参数)的直线的参数方程,当a 2+b 2≠1时,应先化为标准形式后才能利用t 的几何意义解题.1.考点一]将下列参数方程化为一般方程.(1)⎩⎨⎧x =3k1+k 2,y =6k21+k2(k 为参数);(2)⎩⎪⎨⎪⎧x =1-sin 2θ,y =sin θ+cos θ(θ为参数). 解:(1)两式相除,得k =y 2x ,将其代入x =3k1+k 2得x =3·y2x 1+⎝⎛⎭⎫y 2x 2,化简得4x 2+y 2-6y =0,由于y =6k 21+k 2=6-11+k 2,所以0<y <6,所以所求的一般方程是4x 2+y 2-6y =0(0<y <6). (2)由(sin θ+cos θ)2=1+sin 2θ=2-(1-sin 2θ) 得y 2=2-x .又x =1-sin 2θ∈0,2], 得所求的一般方程为y 2=2-x ,x ∈0,2].2.考点二](2021·唐山模拟)已知曲线C 的参数方程为⎩⎪⎨⎪⎧x =6cos θ,y =4sin θ(θ为参数),在同一平面直角坐标系中,将曲线C 上的点按坐标变换⎩⎨⎧x ′=13x ,y ′=14y得到曲线C ′.(1)求曲线C ′的一般方程;(2)若点A 在曲线C ′上,点D (1,3).当点A 在曲线C ′上运动时,求AD 中点P 的轨迹方程.解:(1)将⎩⎪⎨⎪⎧x =6cos θ,y =4sin θ代入⎩⎨⎧x ′=13x ,y ′=14y ,得曲线C ′的参数方程为⎩⎪⎨⎪⎧x ′=2cos θ,y ′=sin θ,∴曲线C ′的一般方程为x 24+y 2=1.(2)设点P (x ,y ),A (x 0,y 0),又D (1,3)且AD 的中点为P ,∴⎩⎪⎨⎪⎧x 0=2x -1,y 0=2y -3.又点A 在曲线C ′上,∴将A 点坐标代入C ′的一般方程x 24+y 2=1,得(2x -1)2+4(2y -3)2=4,∴动点P的轨迹方程为(2x -1)2+4(2y -3)2=4.3.考点二](2021·郑州模拟)将曲线C 1:x 2+y 2=1上全部点的横坐标伸长到原来的2倍(纵坐标不变)得到曲线C 2,A 为C 1与x 轴正半轴的交点,直线l 经过点A 且倾斜角为30°,记l 与曲线C 1的另一个交点为B ,与曲线C 2在第一、三象限的交点分别为C ,D .(1)写出曲线C 2的一般方程及直线l 的参数方程; (2)求|AC |-|BD |.解:(1)由题意可得C 2:x 22+y 2=1,对曲线C 1,令y =0,得x =1,所以l :⎩⎨⎧x =1+32t ,y =12t(t 为参数).(2)将⎩⎨⎧x =1+3t 2,y =12t代入x 22+y 2=1,整理得5t 2+43t -4=0.设点C ,D 对应的参数分别为t 1,t 2,则t 1+t 2=-435,且|AC |=t 1,|AD |=-t 2.又|AB |=2|OA |cos 30°=3,故|AC |-|BD |=|AC |-(|AD |-|AB |)=|AC |-|AD |+|AB |=t 1+t 2+3=35. 4.考点二]设直线l 的参数方程为⎩⎪⎨⎪⎧x =3+t cos α,y =4+t sin α(t 为参数,α为倾斜角),圆C 的参数方程为⎩⎪⎨⎪⎧x =1+2cos θ,y =-1+2sin θ(θ为参数). (1)若直线l 经过圆C 的圆心,求直线l 的斜率;(2)若直线l 与圆C 交于两个不同的点,求直线l 的斜率的取值范围.解:(1)由已知得直线l 经过的定点是P (3,4),而圆C 的圆心是C (1,-1),所以,当直线l 经过圆C 的圆心时,直线l 的斜率为k =52.(2)将圆C 的参数方程⎩⎪⎨⎪⎧x =1+2cos θ,y =-1+2sin θ,化成一般方程为(x -1)2+(y +1)2=4,① 将直线l 的参数方程代入①式,得 t 2+2(2cos α+5sin α)t +25=0.②当直线l 与圆C 交于两个不同的点时,方程②有两个不相等的实根,即Δ=4(2cos α+5sin α)2-100>0, 即20sin αcos α>21cos 2α,两边同除以cos 2α, 由此解得tan α>2120,即直线l 的斜率的取值范围为⎝⎛⎭⎫2120,+∞.突破点(二) 参数方程与极坐标方程的综合问题将极坐标方程与参数方程、一般方程交织在一起,考查极坐标方程与参数方程的综合应用.将各类方程相互转化是求解该类问题的前提.,解决问题时要留意:(1)解题时,易将直线与圆的极坐标方程混淆.要娴熟把握特殊直线、圆的极坐标方程的形式.(2)应用解析法解决实际问题时,要留意选取直角坐标系还是极坐标系,建立极坐标系要留意极点、极轴位置的选择,留意点和极坐标之间的“一对多”关系.(3)求曲线方程,常设曲线上任意一点P (ρ,θ),利用解三角形的学问,列出等量关系式,特殊是正弦、余弦定理的应用.圆的参数方程常和三角恒等变换结合在一起,解决取值范围或最值问题.(4)参数方程和一般方程表示同一个曲线时,要留意其中x ,y 的取值范围,即留意两者的等价性.考点贯穿 抓高考命题的“形”与“神”参数方程与极坐标方程的综合问题典例] (2021·长沙模拟)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =-1+cos α,y =sin α(α为参数),以原点O 为极点,x 轴正半轴为极轴,建立极坐标系,直线l 的极坐标方程为ρ(cos θ+k sin θ)=-2(k 为实数).(1)推断曲线C 1与直线l 的位置关系,并说明理由;(2)若曲线C 1和直线l 相交于A ,B 两点,且|AB |=2,求直线l 的斜率.解] (1)由曲线C 1的参数方程⎩⎪⎨⎪⎧x =-1+cos α,y =sin α可得其一般方程为(x +1)2+y 2=1.由ρ(cos θ+k sin θ)=-2可得直线l 的直角坐标方程为x +ky +2=0. 由于圆心(-1,0)到直线l 的距离d =11+k 2≤1,所以直线与圆相交或相切,当k =0时,d =1,直线l 与曲线C 1相切; 当k ≠0时,d <1,直线l 与曲线C 1相交. (2)由于曲线C 1和直线l 相交于A ,B 两点, 且|AB |=2,故圆心到直线l 的距离d =11+k 2=1-⎝⎛⎭⎫222=22, 解得k =±1,所以直线l 的斜率为±1. 方法技巧]处理极坐标、参数方程综合问题的方法(1)涉及参数方程和极坐标方程的综合题,求解的一般方法是分别化为一般方程和直角坐标方程后求解.当然,还要结合题目本身特点,确定选择何种方程.(2)数形结合的应用,即充分利用参数方程中参数的几何意义,或者利用ρ和θ的几何意义,直接求解,能达到化繁为简的解题目的.1.已知曲线C 的参数方程为⎩⎨⎧x =3+10cos α,y =1+10sin α(α为参数),以直角坐标系原点为极点,x 轴正半轴为极轴建立极坐标系.(1)求曲线C 的极坐标方程,并说明其表示什么轨迹;(2)若直线的极坐标方程为sin θ-cos θ=1ρ,求直线被曲线C 截得的弦长.解:(1)∵曲线C 的参数方程为⎩⎪⎨⎪⎧x =3+10cos α,y =1+10sin α(α为参数),∴曲线C 的一般方程为(x -3)2+(y -1)2=10,①曲线C 表示以(3,1)为圆心,10为半径的圆.将⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ代入①并化简,得ρ=6cos θ+2sin θ, 即曲线C 的极坐标方程为ρ=6cos θ+2sin θ. (2)∵直线的直角坐标方程为y -x =1, ∴圆心C 到直线的距离为d =322, ∴弦长为210-92=22.2.在极坐标系中,圆C 的方程为ρ=2a cos θ(a ≠0),以极点为坐标原点,极轴为x 轴正半轴建立平面直角坐标系,设直线l 的参数方程为⎩⎪⎨⎪⎧x =3t +1,y =4t +3(t 为参数).(1)求圆C 的标准方程和直线l 的一般方程;(2)若直线l 与圆C 恒有公共点,求实数a 的取值范围.解:(1)由ρ=2a cos θ,ρ2=2aρcos θ,又ρ2=x 2+y 2,ρcos θ=x ,所以圆C 的标准方程为(x -a )2+y 2=a 2.由⎩⎪⎨⎪⎧x =3t +1,y =4t +3,得⎩⎪⎨⎪⎧x -13=t ,y -34=t ,因此x -13=y -34,所以直线l 的一般方程为4x -3y +5=0.(2)由于直线l 与圆C 恒有公共点,所以|4a +5|42+(-3)2≤|a |,两边平方得9a 2-40a -25≥0,所以(9a +5)(a-5)≥0,解得a ≤-59或a ≥5,所以a 的取值范围是⎝⎛⎦⎤-∞,-59∪[)5,+∞.全国卷5年真题集中演练——明规律] 1.(2022·全国甲卷)在直角坐标系xOy 中,圆C 的方程为(x +6)2+y 2=25. (1)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(2)直线l 的参数方程是⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数),l 与C 交于A ,B 两点,|AB |=10,求l 的斜率.解:(1)由x =ρcos θ,y =ρsin θ可得圆C 的极坐标方程为ρ2+12ρcos θ+11=0. (2)在(1)中建立的极坐标系中,直线l 的极坐标方程为θ=α(ρ∈R).设A ,B 所对应的极径分别为ρ1,ρ2,将l 的极坐标方程代入C 的极坐标方程得ρ2+12ρcos α+11=0.于是ρ1+ρ2=-12cos α,ρ1ρ2=11. |AB |=|ρ1-ρ2|=(ρ1+ρ2)2-4ρ1ρ2=144cos 2α-44.由|AB |=10得cos 2α=38,tan α=±153.所以直线l 的斜率为153或-153. 2.(2022·全国丙卷)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =3cos α,y =sin α(α为参数).以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为ρsin ⎝⎛⎭⎫θ+π4=2 2. (1)写出C 1的一般方程和C 2的直角坐标方程;(2)设点P 在C 1上,点Q 在C 2上,求|PQ |的最小值及此时P 的直角坐标. 解:(1)C 1的一般方程为x 23+y 2=1,C 2的直角坐标方程为x +y -4=0.(2)由题意,可设点P 的直角坐标为(3cos α,sin α).由于C 2是直线,所以|PQ |的最小值即为P 到C 2的距离d (α)的最小值, d (α)=|3cos α+sin α-4|2=2⎪⎪⎪⎪sin ⎝⎛⎭⎫α+π3-2, 当且仅当α=2k π+π6(k ∈Z)时,d (α)取得最小值,最小值为2,此时P 的直角坐标为⎝⎛⎭⎫32,12. 3.(2021·新课标全国卷Ⅱ)在直角坐标系xOy 中,曲线C 1:⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数,t ≠0),其中0≤α<π.在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=2sin θ,C 3:ρ=23cos θ.(1)求C 2与C 3交点的直角坐标;(2)若C 1与C 2相交于点A ,C 1与C 3相交于点B ,求|AB |的最大值. 解:(1)曲线C 2的直角坐标方程为x 2+y 2-2y =0, 曲线C 3的直角坐标方程为x 2+y 2-23x =0.联立⎩⎪⎨⎪⎧ x 2+y 2-2y =0,x 2+y 2-23x =0,解得⎩⎪⎨⎪⎧x =0,y =0或⎩⎨⎧x =32,y =32.所以C 2与C 3交点的直角坐标为(0,0)和⎝⎛⎭⎫32,32.(2)曲线C 1的极坐标方程为θ=α(ρ∈R ,ρ≠0),其中0≤α<π. 因此A 的极坐标为(2sin α,α),B 的极坐标为(23cos α,α).所以|AB |=|2sin α-23cos α|=4⎪⎪⎪⎪sin ⎝⎛⎭⎫α-π3. 当α=5π6时,|AB |取得最大值,最大值为4.4.(2022·新课标全国卷Ⅰ)已知曲线C :x 24+y 29=1,直线l :⎩⎪⎨⎪⎧x =2+t ,y =2-2t (t 为参数).(1)写出曲线C 的参数方程,直线l 的一般方程;(2)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求|PA |的最大值与最小值.解:(1)曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =3sin θ(θ为参数).直线l 的一般方程为2x +y -6=0.(2)曲线C 上任意一点P (2cos θ,3sin θ)到l 的距离为d =55|4cos θ+3sin θ-6|.则|PA |=d sin 30°=255|5sin(θ+α)-6|,其中α为锐角,且tan α=43.当sin(θ+α)=-1时,|PA |取得最大值,最大值为2255.当sin(θ+α)=1时,|PA |取得最小值,最小值为255.5.(2022·新课标全国卷Ⅱ)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为ρ=2cos θ,θ∈⎣⎡⎦⎤0,π2. (1)求C 的参数方程;(2)设点D 在C 上,C 在D 处的切线与直线l :y =3x +2垂直,依据(1)中你得到的参数方程,确定D 的坐标.解:(1)C 的一般方程为(x -1)2+y 2=1(0≤y ≤1).可得C 的参数方程为⎩⎪⎨⎪⎧x =1+cos t ,y =sin t (t 为参数,0≤t ≤π).(2)设D (1+cos t ,sin t ).由(1)知C 是以G (1,0)为圆心,1为半径的上半圆.由于C 在点D 处的切线与l垂直,所以直线GD 与l 的斜率相同,tan t =3,t =π3.故D 的直角坐标为⎝⎛⎭⎫1+cos π3,sin π3,即⎝⎛⎭⎫32,32.6.(2021·新课标全国卷Ⅰ)已知曲线C 1的参数方程为⎩⎪⎨⎪⎧x =4+5cos t ,y =5+5sin t , (t 为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=2sin θ .(1)把C 1的参数方程化为极坐标方程; (2)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<2π).解:(1)将⎩⎪⎨⎪⎧x =4+5cos t ,y =5+5sin t消去参数t ,化为一般方程(x -4)2+(y -5)2=25,即C 1:x 2+y 2-8x -10y +16=0.将⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ代入x 2+y 2-8x -10y +16=0 得ρ2-8ρcos θ-10ρsin θ+16=0.所以C 1的极坐标方程为ρ2-8ρcos θ-10ρsin θ+16=0. (2)C 2的一般方程为x 2+y 2-2y =0.由⎩⎪⎨⎪⎧ x 2+y 2-8x -10y +16=0,x 2+y 2-2y =0,解得⎩⎪⎨⎪⎧ x =1,y =1,或⎩⎪⎨⎪⎧x =0,y =2.所以C 1与C 2交点的极坐标分别为⎝⎛⎭⎫2,π4,⎝⎛⎭⎫2,π2. 课时达标检测] 基础送分题——高考就考那几点,练通就能把分捡1.(2021·郑州模拟)已知曲线C 1的参数方程为⎩⎨⎧x =-2-32t ,y =12t ,曲线C 2的极坐标方程为ρ=22cos θ-π4,以极点为坐标原点,极轴为x 轴正半轴建立平面直角坐标系. (1)求曲线C 2的直角坐标方程;(2)求曲线C 2上的动点M 到曲线C 1的距离的最大值. 解:(1)ρ=22cos ⎝⎛⎭⎫θ-π4=2(cos θ+sin θ), 即ρ2=2(ρcos θ+ρsin θ),可得x 2+y 2-2x -2y =0, 故C 2的直角坐标方程为(x -1)2+(y -1)2=2.(2)C 1的一般方程为x +3y +2=0,由(1)知曲线C 2是以(1,1)为圆心,以2为半径的圆,且圆心到直线C 1的距离d =|1+3+2|12+(3)2=3+32,所以动点M 到曲线C 1的距离的最大值为3+3+222.2.在极坐标系中,已知三点O (0,0),A ⎝⎛⎭⎫2,π2,B ⎝⎛⎭⎫22,π4. (1)求经过点O ,A ,B 的圆C 1的极坐标方程;(2)以极点为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系,圆C 2的参数方程为⎩⎪⎨⎪⎧x =-1+a cos θ,y =-1+a sin θ(θ是参数),若圆C 1与圆C 2外切,求实数a 的值.解:(1)O (0,0),A ⎝⎛⎭⎫2,π2,B ⎝⎛⎭⎫22,π4对应的直角坐标分别为O (0,0),A (0,2),B (2,2),则过点O ,A ,B 的圆的一般方程为x 2+y 2-2x -2y =0,将⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ代入可求得经过点O ,A ,B 的圆C 1的极坐标方程为ρ=22cos ⎝⎛⎭⎫θ-π4. (2)圆C 2:⎩⎪⎨⎪⎧x =-1+a cos θ,y =-1+a sin θ(θ是参数)对应的一般方程为(x +1)2+(y +1)2=a 2,圆心为(-1,-1),半径为|a |,而圆C 1的圆心为(1,1),半径为2,所以当圆C 1与圆C 2外切时,有2+|a |=(-1-1)2+(-1-1)2,解得a =±2.3.(2021·太原模拟)在平面直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴建立的极坐标系中,直线l 的极坐标方程为θ=π4(ρ∈R),曲线C 的参数方程为⎩⎨⎧x =2cos θ,y =sin θ.(1)写出直线l 的直角坐标方程及曲线C 的一般方程;(2)过点M 且平行于直线l 的直线与曲线C 交于A ,B 两点,若|MA |·|MB |=83,求点M 轨迹的直角坐标方程.解:(1)直线l 的直角坐标方程为y =x ,曲线C 的一般方程为x 22+y 2=1.(2)设点M (x 0,y 0),过点M 的直线为l 1:⎩⎨⎧x =x 0+22t ,y =y 0+22t (t 为参数),由直线l 1与曲线C 相交可得:3t 22+2tx 0+22ty 0+x 20+2y 20-2=0,由|MA |·|MB |=83,得t 1t 2=⎪⎪⎪⎪⎪⎪⎪⎪x 20+2y 20-232=83,即x 20+2y 20=6,x 2。
2020高考数学文科大一轮复习导学案:选修4-4 坐标系与参数方程4.4.1 Word版含答案
姓名,年级:时间:选考部分选修4-4 坐标系与参数方程第一节错误!知识点一平面直角坐标系中的坐标伸缩变换设点P(x,y)是平面直角坐标系中的任意一点,在变换φ:错误!的作用下,点P(x,y)对应到点P′(x′,y′),称φ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.1.(选修4-4P4例题改编)设平面内伸缩变换的坐标表达式为错误!则在这一坐标变换下正弦曲线y=sin x的方程变为y=3sin2x.解析:由已知得错误!代入y=sin x,得错误!y′=sin2x′,即y′=3sin2x′,所以y=sin x的方程变为y=3sin2x。
知识点二极坐标系1.极坐标系的建立:在平面上取一个定点O,叫做极点,从O 点引一条射线Ox,叫做极轴,再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就确定了一个极坐标系.如图,设M是平面内一点,极点O与点M的距离OM叫做点M 的极径,记为ρ,以极轴Ox为始边,射线OM为终边的角叫做点M的极角,记为θ。
有序数对(ρ,θ)叫做点M的极坐标,记作M(ρ,θ).2.极坐标与直角坐标的关系:把直角坐标系的原点作为极点,x轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,设M是平面内任意一点,它的直角坐标是(x,y),极坐标为(ρ,θ),则它们之间的关系为x=ρcosθ,y=ρsinθ.另一种关系为ρ2=x2+y2,tanθ=错误!.2.(选修4-4P11例4改编)点P的直角坐标为(1,-错误!),则点P的极坐标为错误!.解析:因为点P(1,-错误!)在第四象限,与原点的距离为2,且OP与x轴所成的角为-π3,所以点P的极坐标为错误!.3.(选修4-4P15T3)若以直角坐标系的原点为极点,x轴的正半轴为极轴建立极坐标系,则线段y=1-x(0≤x≤1)的极坐标方程为( A )A.ρ=错误!,0≤θ≤错误!B.ρ=错误!,0≤θ≤错误!C.ρ=cosθ+sinθ,0≤θ≤错误!D.ρ=cosθ+sinθ,0≤θ≤错误!解析:∵y=1-x(0≤x≤1),∴ρsinθ=1-ρcosθ(0≤ρcosθ≤1,0≤ρsinθ≤1);∴ρ=错误!错误!.知识点三常见曲线的极坐标方程4.(选修4-4P15T4)在极坐标系中,圆ρ=-2sinθ的圆心的极坐标是( B )A。
高考新课标数学(理)大一轮复习课时作业54圆的方程 Word版含解析
一、选择题.“=”是“方程+-++=表示圆”的( ).充分而不必要条件.必要而不充分条件.充要条件.既不充分也不必要条件解析:方程+-++=表示一个圆,则(-)+->,∴<,又=⇒<,反之不成立,∴“=”是“方程+-++=表示圆”的充分而不必要条件.答案:.点(,-)为圆(-)+=内弦的中点,则的方程为( ).+-=.+-=.--=.--=解析:由题意可知圆心(,),故=-,∴=,∴的方程为+=×(-).即--=.答案:.已知点(-,),(,),点是圆+-=上任意一点,则△面积的最小值是( ).-.+.-解析:圆的标准方程为(-)+=.直线的方程为-+=,圆心(,)到直线的距离==.则点到直线的最短距离为-.又=.∴△的最小值为××=-.答案:.点(,-)与圆+=上任一点连线的中点的轨迹方程是( ).(-)+(+)=.(-)+(+)=.(+)+(-)=.(+)+(-)=解析:设圆上任一点坐标为(,),+=,连线中点坐标为(,),则⇒代入+=中得(-)+(+)=.答案:.已知圆(+)+(-)=上一点到直线--=的距离为,则的最小值为( )..解析:∵圆心(-,)到直线--=的距离为=,∴=-=.答案:.若圆+-++=关于直线=+成轴对称图形,则-的取值范围是( ).(-∞,) .(-∞,).(-,+∞) .(,+∞)解析:将圆的方程变形为(-)+(+)=-,可知,圆心为(,-),且->,即<.因为圆关于直线=+对称,所以圆心在直线=+上,即-=+,解得=-,所以-<.答案:二、填空题.若方程+-++-+=表示圆,则的取值范围是;当半径最大时,圆的方程为.解析:∵原方程可化为(-)+(+)=-+-,∴=-+-=-(-)(-)>,。
高三数学(理)一轮总复习课时跟踪检测(二) 四种命题和充要条件 Word版含解析
课时跟踪检测(二)四种命题和充要条件一抓基础,多练小题做到眼疾手快.“(-)=”是“=”的条件(填“充要”“充分不必要”“必要不充分”“既不充分又不必要”).解析:若(-)=,则=或=,即不一定是=;若=,则一定能推出(-)=.故“(-)=”是“=”的必要不充分条件.答案:必要不充分.(·苏州模拟)已知:<;:--<,则是的条件(填“充要”“充分不必要”“必要不充分”“既不充分又不必要”).解析:由--<,得(-)(+)<,解得-<<;由<得-<<.注意到由-<<不能得-<<,即由不能得;反过来,由-<<可知-<<,即由可得.因此,是的必要不充分条件.答案:必要不充分.原命题:“设,,∈,若>,则>”以及它的逆命题、否命题、逆否命题中,真命题的个数为.解析:当=时,=,所以原命题是错误的;由于原命题与逆否命题的真假一致,所以逆否命题也是错误的;逆命题为“设,,∈,若>,则>”,它是正确的;由于否命题与逆命题的真假一致,所以逆命题与否命题都为真命题.综上所述,真命题有个.答案:.设命题:≤,命题:(-)[-(+)]≤,若是的必要不充分条件,则实数的取值范围是.解析:解不等式≤,得≤≤,故满足命题的集合=.解不等式(-)[-(+)]≤,得≤≤+,故满足命题的集合=[,+].又是的必要不充分条件,则是的真子集,即≤且+≥,解得≤≤,故实数的取值范围是.答案:.(·南通、扬州、泰州、淮安三调)给出下列三个命题:①“>”是“>”的充分不必要条件;②“α>β”是“α< β”的必要不充分条件;③“=”是“函数()=+(∈)为奇函数”的充要条件.其中真命题的序号为.解析:①是充要条件,故①错误;②是既不充分又不必要条件,故②错误;③正确.答案:③二保高考,全练题型做到高考达标.已知复数=(∈,为虚数单位),则“>”是“在复平面内对应的点位于第四象限”的条件(填“充要”“充分不必要”“必要不充分”“既不充分又不必要”).解析:==-(+)=-,若位于第四象限,则>,反之也成立,所以“>”是“在复平面内对应的点位于第四象限”的充要条件.答案:充要.命题“,∈,若+=,则==”的逆否命题是.解析:==的否定为≠或≠;+=的否定为+≠.答案:,∈,若≠或≠,则+≠.(·南京、盐城一模)设向量=( θ,θ),=( θ,),则“∥”是“θ=”的条件(填“充要”“充分不必要”“必要不充分”“既不充分又不必要”).解析:若∥,则θ-θ=,即θ-θθ=,解得θ=或θ=,所以“∥”是“θ=”的必要不充分条件.答案:必要不充分.命题:“若=,则,,成等比数列”,则命题的否命题是(填“真”或“假”)命题.解析:命题的否命题是“若≠,则,,不成等比数列”.答案:假.(·镇江五校联考)若条件:≤,条件:≤,且是的充分不必要条件,则的取值范围是.解析:因为≤,则:-≤≤,:≤,由于是的充分不必要条件,则对应的集合是对应的集合的真子集,所以≥.答案:[,+∞).在命题“若>-,则>”的逆命题、否命题、逆否命题中,假命题的个数是.解析:若=,=,则>-,但<,所以原命题为假命题,则逆否命题也为假命题,若=-,=-,则(-)>(-),但-<,所以逆命题是假命题,则否命题也是假命题.故假命题的个数为.答案:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A.13 B.C.2D.2
解析:由题意知点A(5,4),点B(-1,2),故其中点C(2,3),所以复数的模为,故选B.
答案:B
12.(2013·广州综合测试(二))若1-i(i是虚数单位)是关于x的方程x2+2px+q=0(p、q∈R)的一个解,则p+q=()
A.-3 B.-1 C.1 D.3
解析:将方程的解1-i代入二次方程可得(1-i)2+2p(1-i)+q=0,化简得(2p+q)-(2+2p)i=0,由复数相等解得p=-1,q=2,所以p+q=1,故选C.
答案:D
9.(2013·山西太原模拟(一))复数(i是虚数单位)是纯虚数,则实数a的值为()
A.4 B.-4 C.1 D.-1
解析:==-i,若为纯虚数,则a=4,故选A.
答案:A
10.(2013·湖北八校第二次联考)设x∈R,则“x=1”是“复数z=(x2-1)+(x+1)i为纯虚数”的()
A.充分不必要条件B.必要不充分条件
A.-6 B.6 C.D.
解析:z1·z2=(3-bi)·(1-2i)=(3-2b)-(b+6)i为实数,∴b+6=0,∴b=-6.
答案:A
3.(2012·湖北卷)方程x2+6x+13=0的一个根是(析:Δ=62-4×13=-16,∴x==-3±2i.故选A.
C.充分必要条件D.既不充分也不必要条件
解析:复数z=(x2-1)+(x+1)i为纯虚数,则x2-1=0且x+1≠0,即x=1,所以“x=1”是“复数z为纯虚数”的充要条件,选C.
答案:C
11.(2013·江西师大附中、鹰潭一中高三联考)在复平面内,复数5+4i,-1+2i对应的点分别为A,B.若C为线段AB的中点,则点C对应的复数的模是()
解析:由=1-ni得m=(1-ni)(1+i)=1+n+(1-n)i得m=1+n,1-n=0得m=2,n=1.∴m+ni=2+i,选B.
答案:B
8.(2013·青岛市高三自评试题)复数z满足z(1-i)=2i,则复数z的实部与虚部之和为()
A.-2 B.2 C.1 D.0
解析:z(1-i)=2i⇒z===-1+i.则实部与虚部和为0.
答案:A
4.(2013·青岛市统一质检)i是虚数单位,复数的实部为()
A.2 B.-2 C.1 D.-1
解析:==1+i,实部为1,选C.
答案:C
5.(2013·东北三校第一次联考)在复平面内复数z=对应的点在()
A.第一象限B.第二象限
C.第三象限D.第四象限
解析:z===-+i,在复平面内对应的点为在第二象限,选B.
答案:C
13.(2013·保定市第一次模拟)若复数z=2 013,则ln |z|=()
A.-2 B.0 C.1 D.4
解析:复数z=2 013=i,所以ln|z|=0,故选B.
答案:B
14.(2013·江西八校联考)已知z1=2+i,z2=1-2i,则复数z=-i2 013的模等于()
A.B.2C.D.2
答案:B
6.(2013·潍坊模拟)复数z=的共轭复数=()
A.1+2i B.1-2i C.2+i D.2-i
解析:z===1+2i,则=1-2i,选B.
答案:B
7.(2013·宁波市高三“十校”联考)已知=1-ni,其中m,n∈R,i为虚数单位,则m+ni=()
A.1+2i B.2+i C.1-2i D.2-i
课时作业(二十七)
一、选择题
1.(2012·福建卷)若复数z满足zi=1-i,则z等于()
A.-1-i B.1-i C.-1+i D.1+i
解析:z===-1-i,故选A.
答案:A
2.(2014·河北沧州高三质量监测)已知i是虚数单位,且复数z1=3-bi,z2=1-2i,z1·z2是实数,则实数b的值为()