新人教版九年级数学上册复习讲义:二次函数(知识点,典型例题,随堂练习,课后巩固)(无答案)

合集下载

2024年初中九年级数学上册同步精品讲义(人教版)第09课 二次函数的定义(学生版)

2024年初中九年级数学上册同步精品讲义(人教版)第09课  二次函数的定义(学生版)

第09课 二次函数的定义课程标准1、掌握二次函数的定义;2、根据二次函数的定义确定参数的值;3、会根据实际问题列出相应的二次函数;知识点01 二次函数的概念1、有关概念形如2y ax bx c =++(a ,b,c 是常数,a≠0)的函数为二次函数.其中,x 是自变量,a ,b,c 分别是函数解析式的 、 和 .2、二次函数的解析式必须满足的三个条件 (1)等号右边是 ;(2)自变量的最高次数必须是 ; (3)二次项系数不为 . 3、二次函数的结构特征等号左边是y ,等号右边是关于x 的 次多项式或 次单项式. (1)当b=0时,二次函数为 ;知识精讲目标导航(2)当c=0时,二次函数为 ; (3)当b=0,c=0时,二次函数为 . 【注意】(1)注意二次函数2y ax bx c =++与一元二次方程20ax bx c ++=的异同.(2)在二次函数的概念中,0a ≠是二次函数概念的一部分,若a 为0,则函数2y ax bx c =++就是y bx c =+,这不符合二次函数的概念.(3)二次函数的出客教项系数、一次项系数和常数项包括它们前面的符号,不要漏掉.知识点02 列二次函数解析式的一般步骤例题解释审题某商场销售一批衬衫,平均每天售出20件,每件盈利40元.为减少库存,商场决定降价处理,每件衬衫每降价1元,每天多售出2件.请写出商场每天盈利y(单位:元)与每件衬衫降价x(单位:元)之间的函数解析式. 找出已知量和未知量,分析它们之间的关系找等量关系找到两个未知量之间的关系,用等式表示列方程结合已给或设出的未知量的字母根据等量关系列出函数的解析式注意自变量的取值范围【注意】实际问题中自变量的取值范围的确定(1)二次函数自变量的取值范围一般是全体实数,但是在实际问题中,自变量的取值范围应使实际问题有意义. (2)确定自变量的取值范围时,需正确列出不等式或不等式组.考法01 二次函数的判断【例题1】下列函数中,哪些是二次函数? (1)y=3x —l; (2)232y x =+ ; (3)3232y x x =+ ; (4)2221y x x =-+ ; (5)2()1y x x x =-+ ; (6)2y xx -=+考法02 根据二次函数的概念求字母的值【例题2】已知函数238()226m m y m x x --=+++ 是关于x 的二次函数,求满足条件的m 的值.【方法总结】要确定二次函数中待定字母的值, 需根据二次函数自变量的最高次数是2,二次项系数不为0,列出关于所求字母的方程或不等式(组),解方程或不等式(组),即可确定字母的值.考法03 列二次函数的解析式【例题3】某商场购进一种单价为40元的商品,如果以单价60元出售,那么每天可卖出300个,根据销售经验,每降价1元,每天可多卖出20个,假设每个降价x 元,每天销售y 个,每天获得利润W 元. (1)写出y 与x 之间的函数解析式;能力拓展(2)求出W与x之间的函数解析式(不必写出x的取值范围).考法04 实际问题中根据几何知识列二次函数的解析式【例题4】某校为绿化校园,在一块长为15 m、宽为10 m的矩形空地上建造一个矩形花圃,如图,设计这个花圃的一边靠墙(墙长大于15 m),并在不靠墙的三边留出一条宽相等的小路,设小路的宽为xm,花圃面积为y m2,求y关于x 的函数解析式,并写出函数自变量的取值范围.【方法总结】解决此类问题时,一般利用“数形结合”的思想,在具体解题时,常用的建立等量关系的方法有“面积法”“周长法”“勾股法”。

新人教九年级数学上册第二十二章二次函数复习课件

新人教九年级数学上册第二十二章二次函数复习课件

专题七 综合应用—呈抛物线形状实物的几何探究
例7 跳绳时,绳甩到最高处的形状可近似的看为抛物线,如图, 正在甩绳的甲、乙两名同学拿绳的手间距为4米,距地面均为1米, 丙、丁同学分别站在距甲拿绳的手水平距离1米、2.5米处,绳子 甩到最高处,刚好通过他们的头顶,已知丙同学的身高是1.5米. (1)请你算一算丁同学的身高. 丙 (1,1.5)
A.开口向下,顶点坐标(5,3) B.开口向上,顶点坐标(5,3) C.开口向下,顶点坐标(-5,3) D.开口向上,顶点坐标(-5,3)
2.当a>0, b<0,c>0时,下列图象有可能是抛物线y=ax2+bx+c的是
( A ) y y
y
y
O A
x
O B
x
O
C
x
O
x
D
3.将二次函数y=2x2-1的图象沿y轴向上平移2个单位,所得到的图象
(2)由图象可知当-1<x<3时,函数的图象位于x轴的上方, 所以不等式的解集为-1<x<3; (3)由图象可知,在x轴的右侧,y随着x的增大而减小, ∴y随着x的增大而减小的x的取值范围为x>1; (4)要使得有ax2+bx+c=k两个不相等的实数根,即直线x=k与 二次函数图象有两个交点,∴k的取值范围为k<5.
甲 1m
2.5m 4m 1<s<3

课堂小结
二次函数的 定 义
二次函数的概念 及 图 象 特 征 用数形结合 的方法去研 究和运用
二次函数
二次函数的 图象及性质
二次函数的 应 用
建立二次函数模型, 将实际问题数学化, 运用二次函数知识 解 决 实 际 问 题

九年级数学上册 期末复习 专题2 二次函数课件 新人教版

九年级数学上册 期末复习 专题2 二次函数课件  新人教版

【变式跟进】
1.[2017·泰安]已知二次函数 y=ax2+bx+c 的 y 与 x 的部分对应值如下表:
x … -1 0 1 3 …
y … -3 1 3 1 …
下列结论:①抛物线的开口向下;②其图象的对称轴为 x=1;③当 x<1 时,函数值 y 随 x 的增大而增大;④方程 ax2+bx+c=0 有一个根大于 4.其中
∴y=-x2+2x+3 与 y 轴的交点坐标为(0,3),与 x 轴的交点坐标为(-1,0) 和(3,0),∴③正确;
④∵a=-1<0, ∴当 x>1 时,y 随 x 的增大而减小, ∴④错误. 故正确的结论有①②③三个. 【点悟】 二次函数的性质,常常从对称轴、顶点坐标、最大值(最小值)、 增减性等角度分析.
2.求下列函数的图象的对称轴、顶点坐标及与 x 轴的交点坐标. (1)y=4x2+24x+35; (2)y=-3x2+6x+2; (3)y=x2-x+3; (4)y=2x2+12x+18.
解:(1)∵y=4x2+24x+35=4(x+3)2-1, ∴对称轴是直线 x=-3,顶点坐标是(-3,-1). 解方程 4x2+24x+35=0, 得 x1=-52,x2=-72, 故它与 x 轴的交点坐标是-52,0,-72,0.
轴作轴对称变换,则此时抛物线的解析式为( A )
A.y=x2-2x+2
B.y=x2+2x+2
C.y=x2+2x+4
D.y=x2-2x+4
【解析】抛物线 y=x2+4x+5=(x+2)2+1 的顶点坐标为(-2,1),点(-2,1) 向右平移 1 个单位所得对应点的坐标为(-1,1),而点(-1,1)关于 y 轴对称的对 应点的坐标为(1,1),所以变换后的抛物线的解析式为 y=(x-1)2+1,即 y=x2 -2x+2.

人教新课标版初中九上二次函数复习课(2)ppt课件

人教新课标版初中九上二次函数复习课(2)ppt课件
(1)求该抛物线对应的二次函数解析式;
(2)该公司在经营此款电脑过程中,第几月的利润最大?最 大利润是多少?
(3)若照此经营下去,请你结合所学的知识,对公司在此款 电脑的经营状况(是否亏损?何时亏损?)作预测分析.
解:(1)因为图象过原点,则设函数解析式为 y=ax2+bx,
由图象的点的含义,得a4+a+b2=b=13,24, 解得 a=-1,b=14. 所以 y=-x2+14x. (2)当 x=-2ba,即 x=7 时,利润最大,y=-72+14×7=49(万 元). (3)没有利润时,y=0; 当 y=0,即 0=-x2+14x,得 x=0(舍去)或 x=14,而这时利 润为滑坡状态,所以当第 15 个月,公司亏损.
P
A
D
oB
CM x
பைடு நூலகம்
上,B、C两点在地面OM上,为了筹备材
料,需求出“脚手架”三根木杆AB、AD、
DC的长度之和的最大值是多少?请你帮
忙计算一下.
通过本节课的学习你收获了什么? 作业布置 达标练习
例2、如下页图所示,梯形ABCD中,AB∥DC,∠ABC= 90° , ∠A = 45° , AB = 30 , BC = x , 其 中 15 < x < 30. 作 DE⊥AB于点E,将△ADE沿直线DE折叠,点A落在F处,DF交 BC于点G.
(1)用含有x的代数式表示BF的长;
(2)设四边形DEBG的面积为S,求S与x的函数关系式;
(1)求一次函数的表达式;
(2)若该商场获得利润为W元,试写出利润W与销售单价x 之间的关系式;销售单价定为多少元时,商场可获得最大利润, 最大利润是多少元?
(3)若该商场获得利润不低于500元,试确定销售单价x的 范围.

人教版数学九年级上册 第二十二章《二次函数》章节知识点归纳复习总结

人教版数学九年级上册 第二十二章《二次函数》章节知识点归纳复习总结

人教版数学九年级上学期《二次函数》章节知识点归纳总结一、二次函数概念:1.二次函数的概念:(1)一般地,形如2y ax bx c =++(a b c ,,是常数,a ≠0)的函数,叫做二次函数。

(2)这里需要强调:和一元二次方程类似,二次项系数a ≠0,而b c ,可以为零.二次函数的定义域(x)是全体实数.2. 二次函数 2y ax bx c =++ 的结构特征:(1)等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. (2)a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项.3. 二次函数解析式的几种形式(1)一般式:y=ax 2+bx+c (a ,b ,c 为常数,a ≠0) (2)顶点式:y=a(x-h)2+k [抛物线的顶点P ( h ,k )](3)交点式:y=a(x-x 1)(x-x 2)[仅限于与x 轴有交点A (x 1,0)和 B (x 2,0)的抛物线]其中x 1,x 2是抛物线与x 轴的交点的横坐标,即一元二次方程ax 2+bx+c =0的两个根,a ≠0. x 1,x 2 = (-b ±ac 4b 2-)/2a在三种形式的互相转化中,有如下关系:h= -b / 2a ; k=(4ac-b 2) / 4a ; x 1,x 2 = (-b ±ac 4b 2-) / 2a说明:(1)任何一个二次函数通过配方都可以化为顶点式y=a(x-h)2+k,抛物线的顶点坐标是(h,k);(2) 当h=0时,抛物线y=ax2+k的顶点在y轴上;当k=0时,抛物线a(x-h)2的顶点在x轴上;当h=0且k=0时,抛物线y=ax2的顶点在原点;(3) 如果图像经过原点,并且对称轴是y轴,则设y=ax2;如果对称轴是y轴,但不过原点,则设y=ax2+k4.抛物线的性质(1).抛物线是轴对称图形。

对称轴为直线 x = -b/2a。

对称轴与抛物线唯一的交点为抛物线的顶点P。

九年级数学上册(人教版)复习知识点讲解与练习--二次函数y=ax2+k的图象和性质

九年级数学上册(人教版)复习知识点讲解与练习--二次函数y=ax2+k的图象和性质

九年级数学上册(人教版)复习知识点讲解与练习二次函数y=ax2+k的图象和性质第1课时二次函数y=ax2+k的图象和性质1.抛物线y=-2x2+1的对称轴是( C )A.直线x=12B.直线x=-12C.y轴 D.直线x=22.下列函数中,图象形状、开口方向相同的是( B )①y=-x2;②y=-2x2;③y=12x2-1;④y=x2+2;⑤y=-2x2+3.A.①④ B.②⑤C.②③⑤ D.①②⑤【解析】a决定抛物线的开口方向与形状大小,②⑤中a相同,选B.3.如果将抛物线y=x2+2向下平移1个单位,那么所得新抛物线的表达式是( C ) A.y=(x-1)2+2 B.y=(x+1)2+2C.y=x2+1 D.y=x2+34.[2013·德州]下列函数中,当x>0时,y随x的增大而增大的是( B )A.y=-x+1 B.y=x2-1C.y=1xD.y=-x2+15.抛物线y=-2x2-5的开口向__下__,对称轴是__y轴__,顶点坐标是__(0,-5)__.【解析】根据抛物线y=ax2+c的特征解答即可.6.抛物线y=13x2-4可由抛物线y=13x2沿__y__轴向__下__平移__4__个单位而得到,它的开口向__上__,顶点坐标是__(0,-4)__,对称轴是__y轴__,当__x=0__时,y有最__小__值为__-4__,当__x>0__时,y随x的增大而增大,当__x<0__时,y随x的增大而减小.【解析】抛物线y=13x2-4与y=13x2的形状相同,但位置不同,抛物线y=13x2-4的图象可由抛物线y=13x2的图象沿y轴向下平移4个单位而得到,画出草图回答问题较方便.7.[2013·湛江]抛物线y=x2+1的最小值是__1__.顶点是__(0,1)__.8.(1)填表:x…-2-1012…y=-2x2y=-2x2+1y=-2x2-1(2)在同一直角坐标系中,作出上述三个函数的图象;(3)它们三者的图象有什么异同?它们的开口方向、对称轴、顶点坐标分别是什么?(4)由抛物线y =-2x 2怎样平移得到抛物线y =-2x 2+1与y =-2x 2-1? 解:(1)略 (2)略(3)它们三者图象的形状相同,但位置不同,开口方向都向下,对称轴都为y 轴,顶点不同,分别为(0,0),(0,1),(0,-1);(4)抛物线y =-2x 2+1可由抛物线y =-2x 2向上平移1个单位得到;抛物线y =-2x 2-1可由抛物线y =-2x 2向下平移1个单位得到.9.二次函数y =-12x 2+c 的图象经过点⎝⎛⎭⎪⎫-3,92,与x 轴交于A ,B 两点,且A 点在B 点左侧.(1)求c 的值;(2)求A ,B 两点的坐标.解:(1)∵抛物线经过点⎝⎛⎭⎪⎫-3,92, ∴-12×(-3)2+c =92,∴c =6.(2)∵c =6,∴抛物线为y =-12x 2+6.令y =0,则-12x 2+6=0,解得x 1=23,x 2=-23,∵A 点在B 点左侧,∴A (-23,0),B (23,0).10.如图22-1-12,两条抛物线y1=-12x2+1、y2=-12x2-1与分别经过点(-2,0),(2,0)且平行于y轴的两条平行线围成的阴影部分的面积为( A )图22-1-12A.8B.6C.10D.4【解析】两条抛物线的形状大小、开口方向相同,阴影部分面积等于相邻边长为4和2的长方形面积,即等于8.11.抛物线y=ax2+k与y=-8x2的形状大小,开口方向都相同,且其顶点坐标是(0,-6),则其表达式为____y=-8x2-6____,它是由抛物线y=-8x2向__下__平移__6__个单位得到的.【解析】根据两抛物线的形状大小相同,开口方向相同,可确定a值,再根据顶点坐标(0,-6),可确定k值,从而可判断平移方向.∵抛物线y=ax2+k与y=-8x2的形状大小相同,开口方向也相同,∴a=-8.又∵其顶点坐标为(0,-6),∴k=-6,∴y =-8x 2-6,它是由抛物线y =-8x 2向下平移6个单位得到的. 12.已知函数y =ax 2+c 的图象过点(-2,-7)和点(1,2). (1)求这个函数的关系式; (2)画这个函数的图象;(3)求这个函数的图象与x 轴交点的坐标.【解析】 (1)将两点坐标代入函数的关系式,可得到关于a ,c 的二元一次方程组. (2)列表、描点、连线. (3)求y =0时x 的值.解:(1)∵y =ax 2+c 的图象过(-2,-7),(1,2)两点, ∴⎩⎨⎧4a +c =-7,a +c =2.∴⎩⎨⎧a =-3,c =5.∴y =-3x 2+5. (2)列表:x -2 -112-1 -12 0 12 1 112 2y =-3x 2+5 -7 -1342 4145 4142 -134-7描点、连线:(3)当y =0时,-3x 2+5=0,解得x 1=153,x 2=-153, 故函数图象与x 轴的交点坐标为⎝ ⎛⎭⎪⎫153,0和⎝ ⎛⎭⎪⎫-153,0.13.如图22-1-13(a),有一座抛物线拱桥,当水位在AB 时,水面宽20 m ,这时,拱高(O 点到AB 的距离)为4 m.图22-1-13(1)你能求出图22-1-13(a)的坐标系中抛物线的解析式吗?(2)如果将直角坐标系建在图22-1-13(b)所示位置,抛物线的形状、顶点、解析式相同吗?【解析】 观察抛物线的对称轴和顶点位置是解本题的关键.解:(1)由图象知,抛物线顶点为(0,0),且抛物线过A(-10,-4),B(10,-4),可设y=ax2,把A点或B点坐标代入可得a=-125,所以y=-125x2;(2)由图象可知,抛物线顶点为(0,4),故可设y=ax2+4.又y=ax2+4的图象过A(-10,0),B(10,0),将A点或B点坐标代入可得0=100a+4,解得a=-1 25,所以y=-125x2+4.因为两抛物线解析式的a相同,所以两抛物线形状相同,顶点不同,解析式不同.图22-1-1414.如图22-1-14所示,隧道的截面由抛物线AED和矩形ABCD构成,矩形的长BC 为8 m,宽AB为2 m.以BC所在的直线为x轴,线段BC的中垂线为y轴,建立平面直角坐标系,y轴是抛物线的对称轴,顶点E到坐标原点O的距离为6 m.(1)求抛物线的解析式;(2)如果该隧道内设双行道,现有一辆货运卡车高4.2 m,宽2.4 m,这辆货运卡车能否通过该隧道?通过计算说明.【解析】 (1)抛物线关于y轴对称,顶点为(0,6),可设抛物线的解析式为y=ax2+6,又因为抛物线过(4,2),代入到y=ax2+6中,则可求出a的值;(2)将x=2.4代入到所求的函数解析式中,得到的y值与4.2比较大小,y值比4.2大,则这辆货运卡车能通过该隧道,反之,则不能通过.解:(1)设抛物线的解析式为y=ax2+6,∵抛物线过(4,2)点,∴16a+6=2,∴a=-1 4,∴抛物线的解析式为y=-14x2+6.(2)当x=2.4时,y=-14x2+6=-1.44+6=4.56>4.2,故这辆货运卡车能通过该隧道.图22-1-1515.某水渠的横截面呈抛物线状,水面的宽度为AB(单位:米),现以AB所在直线为x轴,以抛物线的对称轴为y轴建立如图22-1-15所示的平面直角坐标系,设坐标原点为O.已知AB=8米,设抛物线解析式为y=ax2-4.(1)求a的值;(2)点C(-1,m)是抛物线上一点,点C关于原点O的对称点为点D,连接CD,BC,BD,求△BCD的面积.解:(1)∵AB=8,由抛物线的性质可知OB=4,∴B(4,0),把B点坐标代入解析式得:16a-4=0,解得:a=1 4;(2)过点C作CE⊥AB于E,过点D作DF⊥AB于F,∵a=1 4,∴y=14x2-4,令x=-1,∴m=14×(-1)2-4=-154,∴C(-1,-154 ),∵C关于原点对称点为D,∴D 的坐标为(1,154),则CE =DF =154S △BCD =S △BOD +S △BOC =12OB ·DF +12OB ·CE =12×4×154+12×4×154=15,∴△BCD 的面积为15平方米.第2课时二次函数y=a(x-h)2的图象和性质[见A本P16]1.与函数y=2(x-2)2形状相同的抛物线解析式是( D )A.y=1+12x2B.y=(2x+1)2C.y=(x-2)2 D.y=2x22.关于二次函数y=-(x-2)2的图象,下列说法正确的是( D ) A.是中心对称图形B.开口向上C.对称轴是x=-2D.最高点是(2,0)3.抛物线y=(x-1)2的顶点坐标是( A )A.(1,0) B.(-1,0)C.(-2,1) D.(2,-1)4.下列关于抛物线y=4(x-1)2+2的说法中,正确的是( B ) A.开口向下B.对称轴为x=1C.与x轴有两个交点D.顶点坐标为(-1,0)5.二次函数y=2(x-32)2图象的对称轴是直线__x=32__.6.函数:①y=12x-3,②y=-2x(x<0),③y=(1-x)2(x>1),其中y随x的增大而增大的有__①②③__(填序号).解:∵y=12x-3中,k=12>0,∴y随x的增大而增大;∵函数y=-2x中k=-2,∴当x<0时,y随x的增大而增大;∵y=(1-x)2(x>1)中,开口向上,对称轴为x=1,∴当x>1时,y随x的增大而增大,故答案为①②③.7.二次函数y=(x-2)2,当__x<2__时,y随x的增大而减小.8.抛物线y=-23(x+2)2开口__向下__,对称轴为__直线x=-2__,顶点坐标为__(-2,0)__,当x=__-2__时,函数有最__大__值为__0__.9.抛物线y=2(x-2)2与x轴交点A的坐标为__(2,0)__,与y轴交点B的坐标为__(0,8)__,S △AOB =__8__.【解析】 画草图帮助理解题意. 当x =2时,y =0;当x =0时,y =8, S △AOB =12×OA ×OB =12×2×8=8.10.已知:抛物线y =-14(x +1)2.(1)写出抛物线的对称轴; (2)完成下表;x … -7 -31 3… y … -9-1…(3)在下面的坐标系中描点画出抛物线的图象.图22-1-16解:(1)抛物线的对称轴为x =-1. (2)填表如下:x … -7 -5 -3 -1 1 3 5 … y … -9 -4 -1 0 -1 -4 -9 …(3)描点作图如下:11.确定下列函数图象的开口方向及对称轴、顶点坐标.(1)y=2(x+1)2(2)y=-4(x-5)2.解:(1)由y=2(x+1)2可知,二次项系数为2>0,∴抛物线开口向上,对称轴为x=-1,顶点坐标为(-1,0).(2)由y=-4(x-5)2可知,二次项系数为-4<0,∴抛物线开口向下,对称轴为x=5,顶点坐标为(5,0).12.已知二次函数y=-3(x-5)2,写出抛物线的顶点坐标、对称轴、x在什么范围内y随x的增大而减小、x取何值时函数有最值,并写出最值.解:根据二次函数的解析式y=-3(x-5)2,知函数图象的顶点为(5,0),对称轴为x=5;函数y=-3(x-5)2的图象开口向下,对称轴x=5,故当x≥5时,函数值y随x的增大而减小;∵-3<0,∴二次函数的开口向下,当x=5时,二次函数图象在最高点,函数的最大值为0.13.已知抛物线y=a(x-h)2的对称轴为x=-2,与y轴交于点(0,2).(1)求a和h的值;(2)求其关于y轴对称的抛物线的解析式.解:(1)∵对称轴为x=-2,∴h=-2,∵与y轴交于点(0,2),∴a·22=2,∴a=1 2;(2)抛物线关于y轴的对称抛物线的顶点坐标为(2,0),所以,关于y轴对称的抛物线的解析式为y=12(x-2)2.14.(1)求抛物线y=2(x-h)2关于y轴对称的抛物线的函数解析式.(2)若将(1)中的抛物线变为y=a(x-h)2,请直接写出关于y轴对称的抛物线的函数解析式,你还能写出它关于x轴、关于原点对称的新抛物线的函数解析式吗?请尝试研究,并与同伴交流.解:(1)∵抛物线y=2(x-h)2的顶点坐标为(h,0),∴关于y轴对称的抛物线的顶点坐标为(-h,0),∴关于y轴对称的抛物线的函数解析式为y=2(x+h)2;(2)抛物线y=a(x-h)2的顶点坐标为(h,0),∵关于y轴对称的抛物线的顶点坐标为(-h,0),抛物线开口方向不变,∴关于y轴对称的抛物线解析式为y=a(x+h)2;∵关于x轴对称的抛物线的顶点坐标为(h,0),抛物线开口方向改变,∴关于x轴对称的抛物线解析式为y=-a(x-h)2;∵关于原点对称的抛物线的顶点坐标为(-h,0),抛物线开口方向改变,∴关于原点对称的抛物线解析式为y=-a(x+h)2.15.在直角坐标平面内,已知抛物线y =a (x -1)2(a >0)顶点为A ,与y 轴交于点C ,点B 是抛物线上另一点,且横坐标为3,若△ABC 为直角三角形时,求a 的值.图22-1-17解:∵y =a (x -1)2(a >0)的顶点为A ,所以点A 的坐标为(1,0). 由x =0,得y =a ,所以点C 的坐标为(0,a ), 由x =3,得y =4a ,所以点B 的坐标为(3,4a ),所以有⎩⎨⎧AC 2=1+a 2AB 2=4+16a 2BC 2=9+9a2(1)若BC 2=AC 2+AB 2得 9+9a 2=1+a 2+4+16a 2即a 2=12,a =±22,因为a >0,∴a =22;(2)若AB 2=AC 2+BC 2 得4+16a 2=1+a 2+9+9a 2即a2=1,a=±1.∴a>0,∴a=1;(3)若AC2=AB2+BC2得1+a2=4+16a2+9+9a2即a2=-12,无解.综上所述,当△ABC为直角三角形时,a的值为1或2 2 .第3课时二次函数y=a(x-h)2+k的图象和性质[见B本P16]1.抛物线y=2(x-3)2+1的顶点坐标是( A )A.(3,1) B.(3,-1)C.(-3,1) D.(-3,-1)2.对于抛物线y=-12(x+1)2+3,下列结论:①抛物线的开口向下;②对称轴为x=1;③顶点坐标为(-1,3);④x>1时,y随x的增大而减小.其中正确结论的个数为( C ) A.1 B.2C.3 D.4【解析】①∵a=-12<0,∴抛物线的开口向下,正确;②对称轴为直线x=-1,错误;③顶点坐标为(-1,3),正确;④∵x>-1时,y随x的增大而减小∴x>1时,y随x的增大而减小一定正确;综上所述,结论正确的个数是①③④共3个.故选C.3.下列二次函数中,图象以x=2为对称轴,且经过点(0,1)的是( C )A.y=(x-2)2+1 B.y=(x+2)2+1C.y=(x-2)2-3 D.y=(x+2)2-3【解析】设二次函数的解析式为y=a(x-2)2+k,把点(0,1)代入检验.4.如图22-1-18,关于抛物线y=(x-1)2-2,下列说法错误的是( D )图22-1-18A.顶点坐标是(1,-2)B.对称轴是直线x=1C.开口方向向上D.当x>1时,y随x的增大而减小5.将抛物线y=3x2向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( A )A.y=3(x+2)2+3 B.y=3(x-2)2+3C.y=3(x+2)2-3 D.y=3(x-2)2-36.[2013·雅安]将抛物线y=(x-1)2+3向左平移1个单位,再向下平移3个单位后所得抛物线的解析式为( D )A.y=(x-2)2 B.y=(x-2)2+6C.y=x2+6 D.y=x2【解析】根据“左加右减、上加下减”的原则进行解答即可.将抛物线y=(x-1)2+3向左平移1个单位所得抛物线解析式为:y=(x-1+1)2+3,即y=x2+3;再向下平移3个单位为:y=x2+3-3,即y=x2.故选D.7.如图22-1-19,平面直角坐标系中,两条抛物线有相同的对称轴,则下列关系正确的是( A )图22-1-19A.m=n,k>h B.m=n,k<hC.m>n,k=h D.m<n,k=h8.在同一直角坐标系中,画出函数y=-12x2,y=-12x2-1,y=-12(x+1)2-1的图象,并列表比较这三条抛物线的对称轴、顶点坐标.解:列表如下:xy=-12x2y=-12x2-1y=-12(x+1)2-1-4-5.5-3-4.5-5.5-3-2-2-3-1.5-1-0.5-1.5-100-1-1.51-0.5-1.5-32-2-3-5.53-4.5-5.5描点、连线如图:抛物线对称轴顶点坐标y=-12x2,即y=-12(x-0)2+0x=0(0,0)y=-12x2-1,即y=-12(x-0)2+(-1)x=0(0,-1)y=-12(x+1)2-1,即y=-12[x-(-1)]2+(-1)x=-1(-1,-1) 9.已知:抛物线y=(x-1)2-3.(1)写出抛物线的开口方向、对称轴、顶点坐标;(2)当x____________时,y随x的增大而减小,当x____________时,y随x的增大而增大.解:(1)抛物线y=(x-1)2-3,∵a>0,∴抛物线的开口向上,对称轴为x=1,顶点坐标为(1,-3);(2)∵对称轴是x=1∴当x<1时,y随x的增大而减小,当x>1时,y随x的增大而增大.10.已知二次函数图象的顶点坐标为(1,-1),且过原点(0,0),求该函数解析式.解:∵二次函数图象的顶点坐标为(1,-1),∴可设为y=a(x-1)2-1,当x=0时,y=0,∴0=a(0-1)2-1,a=1,所求函数解析式为y=(x-1)2-1.11.二次函数y=x2的图象如图22-1-20所示,请将此图象向右平移1个单位,再向下平移2个单位.(1)画出经过两次平移后所得到的图象,并写出函数的解析式;(2)求经过两次平移后的图象与x轴的交点坐标,指出当x满足什么条件时,函数值大于0?图22-1-20解:(1)画图略.依题意得y=(x-1)2-2=x2-2x+1-2=x2-2x-1,∴平移后图象的解析式为y=x2-2x-1;(2)当y=0时,即x2-2x-1=0,∴(x-1)2=2,∴x-1=±2,∴x1=1-2,x2=1+2,∴平移后的图象与x轴交于两点,坐标分别为(1-2,0)和(1+2,0).由图可知,当x<1-2或x>1+2时,二次函数y=x2-2x-1的函数值大于0.12.如图22-1-21,在平面直角坐标系中,抛物线所表示的函数解析式为y=-2(x -h)2+k,则下列结论正确的是( A )图22-1-21A.h>0,k>0 B.h<0,k>0C.h<0,k<0 D.h>0,k<0【解析】∵抛物线y=-2(x-h)2+k的顶点坐标为(h,k),由图可知,抛物线的顶点坐标在第一象限,∴h>0,k>0.故选A.13.已知二次函数y=a(x-1)2-c的图象如图22-1-22所示,则一次函数y=ax +c的大致图象可能是( A )【解析】根据二次函数开口向上知a>0,根据-c是二次函数顶点坐标的纵坐标,得出c>0,故一次函数y=ax+c的大致图象经过一、二、三象限,故选A.14.把二次函数y=(x-1)2+2的图象绕原点旋转180°后得到的图象的解析式为__y =-(x+1)2-2__.【解析】二次函数y=(x-1)2+2顶点坐标为(1,2),开口向上,绕原点旋转180°后得到的二次函数图象的顶点坐标为(-1,-2),开口向下,所以旋转后的新函数图象的解析式为y =-(x +1)2-2.15.二次函数y =-(x -2)2+94的图象与x 轴围成的封闭区域内(包括边界),横、纵坐标都是整数的点有__7__个(提示:必要时可利用备用图22-1-23画出图象来分析).图22-1-23【解析】 令-(x -2)2+94=0,解得x 1=12,x 2=72,抛物线与x 轴的交点坐标为⎝ ⎛⎭⎪⎫12,0,⎝ ⎛⎭⎪⎫72,0,顶点为⎝ ⎛⎭⎪⎫2,94,画出图象,图象与x 轴围成的封闭区域内横、纵坐标都是整数的点为(1,0),(2,0),(3,0),(1,1)(2,1),(3,1),(2,2)共7个.16.已知抛物线y =a (x -3)2+2经过点(1,-2). (1)求a 的值;(2)若点A (m ,y 1),B (n ,y 2)(m <n <3)都在该抛物线上,试比较y 1与y 2的大小. 解:(1)∵抛物线y =a (x -3)2+2经过点(1,-2) ∴a (1-3)2+2=-2 ∴a =-1.(2)解法一:由(1)得a =-1<0,抛物线的开口向下 在对称轴x = 3的左侧,y 随x 的增大而增大∵m<n<3∴y1<y2解法二:由(1)得y=-(x-3)2+2∴当x=m时,y1=-(m-3)2+2当x=n时,y2=-(n-3)2+2y-y2=(n-3)2-(m-3)21=(n-m)(m+n-6)∵m<n<3∴n-m>0,m+n<6,即m+n-6<0∴(n-m)(m+n-6)<0∴y1<y217.如图22-1-24,二次函数y=(x-2)2+m的图象与y轴交于点C,点B是点C 关于该二次函数图象的对称轴对称的点.已知一次函数=kx+b的图象经过该二次函数图象上的点A(1,0)及点B.(1)求二次函数与一次函数的解析式;(2)根据图象,写出满足kx+b≥(x-2)2+m的x的取值范围.图22-1-24解:(1)由题意,得(1-2)2+m =0. 解得m =-1,∴二次函数的解析式是y =(x -2)2-1. 当x =0时,y =(0-2)2-1=3, ∴C (0,3),∵点B 与C 关于x =2对称, ∴B (4,3),于是有⎩⎨⎧0=k +b ,3=4k +b ,解得⎩⎨⎧k =1,b =-1,∴一次函数的解析式是y =x -1. (2)x 的取值范围是1≤x ≤4.。

(word完整版)九年级上册数学二次函数知识点汇总,推荐文档

点新人教版九年级上二次函数知识点总结知识点一:二次函数的定义1. 二次函数的定义:一般地,形如 y = ax 2 + bx + c ( a ,, b c 是常数, a ≠ 0 )的函数,叫做二次函数. 其中 a 是二次项系数, b 是一次项系数, c 是常数项.知识点二:二次函数的图象与性质⇒⇒ 2. 二次函数 y = a (x - h )2+ k 的图象与性质(1) 二次函数基本形式 y = ax 2 的图象与性质:a 的绝对值越大,抛物线的开口越小(2) y = ax 2 + c 的图象与性质:上加下减抛物线的三要素:开口、对称轴、顶(3)y =a (x -h)2 的图象与性质:左加右减⎝⎭ ⎝ ⎭(4) 二次函数 y = a (x - h )2+ k 的图象与性质3. 二次函数 y = ax 2 + bx + c 的图像与性质b⎛ b 4ac - b 2 ⎪⎫ . (1)当 a > 0 时,抛物线开口向上,对称轴为 x = - 2a ,顶点坐标为 - 2a, 4a当 x < - b 时, y 随 x 的增大而减小;当 x > - b 时, y 随 x 的增大而增大;当 x = - b时,2a 2a 2a4ac - b 2y 有最小值 .4ab⎛ b 4ac - b 2 ⎪⎫. (2)当 a < 0 时,抛物线开口向下,对称轴为 x = - 2a ,顶点坐标为 - 2a, 4a当 x < - b 时, y 随 x 的增大而增大;当 x > - b时, y 随 x 的增大而减小;当 x = - b 时,2a 2a2a 4ac - b 2y 有最大值 .4ab4. 二次函数常见方法指导(1) 二次函数 y = ax 2 + bx + c 图象的画法①画精确图 五点绘图法(列表-描点-连线)利用配方法将二次函数 y = ax 2 + bx + c 化为顶点式 y = a (x - h )2 + k ,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.②画草图 抓住以下几点:开口方向,对称轴,与 y 轴的交点,顶点. (2) 二次函数图象的平移 平移步骤:① 将抛物线解析式转化成顶点式 y = a (x - h )2+ k ,确定其顶点坐标(h , ② 可以由抛物线 ax 2 经过适当的平移得到具体平移方法如下:k );【【(k >0)【【【【(k <0)【【【 |k |【【【【 【( h >0)【【【( h <0【【 【 |k|【【【【 【( h >0)【【【( h <0) 【 【 |k|【【【【 【( k >0)【【【( k <0)【 【 【 |k |【【【【 【( h >0)【【【( h <0)【 【 【 |k|【【【y=a (x-h )2【【(k >0)【【【(k <0)【【【 |k |【【【平移规律:概括成八个字“左加右减,上加下减”.(3) 用待定系数法求二次函数的解析式y=a (x-h )2+k①一般式: .已知图象上三点或三对 、 的值,通常选择一般式.②顶点式:.已知图象的顶点或对称轴,通常选择顶点式.③交点式:.已知图象与 轴的交点坐标 、 ,通常选择交点式.(4) 求抛物线的顶点、对称轴的方法①公式法: y = ax 2 + bx + c = ⎛ +b⎫2 4ac - b 2 b 4ac - b 2a x⎪ + ,∴顶点是(- , ),对称轴是直线 x = - .2a⎝ 2a ⎭4a 2a 4a ②配方法:运用配方的方法,将抛物线的解析式化为 y = a (x - h )2+ k 的形式,得到顶点为( h ,k ),对称轴是直线 x = h .y=ax 2y=ax 2+k③运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.(5)抛物线y =ax 2 +bx +c 中,a, b, c 的作用① a 决定开口方向及开口大小,这与y =ax 2 中的a 完全一样.② b 和a 共同决定抛物线对称轴的位置由于抛物线y =ax 2 +bx +c 的对称轴是直线x =-b,故2a如果b = 0 时,对称轴为y 轴;b如果> 0 (即a 、b 同号)时,对称轴在y 轴左侧;a b如果< 0 (即a 、b 异号)时,对称轴在y 轴右侧.a③ c 的大小决定抛物线y =ax 2 +bx +c 与y 轴交点的位置当x=0时,y =c ,所以抛物线y =ax 2+bx +c 与y轴有且只有一个交点(0,c ),故如果c = 0 ,抛物线经过原点;如果c > 0 ,与y 轴交于正半轴;如果c < 0 ,与y 轴交于负半轴.知识点三:二次函数与一元二次方程的关系5.函数y =ax 2 +bx +c ,当y = 0 时,得到一元二次方程ax2 +bx +c = 0 ,那么一元二次方程的解就是二次函数的图象与x 轴交点的横坐标,因此二次函数图象与x 轴的交点情况决定一元二次方程根的情况.(1)当二次函数的图象与x 轴有两个交点,这时,则方程有两个不相等实根;(2)当二次函数的图象与x 轴有且只有一个交点,这时,则方程有两个相等实根;(3)当二次函数的图象与x 轴没有交点,这时,则方程没有实根.通过下面表格可以直观地观察到二次函数图象和一元二次方程的关系:⎩的图象的解方程有两个不等实数解方程有两个相等实数解方程没有实数解6. 拓展:关于直线与抛物线的交点知识(1) y 轴与抛物线 y = ax 2 + bx + c 得交点为(0, c ) .(2)与 y 轴平行的直线 x = h 与抛物线 y = ax 2 + bx + c 有且只有一个交点( h ,ah 2 + bh + c ).(3) 抛物线与 x 轴的交点二次函数 y = ax 2 + bx + c 的图像与 x 轴的两个交点的横坐标 x 1 、 x 2 ,是对应一元二次方程 ax 2 + bx + c = 0 的两个实数根.抛物线与 x 轴的交点情况可以由对应的一元二次方程的根的判别式判定:①有两个交点⇔ ∆ > 0 ⇔ 抛物线与 x 轴相交;②有一个交点(顶点在 x 轴上) ⇔ ∆ = 0 ⇔ 抛物线与 x 轴相切; ③没有交点⇔ ∆ < 0 ⇔ 抛物线与 x 轴相离. (4)平行于 x 轴的直线与抛物线的交点同(3)一样可能有 0 个交点、1 个交点、2 个交点.当有 2 个交点时,两交点的纵坐标相等,设纵坐标为 k ,则横坐标是 ax 2 + bx + c = k 的两个实数根.(5)一次函数 y = kx + n (k ≠ 0)的图像l 与二次函数 y = ax 2 + bx + c (a ≠ 0)的图像⎧ y = kx + nG 的交点,由方程组⎨ y = ax 2+ bx + c的解的数目来确定: ①方程组有两组不同的解时⇔ l 与G 有两个交点;( x + x ) - 4x x 21 2 1 2⎛ - ⎪ - b ⎫24c ⎝ a ⎭ ab 2 - 4ac a ( x - x )21 2 ②方程组只有一组解时⇔ l 与G 只有一个交点; ③方程组无解时⇔ l 与G 没有交点.(6)抛物线与 x 轴两交点之间的距离:若抛物线 y = ax 2 + bx + c 与 x 轴两交点为A (x ,0),B (x ,0),由于 x 、 x 是方程 ax 2 + bx + c = 0 的两个根,故1212x + x = - b , x ⋅ x = c 1 2a 1 2 aAB = x 1 - x 2 == = = =知识点四:利用二次函数解决实际问题7. 利用二次函数解决实际问题,要建立数学模型,即把实际问题转化为二次函数问题,利用题中存在的公式、内含的规律等相等关系,建立函数关系式,再利用函数的图象及性 质去研究问题.在研究实际问题时要注意自变量的取值范围应具有实际意义.利用二次函数解决实际问题的一般步骤是:(1) 建立适当的平面直角坐标系;(2) 把实际问题中的一些数据与点的坐标联系起来;(3)用待定系数法求出抛物线的关系式;(4)利用二次函数的图象及其性质去分析问题、解决问题.∆a“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。

九年级数学上册二次函数讲义(最新整理)

初三数学 二次函数讲义一、二次函数概念:1.二次函数的概念:一般地,形如(是常数,)的函数,叫做二次函数。

2y ax bx c =++a b c 何何0a ≠ 这里需要强调:和一元二次方程类似,二次项系数,而可以为零.二次函数的定义域是全体0a ≠b c 何实数.2. 二次函数的结构特征:2y ax bx c =++⑴ 等号左边是函数,右边是关于自变量的二次式,的最高次数是2.x x ⑵ 是常数,是二次项系数,是一次项系数,是常数项.a b c 何何a b c 二、二次函数的基本形式1. 二次函数基本形式:的性质:2y ax =a 的绝对值越大,抛物线的开口越小。

2. 2y ax c=+的性质:上加下减。

3.()2y a x h =-的性质:左加右减。

的符号a 开口方向顶点坐标对称轴性质a >向上()00何轴y 时,随的增大而增大;时,0x >y x 0x <y随的增大而减小;时,有最小值.x 0x =y 00a <向下()00何轴y 时,随的增大而减小;时,0x >y x 0x <y随的增大而增大;时,有最大值.x 0x =y 0的符号a 开口方向顶点坐标对称轴性质a >向上()0c 何轴y 时,随的增大而增大;时,0x >y x 0x <y随的增大而减小;时,有最小值.x 0x =y c 0a <向下()0c 何轴y 时,随的增大而减小;时,0x >y x 0x <y随的增大而增大;时,有最大值.x 0x =y c 的符号a 开口方向顶点坐标对称轴性质4. 的性质:()2y a x h k =-+三、二次函数图象的平移1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式,确定其顶点坐标;()2y a x h k =-+()h k 何⑵ 保持抛物线的形状不变,将其顶点平移到处,具体平移方法如下:2y ax =()h k何2. 平移规律在原有函数的基础上“值正右移,负左移;值正上移,负下移”.h k 概括成八个字“左加右减,上加下减”. 方法二:⑴沿轴平移:向上(下)平移个单位,变成c bx ax y ++=2y m c bx ax y ++=2(或)m c bx ax y +++=2m c bx ax y -++=20a >向上()0h 何X=h时,随的增大而增大;时,x h >y x x h <y随的增大而减小;时,有最小值.x x h =y 00a <向下()0h 何X=h时,随的增大而减小;时,x h >y x x h <y随的增大而增大;时,有最大值.x x h =y 0的符号a 开口方向顶点坐标对称轴性质a >向上()h k 何X=h时,随的增大而增大;时,x h >y x x h <y随的增大而减小;时,有最小值.x x h =y k 0a <向下()h k 何X=h时,随的增大而减小;时,x h >y x x h <y随的增大而增大;时,有最大值.x x h =y k⑵沿轴平移:向左(右)平移个单位,变成c bx ax y ++=2m c bx ax y ++=2(或)c m x b m x a y ++++=)()(2c m x b m x a y +-+-=)()(2四、二次函数与的比较()2y a x h k =-+2y ax bx c =++从解析式上看,与是两种不同的表达形式,后者通过配方可以得到前()2y a x h k =-+2y ax bx c =++者,即,其中.22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭2424b ac b h k a a -=-=何五、二次函数图象的画法2y ax bx c =++五点绘图法:利用配方法将二次函数化为顶点式,确定其开口方向、2y ax bx c =++2()y a x h k =-+对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点、以及关于对称轴对称的点、与轴的交点,(若与()0c 何()0c 何()2h c ,x ()10x 何()20x 何x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与轴的交点,与轴的交点.x y 六、二次函数的性质2y ax bx c =++ 1. 当时,抛物线开口向上,对称轴为,顶点坐标为.0a >2bx a =-2424b ac b a a ⎛⎫-- ⎪⎝⎭何当时,随的增大而减小;当时,随的增大而增大;当时,有最小2b x a <-y x 2b x a >-y x 2bx a=-y 值.244ac b a- 2. 当时,抛物线开口向下,对称轴为,顶点坐标为.当时,0a <2b x a =-2424b ac b a a ⎛⎫-- ⎪⎝⎭何2bx a <-y 随的增大而增大;当时,随的增大而减小;当时,有最大值.x 2b x a >-y x 2bx a=-y 244ac b a -七、二次函数解析式的表示方法1. 一般式:(,,为常数,);2y ax bx c =++a b c 0a ≠2. 顶点式:(,,为常数,);2()y a x h k =-+a h k 0a ≠3. 两根式:(,,是抛物线与轴两交点的横坐标).12()()y a x x x x =--0a ≠1x 2x x 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与轴有交点,即时,抛物线的解析式才可以用交点式表示.二次函数解析式x 240b ac -≥的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数中,作为二次项系数,显然.2y ax bx c =++a 0a ≠ ⑴ 当时,抛物线开口向上,的值越大,开口越小,反之的值越小,开口越大;0a >a a⑵ 当时,抛物线开口向下,的值越小,开口越小,反之的值越大,开口越大.0a <a a 总结起来,决定了抛物线开口的大小和方向,的正负决定开口方向,的大小决定开口的大a a a 小.2. 一次项系数b在二次项系数确定的前提下,决定了抛物线的对称轴.a b ⑴ 在的前提下,0a >当时,,即抛物线的对称轴在轴左侧;0b >02ba-<y 当时,,即抛物线的对称轴就是轴;0b =02ba-=y 当时,,即抛物线对称轴在轴的右侧.0b <02ba->y ⑵ 在的前提下,结论刚好与上述相反,即0a <当时,,即抛物线的对称轴在轴右侧;0b >02ba->y 当时,,即抛物线的对称轴就是轴;0b =02ba-=y 当时,,即抛物线对称轴在轴的左侧.0b <02ba-<y 总结起来,在确定的前提下,决定了抛物线对称轴的位置.a b 的符号的判定:对称轴在轴左边则,在轴的右侧则,概括的说就是“左ab abx 2-=y 0>ab y 0<ab 同右异”总结:3. 常数项c ⑴ 当时,抛物线与轴的交点在轴上方,即抛物线与轴交点的纵坐标为正;0c >y x y ⑵ 当时,抛物线与轴的交点为坐标原点,即抛物线与轴交点的纵坐标为;0c =y y 0 ⑶ 当时,抛物线与轴的交点在轴下方,即抛物线与轴交点的纵坐标为负.0c <y x y总结起来,决定了抛物线与轴交点的位置.c y 总之,只要都确定,那么这条抛物线就是唯一确定的.a b c 何何二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与轴的两个交点的横坐标,一般选用两根式;x4. 已知抛物线上纵坐标相同的两点,常选用顶点式.九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于轴对称x关于轴对称后,得到的解析式是;2y ax bx c =++x 2y ax bx c =---关于轴对称后,得到的解析式是;()2y a x h k =-+x ()2y a x h k =--- 2. 关于轴对称y关于轴对称后,得到的解析式是;2y ax bx c =++y 2y ax bx c =-+关于轴对称后,得到的解析式是;()2y a x h k =-+y ()2y a x h k =++ 3. 关于原点对称 关于原点对称后,得到的解析式是;2y ax bx c =++2y ax bx c =-+-关于原点对称后,得到的解析式是;()2y a x h k =-+()2y a x h k =-+- 4. 关于顶点对称(即:抛物线绕顶点旋转180°)关于顶点对称后,得到的解析式是;2y ax bx c =++222b y ax bx c a=--+-关于顶点对称后,得到的解析式是.()2y a x h k =-+()2y a x h k =--+ 5. 关于点对称()m n 何关于点对称后,得到的解析式是()2y a x h k =-+()m n 何()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此永远不变.求a 抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与轴交点情况):x 一元二次方程是二次函数当函数值时的特殊情况.20ax bx c ++=2y ax bx c =++0y =图象与轴的交点个数:x① 当时,图象与轴交于两点,其中的是一元二次240b ac ∆=->x ()()1200A x B x ,,,12()x x ≠12x x ,方程的两根.这两点间的距离.()200ax bx c a ++=≠2AB x =-② 当时,图象与轴只有一个交点; 0∆=x ③ 当时,图象与轴没有交点.0∆<x 当时,图象落在轴的上方,无论为任何实数,都有;1'0a >x x 0y > 当时,图象落在轴的下方,无论为任何实数,都有.2'0a <x x 0y <2. 抛物线的图象与轴一定相交,交点坐标为,;2y ax bx c =++y (0)c 3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与轴的交点坐标,需转化为一元二次方程;x ⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数中,,的符号,或由二次函数中,,的符号2y ax bx c =++a b c a b c 判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与轴的一x 个交点坐标,可由对称性求出另一个交点坐标.⑸ 与二次函数有关的还有二次三项式,二次三项式本身就是所含字母的二次函数;2(0)ax bx c a ++≠x 下面以时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:0a >二次函数图像参考:∆>抛物线与轴有x 两个交点二次三项式的值可正、可零、可负一元二次方程有两个不相等实根0∆=抛物线与轴只x 有一个交点二次三项式的值为非负一元二次方程有两个相等的实数根0∆<抛物线与轴无x 交点二次三项式的值恒为正一元二次方程无实数根.十一、函数的应用二次函数应用⎧⎪⎨⎪⎩何何何何何何何何何何何何何何何何何何何二次函数考查重点与常见题型1.考查二次函数的定义、性质,有关试题常出现在选择题中,如:已知以为自变量的二次函数的图像经过原点, 则的值是x 2)2(22--+-=m m x m y m 2.综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题,如:如图,如果函数的图像在第一、二、三象限内,那么函数的图像大致是b kx y +=12-+=bx kx y ( )3.考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如:已知一条抛物线经过(0,3),(4,6)两点,对称轴为,求这条抛物线的解析式。

初三数学讲义(二次函数)(含答案)

初三数学讲义(二次函数)(含答案)(含答案) 知识梳理:知识梳理:一、二次函数概念:二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ¹)的函数,叫做二次函数。

这里需要强调:这里需要强调:和一元二次方程类似,二次项系数0a ¹,而b c ,可以为零.二次函数的定义域是全体实数.次函数的定义域是全体实数.二、二次函数的基本形式1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ¹);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ¹);3. 两根式:12()()y a x x x x =--(0a ¹,1x ,2x 是抛物线与x 轴两交点的横坐标). 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -³时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化. 三、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ¹.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大;大;⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小.定开口的大小.2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴.决定了抛物线的对称轴. ⑴ 在0a >的前提下,的前提下,当0b >时,02b a-<,即抛物线的对称轴在y 轴左侧;轴左侧;当0b =时,02b a -=,即抛物线的对称轴就是y 轴;轴;当0b <时,02b a->,即抛物线对称轴在y 轴的右侧.轴的右侧.⑵ 在0a <的前提下,结论刚好与上述相反,即的前提下,结论刚好与上述相反,即 当0b >时,02b a ->,即抛物线的对称轴在y 轴右侧;轴右侧;当0b =时,02b a -=,即抛物线的对称轴就是y 轴;轴;当0b <时,02b a-<,即抛物线对称轴在y 轴的左侧.轴的左侧.总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.决定了抛物线对称轴的位置.ab 的符号的判定:对称轴ab x 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异”概括的说就是“左同右异” 3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置.轴交点的位置. 二次函数解析式的确定:三个独立条件 四、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2b x a =-,顶点坐标为2424b ac b a a æö--ç÷èø,. 当2bx a<-时,y 随x 的增大而减小;当2b x a>-时,y 随x 的增大而增大;当2b x a=-时,y 有最小值244ac b a-.2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a æö--ç÷èø,.当2bx a<-时,y 随x 的增大而增大;当2b x a>-时,y 随x 的增大而减小;当2b x a=-时,y有最大值244ac b a-.注意:当定义域是m x n ££时,要判断对称轴是否在定义域内时,要判断对称轴是否在定义域内..若对称轴在定义域内时,最值就在顶点处取;否则就在端点处取最值域内时,最值就在顶点处取;否则就在端点处取最值. . 五、二次函数图象的平移1. 平移步骤:平移步骤:方法一:⑴方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:处,具体平移方法如下:向右(h >0)【或左(h <0)】平移 |k |k|个单位向上(k >0)【或下(k <0)】平移|k |个单位向右(h >0)【或左(h <0)】平移|k|个单位向右(h >0)【或左(h <0)】平移|k|个单位向上(k >0)【或下(k <0)】平移|k |个单位向上(k >0)【或向下(k <0)】平移|k |个单位y=a (x-h )2+ky=a (x-h )2y=ax 2+ky=ax 22. 平移规律平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”.六、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:轴的交点个数:① 当240b ac D =->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ¹,其中的12x x ,是一元二次方程()200ax bx c a ++=¹的两根.这两点间的距离2214b acAB x x a-=-=. ② 当0D =时,图象与x 轴只有一个交点;轴只有一个交点; ③ 当0D <时,图象与x 轴没有交点. 1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2' 当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <.2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ; 3. 二次函数常用解题方法总结:二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式; ⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标. ⑸ 与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++¹本身就是所含字母x 的二次函数;下面以0a >时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:内在联系:0D > 抛物线与x 轴有两个交点两个交点 二次三项式的值可正、可零、可负可零、可负一元二次方程有两个不相等实根一元二次方程有两个不相等实根 0D =抛物线与x 轴只有一个交点有一个交点二次三项式的值为非负二次三项式的值为非负 一元二次方程有两个相等的实数根一元二次方程有两个相等的实数根 0D < 抛物线与x 轴无交点交点二次三项式的值恒为正二次三项式的值恒为正 一元二次方程无实数根. 图1 重要题型: 1.1.基本问题:基本问题:1. 已知函数26(2)my m x-=-是二次函数,则m 值为(值为( )A.2 B. ±2C. ﹣ 2 D 6±2. 二次函数c bx ax y ++=2的图象如图1所示,则下列结论正确的是(所示,则下列结论正确的是( ) A .a b c ><>000,, B .a b c <<>000,, C .a b c <><000,, D .a b c <>>000,,3. 抛物线()223y x =+-可以由抛物线2y x =平移得到,则下列平移过程正确的是( ) A.先向左平移2个单位,再向上平移3个单位个单位 B.先向左平移2个单位,再向下平移3个单位个单位 C.先向右平移2个单位,再向下平移3个单位个单位 D.先向右平移2个单位,再向上平移3个单位个单位 4. 已知二次函数223y x x =--.当y <0时,自变量x 的取值范围是(围是( ). A .-1<x <3 B .x <-1 C . x >3 D .x <-1或x >3 5. 已知抛物线y=ax 2﹣2x+1与x 轴没有交点,那么该抛物线的顶点所在的象限是(轴没有交点,那么该抛物线的顶点所在的象限是() A .第四象限.第四象限 B .第三象限.第三象限 C .第二象限.第二象限 D .第一象限.第一象限6. 若二次函数2()1y x m =--.当x ≤l 时,y 随x 的增大而减小,则m 的取值范围是( ) A .m =l B .m >l C .m ≥l D .m ≤l 7. 已知二次函数y=﹣x 22﹣7x+,若自变量x 分别取x 1,x 2,x 3,且0<x 1<x 2<x 3,则对应的函数值y 1,y 2,y 3的大小关系正确的是________________.8.二次函数y=ax 2+bx+c +bx+c(a≠0)中的(a≠0)中的x 与y 的部分对应值如下表:的部分对应值如下表: x ﹣3 ﹣2 ﹣1 0 1 2 3 4 5 y125﹣3 ﹣4 ﹣ 3 0512给出了结论:给出了结论:(1)二次函数y=ax 2+bx+c 有最小值,最小值为﹣有最小值,最小值为﹣33; (2)当时,时,y y <0;(3)二次函数y=ax 2+bx+c 的图象与x 轴有两个交点,且它们分别在y 轴两侧. 则其中正确结论的个数是(则其中正确结论的个数是( )A .1个B B..2个C C.. 3个D D..0个9.9.已知二次函数已知二次函数y =ax2+bx bx++c 图象的一部分如图,图象的一部分如图, 则a 的取值范围是的取值范围是______________________________..10. 二次函数y =ax 2+bx +1(a ≠0)的图象的顶点在第一象限,且过点(﹣1,0).设t =a +b +1,则t 值的变化范围是(值的变化范围是( )A .0<t <1B .0<t <2C .1<t <2D .﹣1<t <0 11. 已知二次函数2y ax bx c =++(0a ¹)的图象如图的图象如图所示,有下列结论:( )①240b ac ->;②0abc >; ③80a c +>;④930a b c ++<.其中,正确结论的个数是其中,正确结论的个数是A. 1 B. 2 C. 3 D. 4 12. 抛物线y =ax 2+bx +c (a ≠ 0)满足条件:(1)4a -b =0;(2)a -b +c >0;(3)与x 轴有两个交点,且两交点间的距离小于2.以下有四个结论:①a <0;②c >0;③a +b +c <0;④43c ca <<,其中所有正确结论的序号是其中所有正确结论的序号是 .13. 函数2(2)5(1)y x x m =-+££中y 的范围是56y ££,则m 的取值范围是_____. 3.3.易错易做题:易错易做题:14.已知22224+3=12x y x x y +,则的最大值是( ) A.9 B.10 C.12 D.15 15. 某旅社有100张床位,每床每晚收费10元时,客床可全部租出.若每床每晚收费再提高2元,则再减少10张床位租出.以每次这种提高2元的方法变化下去,为了投资少而获利大,每床每晚应提高_________元.元.16. 设二次函数y =ax 2+2ax +1(32x -££)有最大值4,则实数a 的值为________. Ox y 1x =1-2-17. 如图,抛物线y=ax 2+bx+c 经过点A (﹣(﹣33,0),B (0,3),C (1,0). (1)求此抛物线的解析式.)求此抛物线的解析式. (2)点P 是直线AB 上方的抛物线上一动点,(不与点A 、B 重合),过点P作x 轴的垂线,垂足为F ,交直线AB 于点E ,作PD⊥AB 于点D . ①动点P 在什么位置时,△PDE 的周长最大,求出此时P 点的坐标;点的坐标; ②连接PA PA,以,以AP 为边作图示一侧的正方形APMN APMN,随着点,随着点P 的运动,的运动,正方形的大小、位置也随之改变.当顶点M 或N 恰好落在抛物线对称轴上时,恰好落在抛物线对称轴上时, 求出对应的P 点的坐标.(结果保留根号)(结果保留根号)18. 如图, 在平面直角坐标系xOy 中,抛物线与x 轴负半轴交于点A , 顶点为B , 且对称轴与x 轴交于点C . (1)求点B 的坐标的坐标 (用含m 的代数式表示);求证:无论m 取何值时,取何值时, B 都在直线y x =-上;(2)D 为BO 中点,中点,直线直线AD 交y 轴于E ,若点E 的坐标为(0, 2), 求抛求抛 物线的解析式;(3)在(2)的条件下,点M 在直线BO 上,且使得△AMC 的周长最小,P 在抛物线上,Q 在直线在直线 BC 上,若以A 、M 、P 、Q 为顶点的四边形是平行四边形,求点P 的 坐标. 备用图备用图x x m y 222-=CAOBxyCAOBxy课后作业:课后作业:1. 如图为抛物线2yax bx c =++的图像,A 、B 、C 为抛物线与坐标轴的交点,且OA =OC =1,则下列关系中正确的是则下列关系中正确的是A .a +b =-1 B . a -b =-1 C . b <2aD . ac <0 2. 二次函数2y ax bx c =++的图象如图所示,则反比例函数ay x=与一次函数y bx c =+在同一坐标系中的大致图象是(在同一坐标系中的大致图象是( ). 3. 已知二次函数)0(2¹++=a c bx ax y 的图象如图所示对称轴为21-=x 。

人教版九年级数学《二次函数》总复习课件(公开课)


若抛物线y=ax2+bx+c与x轴有交点,则
b2 – 4ac ≥0
判别式: b2-4ac
b2-4ac>0
b2-4ac=0
二次函数
y=ax2+bx+ c
与x(轴有a≠两0个)不
同的交点 (x1,0) (x2,0)
与x轴有唯一个
交点 ( b ,0) 2a
b2-4ac<0
与x轴没有 交点
图象
y
O
x y
O
二次函数复习课
1、二次函数的定义
• 定义: y=ax² + bx + c ( a 、 b 、 c 是常数, a ≠ 0 )
• 定义要点:①a ≠ 0 ②最高次数为2

③代数式一定是整式
• 练习:1、y=-x²,y=2x²-2/x,y=100-5 x²,
• y=3 x²-2x³+5,其中是二次函数的有____个。
解:∵二次函数的最大值是2 ∴抛物线的顶点纵坐标为2 又∵抛物线的顶点在直线y=x+1上 ∴当y=2时,x=1 ∴顶点坐标为( 1 , 2) ∴设二次函数的解析式为y=a(x-1)2+2 又∵图象经过点(3,-6) ∴-6=a (3-1)2+2 ∴a=-2 ∴二次函数的解析式为y=-2(x-1)2+2
当x b 时, y最小值为 4ac b2
2a
4a
y=ax2+bx+c(a<0)
b 2a
,
4ac 4a
b2
直线x b
2a
由a,b和c的符号确定
a<0,开口向下
在对称轴的左侧,y随着x的增大而增大. 在对称 轴的右侧, y随着x的增大而减小.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1页 第一讲:二次函数的图形和性质 中阳县第四中学校 SCHOLAR 第一部分 知识梳理 知识点一:二次函数的概念 1、一般地,如果y= (a、b、c是常数,a≠0)那么y叫做x的二次函数;其中x为 ,y为 。任何二次函数都可以整理成cbxaxy2(cba,,

为常数,0a)的形式. 注意:二次函数y=ax 2+bx+c(a≠0)的结构特征是:

(1)、等号左边是函数,右边是 关 于 自 变 量x 的 二 次 式,x的最 高 次 数是 ,按 、 、 依次排列 (2)、强调二次项系数a 0 判断函数是否为二次函数的方法: ① 含有一个变量,且自变量的最高次数为_____;

② 二次项系数_____; ③ 等式两边都是_____; ④ 二次函数自变量x的取值范围是__________.

知识点二、二次函数的图形性质 抛物线的开口方向由a的 来决定:当0a时抛物线开口_____其顶点为其最_____点;当0a时抛物线开口_____顶点为其最_____点. 抛物线的开口大小由a 的 ,并且其绝对值越大,抛物线的开口越 。 1、二次函数2yax0a()的性质

(1)抛物线2axy的顶点是__________,对称轴是__________. (2)当0a时,有最______值______;当0a时,有最______值______。 2、二次函数2(0)yaxca的性质

(1)抛物线caxy2的顶点坐标________,对称轴是________. (2)当0a时,有最______值______;当0a时,有最______值______。 第2页

图1图2

(3)函数caxy2的图象可以看做是由函数2axy的图象向上或向下平移||c个单位得到的. 3、二次函数cbxaxy2)(0a的性质 (1)对称轴:________,顶点坐标:_______

(2)最值: ① 0a时有最___值abac442 (如图1)

② 0a时有最___值abac442 (如图2) (3)单调性:二次函数cbxaxy2(0a)的变化情况(增减性) ①当0a时,对称轴左侧abx2,y随着x的增大而_____,在对称轴的右侧abx2 ,y随x的增大而_____; ②当0a时,对称轴左侧abx2, y随着x的增大而_____,在对称轴的右侧abx2,y随x的增大而_____; 4、二次函数khxay2)()(0a的性质

(1)对称轴:________,顶点坐标:_______ (2)最值:0a时有最______值______;0a时有最______值______。 5、二次函数21()()yaxxxx)(0a的性质

(1)对称轴:________; (2)与x轴的交点坐标为________、________ 知识点三、根据图像判断系数和代数式 1、二次函数的图象与系数的关系 (1)a的符号决定抛物线的开口方向: (2)a和b共同决定抛物线对称轴的位置: 第3页

(3)c的大小决定抛物线与y轴交点的位置: 2、根据二次函数的图象判断代数式符号

(1)24bac决定了函数图象与x轴的交点情况: 当240bac,与x轴有两个交点;当240bac,与x轴有一个交点;当240bac

,与x轴没有交点.

(2)当1x时,可以得到abc的值; 当1x时,可以得到abc的值。

知识点四、图像的平移 1、二次函数图像平移规律和点平移规律 抛物线向左平移几个单位,自变量就增加几个单位:抛物线向右平移几个单位,自变量就减少几个单位。 抛物线向上平移几个单位,函数值就增加几个单位:抛物线向下平移几个单位,函数值就减少几个单位。 2、已知平移前后抛物线的解析式,求平移的路径 方法①应先将抛物线解析式转化成顶点式2yaxhk,再看自变量和函数值的变化 方法②将抛物线解析式转化成顶点式2yaxhk,确定其顶点坐标hk,;看顶点坐标的变化 点平移规律:一点向左平移,横坐标减少,向右平移,横坐标增加;向上平移,纵坐标增加,向下平移纵坐标减少。 典例汇总

例1、下列函数中是二次函数的是( ) A.2123yxx B.3232yxx C.222yxx D.22yxx 例2、下列说法正确的是( ) A.二次函数的自变量的取值范围是非零实数 B.圆的面积公式2Sr中,S是r的二次函数

C.1142yxx不是二次函数 第4页

4321xo

y

D.212yx中一次项系数为1 例3、已知函数2112ayaxax(a为常数) (1)当a为何值时,此函数为二次函数? (2)当a为何值时,此函数为一次函数? 例4、如图,四个二次函数的图象中,分别对应的是①2yax;②2ybx;③2ycx;④2ydx。则a、b、c、d的大小关系为( )

A.abcd B.abdc C.bacd D.badc

例5、把抛物线cbxaxy2的图象向右平移3个单位, 在向下平移2个单位,所得图象的解析式是432xxy,试求b、c的值。

例6、已知抛物线2(0)yaxba与x轴有两个交点,且开口向下,则,ab的取值范围分别是______、______。 例7、某工厂现有80台机器,每台机器平均每天生产384件产品,现准备增加一批同类机器以提高生产总量,在试生产中发现,由于其他生产条件没变,因此每增加一台机器,每台机器平均每天将少生产4件产品. (1)如果增加x台机器,每天的生产总量为y件,请你写出y与x之间的关系式; (2)增加多少台机器,可以使每天的生产总量最大?最大生产总量是多少? 第5页

随堂练习 1、函数21(1)21mymxmx是抛物线,则m= . 2、抛物线223yxx与x轴交点为 ,与y轴交点为 . 3、二次函数2yax的图象过点(-1,2),则它的解析式是 ,当x 时,y随x的增大而增大. 4、抛物线2)1(62xy可由抛物线262xy向 平移 个单位得到. 5、抛物线342xxy在x轴上截得的线段长度是 . 6、抛物线4222mxxy的图象经过原点,则m . 7、抛物线mxxy2,若其顶点在x轴上,则m .

8、如果抛物线cbxaxy2的对称轴是x=-2,且开口方向与形状与抛物线 相同,又过原点,那么a= ,b= ,c= . 9、二次函数2yxbxc的图象如图所示,则对称轴 是 ,当函数值0y时,对应x的取值范围是 . 10、如图,抛物线经过点A(1,0),与y

轴交于点B. (1)求抛物线的解析式; (2)P是y轴正半轴上一点,且△PAB是以AB为腰的等腰三角形,试求P点坐标.

nxxy52O x y 1 -3

22

3xy

1-1

OA

Bx

y第6页

11、已知二次函数21(0)yaxbxca与一次函数 2(0)ykxmk的图象相交于点A(-2,4)和B(8,2),如上右图所示,则能使1y2y成立的x的取值范围 . 12、某广告公司设计一幅周长为12米的矩形广告牌,广告设计费为每平方米1000元,设矩形一边长为x米,面积为S平方米. (1)求出S与x之间的函数关系式,并确定自变量x的取值范围; (2)请你设计一个方案,使获得的设计费最多,并求出这个费用.

13、已知函数4mm2x)2m(y是关于x的二次函数,求: (1)满足条件的m值; (2)m为何值时,抛物线有最低点?求出这个最低点.这时当x为何值时,y随x的增大而增大? (3)m为何值时,函数有最大值?最大值是什么?这时当x为何值时,y随x的增大而减小?

y x B A 第7页 课后作业

1、已知二次函数2yaxbxc,若0a,0c,那么它的图象大致是( )

2、抛物线23yx向右平移1个单位,再向下平移2个单位,所得到的抛物线是 3、抛物线122mmxxy的图象过原点,则m为 4、把二次函数122xxy配方成为 5、已知原点是抛物线2(1)ymx的最高点,则m的范围是

6、如图,已知抛物线y=﹣x2﹣x+2与x轴交于A、B两点,与y轴交于点C。 (1)求点A,B,C的坐标; (2)点E是此抛物线上的点,点F是其对称轴上的点,求以A,B,E,F为顶点的平行四边形的面积; (3)此抛物线的对称轴上是否存在点M,使得△ACM是等腰三角形?若存在,请求出点M的坐标;若不存在,请说明理由.

(C) (A) o y x o y x o x y o x y (B) (D)

相关文档
最新文档