2017年黄浦区中考数学一模试题
2017年上海市浦东新区中考数学一模试卷

2017年上海市浦东新区中考数学一模试卷一.选择题(本大题共6题,每题4分,共24分)1.(4分)在下列y关于x的函数中,一定是二次函数的是()A.y=2x2B.y=2x﹣2 C.y=ax2D.2.(4分)如果向量、、满足+=(﹣),那么用、表示正确的是()A.B.C.D.3.(4分)已知在Rt△ABC中,∠C=90°,∠A=α,BC=2,那么AB的长等于()A.B.2sinαC.D.2cosα4.(4分)在△ABC中,点D、E分别在边AB、AC上,如果AD=2,BD=4,那么由下列条件能够判断DE∥BC的是()A.B.C.D.5.(4分)如图,△ABC的两条中线AD、CE交于点G,且AD⊥CE,联结BG 并延长与AC交于点F,如果AD=9,CE=12,那么下列结论不正确的是()A.AC=10 B.AB=15 C.BG=10 D.BF=156.(4分)如果抛物线A:y=x2﹣1通过左右平移得到抛物线B,再通过上下平移抛物线B得到抛物线C:y=x2﹣2x+2,那么抛物线B的表达式为()A.y=x2+2 B.y=x2﹣2x﹣1 C.y=x2﹣2x D.y=x2﹣2x+1二.填空题(本大题共12题,每题4分,共48分)7.(4分)已知线段a=3cm,b=4cm,那么线段a、b的比例中项等于cm.8.(4分)已知点P是线段AB上的黄金分割点,PB>PA,PB=2,那么PA= .9.(4分)已知||=2,||=4,且和反向,用向量表示向量= .10.(4分)如果抛物线y=mx2+(m﹣3)x﹣m+2经过原点,那么m= .11.(4分)如果抛物线y=(a﹣3)x2﹣2有最低点,那么a的取值范围是.12.(4分)在一个边长为2的正方形中挖去一个边长为x(0<x<2)的小正方形,如果设剩余部分的面积为y,那么y关于x的函数解析式是.13.(4分)如果抛物线y=ax2﹣2ax+1经过点A(﹣1,7)、B(x,7),那么x= .14.(4分)二次函数y=(x﹣1)2的图象上有两个点(3,y1)、(,y2),那么y1y2(填“>”、“=”或“<”)15.(4分)如图,已知小鱼同学的身高(CD)是1.6米,她与树(AB)在同一时刻的影子长分别为DE=2米,BE=5米,那么树的高度AB= 米.16.(4分)如图,梯形ABCD中,AD∥BC,对角线BD与中位线EF交于点G,若AD=2,EF=5,那么FG= .17.(4分)如图,点M是△ABC的角平分线AT的中点,点D、E分别在AB、AC边上,线段DE过点M,且∠ADE=∠C,那么△ADE和△ABC的面积比是.18.(4分)如图,在Rt△ABC中,∠C=90°,∠B=60°,将△ABC绕点A逆时针旋转60°,点B、C分别落在点B'、C'处,联结BC'与AC边交于点D,那么= .三.解答题(本大题共7题,共10+10+10+10+12+12+14=78分)19.(10分)计算:2cos230°﹣sin30°+.20.(10分)如图,已知在平行四边形ABCD中,点E是CD上一点,且DE=2,CE=3,射线AE与射线BC相交于点F;(1)求的值;(2)如果=,=,求向量;(用向量、表示)21.(10分)如图,在△ABC中,AC=4,D为BC上一点,CD=2,且△ADC与△ABD的面积比为1:3;(1)求证:△ADC∽△BAC;(2)当AB=8时,求sinB.22.(10分)如图,是某广场台阶(结合轮椅专用坡道)景观设计的模型,以及该设计第一层的截面图,第一层有十级台阶,每级台阶的高为0.15米,宽为0.4米,轮椅专用坡道AB的顶端有一个宽2米的水平面BC;《城市道路与建筑物无障碍设计规范》第17条,新建轮椅专用坡道在不同坡度的情况下,坡道高度应符合以下表中的规定:坡度1:201:161:12最大高度(米) 1.50 1.000.75(1)选择哪个坡度建设轮椅专用坡道AB是符合要求的?说明理由;(2)求斜坡底部点A与台阶底部点D的水平距离AD.23.(12分)如图,在△ABC中,AB=AC,点D、E是边BC上的两个点,且BD=DE=EC,过点C作CF∥AB交AE延长线于点F,连接FD并延长与AB交于点G;(1)求证:AC=2CF;(2)连接AD,如果∠ADG=∠B,求证:CD2=AC•CF.24.(12分)已知顶点为A(2,﹣1)的抛物线经过点B(0,3),与x轴交于C、D两点(点C在点D的左侧);(1)求这条抛物线的表达式;(2)联结AB、BD、DA,求△ABD的面积;(3)点P在x轴正半轴上,如果∠APB=45°,求点P的坐标.25.(14分)如图,矩形ABCD中,AB=3,BC=4,点E是射线CB上的动点,点F是射线CD上一点,且AF⊥AE,射线EF与对角线BD交于点G,与射线AD 交于点M;(1)当点E在线段BC上时,求证:△AEF∽△ABD;(2)在(1)的条件下,联结AG,设BE=x,tan∠MAG=y,求y关于x的函数解析式,并写出x的取值范围;(3)当△AGM与△ADF相似时,求BE的长.2017年上海市浦东新区中考数学一模试卷参考答案与试题解析一.选择题(本大题共6题,每题4分,共24分)1.(4分)(2017•浦东新区一模)在下列y关于x的函数中,一定是二次函数的是()A.y=2x2B.y=2x﹣2 C.y=ax2D.【分析】根据二次函数的定义形如y=ax2+bx+c (a≠0)是二次函数.【解答】解:A、是二次函数,故A符合题意;B、是一次函数,故B错误;C、a=0时,不是二次函数,故C错误;D、a≠0时是分式方程,故D错误;故选:A.【点评】本题考查二次函数的定义,形如y=ax2+bx+c (a≠0)是二次函数.2.(4分)(2017•浦东新区一模)如果向量、、满足+=(﹣),那么用、表示正确的是()A.B.C.D.【分析】利用一元一次方程的求解方法,求解此题即可求得答案.【解答】解:∵+=(﹣),∴2(+)=3(﹣),∴2+2=3﹣2,∴2=﹣2,解得:=﹣.故选D.【点评】此题考查了平面向量的知识.此题难度不大,注意掌握一元一次方程的求解方法是解此题的关键.3.(4分)(2017•浦东新区一模)已知在Rt△ABC中,∠C=90°,∠A=α,BC=2,那么AB的长等于()A.B.2sinαC.D.2cosα【分析】根据锐角三角函数的定义得出sinA=,代入求出即可.【解答】解:∵在Rt△ABC中,∠C=90°,∠A=α,BC=2,∴sinA=,∴AB==,故选A.【点评】本题考查了锐角三角函数的定义,能熟记锐角三角函数的定义是解此题的关键,注意:在Rt△ACB中,∠ACB=90°,则sinA=,cosA=,tanA=.4.(4分)(2017•浦东新区一模)在△ABC中,点D、E分别在边AB、AC上,如果AD=2,BD=4,那么由下列条件能够判断DE∥BC的是()A.B.C.D.【分析】先求出比例式,再根据相似三角形的判定得出△ADE∽△ABC,根据相似推出∠ADE=∠B,根据平行线的判定得出即可.【解答】解:只有选项C正确,理由是:∵AD=2,BD=4,=,∴==,∵∠DAE=∠BAC,∴△ADE∽△ABC,∴∠ADE=∠B,∴DE∥BC,根据选项A、B、D的条件都不能推出DE∥BC,故选C.【点评】本题考查了平行线分线段成比例定理,相似三角形的性质和判定的应用,能灵活运用定理进行推理是解此题的关键.5.(4分)(2017•浦东新区一模)如图,△ABC的两条中线AD、CE交于点G,且AD⊥CE,联结BG并延长与AC交于点F,如果AD=9,CE=12,那么下列结论不正确的是()A.AC=10 B.AB=15 C.BG=10 D.BF=15【分析】根据题意得到点G是△ABC的重心,根据重心的性质得到AG=AD=6,CG=CE=8,EG=CE=4,根据勾股定理求出AC、AE,判断即可.【解答】解:∵△ABC的两条中线AD、CE交于点G,∴点G是△ABC的重心,∴AG=AD=6,CG=CE=8,EG=CE=4,∵AD⊥CE,∴AC==10,A正确;AE==2,∴AB=2AE=4,B错误;∵AD⊥CE,F是AC的中点,∴GF=AC=5,∴BG=10,C正确;BF=15,D正确,故选:B.【点评】本题考查的是三角形的重心的概念和性质,三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍.6.(4分)(2017•浦东新区一模)如果抛物线A:y=x2﹣1通过左右平移得到抛物线B,再通过上下平移抛物线B得到抛物线C:y=x2﹣2x+2,那么抛物线B的表达式为()A.y=x2+2 B.y=x2﹣2x﹣1 C.y=x2﹣2x D.y=x2﹣2x+1【分析】平移不改变抛物线的开口方向与开口大小,即解析式的二次项系数不变,根据抛物线的顶点式可求抛物线解析式.【解答】解:抛物线A:y=x2﹣1的顶点坐标是(0,﹣1),抛物线C:y=x2﹣2x+2=(x﹣1)2+1的顶点坐标是(1,1).则将抛物线A向右平移1个单位,再向上平移2个单位得到抛物线C.所以抛物线B是将抛物线A向右平移1个单位得到的,其解析式为y=(x﹣1)2﹣1=x2﹣2x.故选:C.【点评】本题考查了抛物线的平移与解析式变化的关系.关键是明确抛物线的平移实质上是顶点的平移,能用顶点式表示平移后的抛物线解析式.二.填空题(本大题共12题,每题4分,共48分)7.(4分)(2017•浦东新区一模)已知线段a=3cm,b=4cm,那么线段a、b的比例中项等于2cm.【分析】根据线段的比例中项的定义列式计算即可得解.【解答】解:∵线段a=3cm,b=4cm,∴线段a、b的比例中项==2cm.故答案为:2.【点评】本题考查了比例线段,熟记线段比例中项的求解方法是解题的关键,要注意线段的比例中项是正数.8.(4分)(2017•浦东新区一模)已知点P是线段AB上的黄金分割点,PB>PA,PB=2,那么PA= ﹣1 .【分析】根据黄金分割的概念和黄金比值是计算即可.【解答】解:∵点P是线段AB上的黄金分割点,PB>PA,∴PB=AB,解得,AB=+1,∴PA=AB﹣PB=+1﹣2=﹣1,故答案为:﹣1.【点评】本题考查的是黄金分割的概念和性质,把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项,叫做把线段AB黄金分割.9.(4分)(2017•浦东新区一模)已知||=2,||=4,且和反向,用向量表示向量= ﹣2.【分析】根据向量b向量的模是a向量模的2倍,且和反向,即可得出答案.【解答】解:||=2,||=4,且和反向,故可得:=﹣2.故答案为:﹣2.【点评】本题考查了平面向量的知识,关键是得出向量b向量的模是a向量模的2倍.10.(4分)(2017•浦东新区一模)如果抛物线y=mx2+(m﹣3)x﹣m+2经过原点,那么m= 2 .【分析】根据图象上的点满足函数解析式,可得答案.【解答】解:由抛物线y=mx2+(m﹣3)x﹣m+2经过原点,得﹣m+2=0.解得m=2,故答案为:2.【点评】本题考查了二次函数图象上点的坐标特征,把原点代入函数解析式是解题关键.11.(4分)(2017•浦东新区一模)如果抛物线y=(a﹣3)x2﹣2有最低点,那么a的取值范围是a>3 .【分析】由于原点是抛物线y=(a+3)x2的最低点,这要求抛物线必须开口向上,由此可以确定a的范围.【解答】解:∵原点是抛物线y=(a﹣3)x2﹣2的最低点,∴a﹣3>0,即a>3.故答案为a>3.【点评】本题主要考查二次函数的最值的知识点,解答此题要掌握二次函数图象的特点,本题比较基础.12.(4分)(2017•浦东新区一模)在一个边长为2的正方形中挖去一个边长为x(0<x<2)的小正方形,如果设剩余部分的面积为y,那么y关于x的函数解析式是y=﹣x2+4(0<x<2).【分析】根据剩下部分的面积=大正方形的面积﹣小正方形的面积得出y与x的函数关系式即可.【解答】解:设剩下部分的面积为y,则:y=﹣x2+4(0<x<2),故答案为:y=﹣x2+4(0<x<2).【点评】此题主要考查了根据实际问题列二次函数关系式,利用剩下部分的面积=大正方形的面积﹣小正方形的面积得出是解题关键.13.(4分)(2017•浦东新区一模)如果抛物线y=ax2﹣2ax+1经过点A(﹣1,7)、B(x,7),那么x= 3 .【分析】首先求出抛物线的对称轴方程,进而求出x的值.【解答】解:∵抛物线的解析式为y=ax2﹣2ax+1,∴抛物线的对称轴方程为x=1,∵图象经过点A(﹣1,7)、B(x,7),∴=1,∴x=3,故答案为3.【点评】本题主要考查了二次函数图象上点的坐标特征,解题的关键是求出抛物线的对称轴,此题难度不大.14.(4分)(2017•浦东新区一模)二次函数y=(x﹣1)2的图象上有两个点(3,y1)、(,y2),那么y1<y2(填“>”、“=”或“<”)【分析】把两点的横坐标代入函数解析式分别求出函数值即可得解.【解答】解:当x=3时,y1=(3﹣1)2=4,当x=时,y2=(﹣1)2=,y1<y2,故答案为<.【点评】本题考查了二次函数图象上点的坐标特征,根据函数图象上的点满足函数解析式求出相应的函数值是解题的关键.15.(4分)(2017•浦东新区一模)如图,已知小鱼同学的身高(CD)是1.6米,她与树(AB)在同一时刻的影子长分别为DE=2米,BE=5米,那么树的高度AB= 4 米.【分析】由CD⊥BE、AB⊥BE知CD∥AB,从而得△CDE∽△ABE,由相似三角形的性质有=,将相关数据代入计算可得.【解答】解:由题意知CD⊥BE、AB⊥BE,∴CD∥AB,∴△CDE∽△ABE,∴=,即=,解得:AB=4,故答案为:4.【点评】本题主要考查相似三角形的应用,熟练掌握相似三角形的判定与性质是解题的关键.16.(4分)(2017•浦东新区一模)如图,梯形ABCD中,AD∥BC,对角线BD 与中位线EF交于点G,若AD=2,EF=5,那么FG= 4 .【分析】根据梯形中位线性质得出EF∥AD∥BC,推出DG=BG,则EG是△ABD 的中位线,即可求得EG的长,则FG即可求得.【解答】解:∵EF是梯形ABCD的中位线,∴EF∥AD∥BC,∴DG=BG,∴EG=AD=×2=1,∴FG=EF﹣EG=5﹣1=4.故答案是:4.【点评】本题考查了梯形的中位线,三角形的中位线的应用,主要考查学生的推理能力和计算能力.17.(4分)(2017•浦东新区一模)如图,点M是△ABC的角平分线AT的中点,点D、E分别在AB、AC边上,线段DE过点M,且∠ADE=∠C,那么△ADE和△ABC的面积比是1:4 .【分析】根据相似三角形的判定和性质即可得到结论.【解答】解:∵AT是△ABC的角平分线,∵点M是△ABC的角平分线AT的中点,∴AM=AT,∵∠ADE=∠C,∠BAC=∠BAC,∴△ADE∽△ACB,∴=()2=()2=1:4,故答案为:1:4.【点评】本题考查了相似三角形的判定和性质,熟练掌握相似三角形的判定和性质是解题的关键.18.(4分)(2017•浦东新区一模)如图,在Rt△ABC中,∠C=90°,∠B=60°,将△ABC绕点A逆时针旋转60°,点B、C分别落在点B'、C'处,联结BC'与AC边交于点D,那么= .【分析】根据直角三角形的性质得到BC=AB,根据旋转的性质和平行线的判定得到AB∥B′C′,根据平行线分线段成比例定理计算即可.【解答】解:∵∠C=90°,∠B=60°,∴∠BAC=30°,∴BC=AB,由旋转的性质可知,∠CAC′=60°,AB′=AB,B′C′=BC,∠C′=∠C=90°,∴∠BAC′=90°,∴AB∥B′C′,∴===,∴=,∵∠BAC=∠B′AC,∴==,又=,∴=,故答案为:.【点评】本题考查的是旋转变换的性质,掌握对应点到旋转中心的距离相等、对应点与旋转中心所连线段的夹角等于旋转角、旋转前、后的图形全等是解题的关键.三.解答题(本大题共7题,共10+10+10+10+12+12+14=78分)19.(10分)(2017•浦东新区一模)计算:2cos230°﹣sin30°+.【分析】根据特殊角三角函数值,可得答案.【解答】解:原式=2×()2﹣+=1++.【点评】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.20.(10分)(2017•浦东新区一模)如图,已知在平行四边形ABCD中,点E是CD上一点,且DE=2,CE=3,射线AE与射线BC相交于点F;(1)求的值;(2)如果=,=,求向量;(用向量、表示)【分析】(1)根据平行四边形的性质得出AB=5、AB∥EC,证△FEC∽△FAB得==;(2)由△FEC∽△FAB得=,从而知FC=BC,EC=AB,再由平行四边形性质及向量可得==,==,最后根据向量的运算得出答案.【解答】解:(1)∵四边形ABCD是平行四边形,DE=2,CE=3,∴AB=DC=DE+CE=5,且AB∥EC,∴△FEC∽△FAB,∴==;(2)∵△FEC∽△FAB,∴=,∴FC=BC,EC=AB,∵四边形ABCD是平行四边形,∴AD∥BC,EC∥AB,∴==,∴==,==,则=+=.【点评】本题主要考查相似三角形的判定与性质、平行四边形的性质及向量的运算,熟练掌握相似三角形的判定与性质是解题的关键.21.(10分)(2017•浦东新区一模)如图,在△ABC中,AC=4,D为BC上一点,CD=2,且△ADC与△ABD的面积比为1:3;(1)求证:△ADC∽△BAC;(2)当AB=8时,求sinB.【分析】(1)作AE⊥BC,根据△ADC与△ABD的面积比为1:3且CD=2可得BD=6,即BC=8,从而得,结合∠C=∠C,可证得△ADC∽△BAC;(2)由△ADC∽△BAC得,求出AD的长,根据AE⊥BC得DE=CD=1,由勾股定理求得AE的长,最后根据正弦函数的定义可得.【解答】解:(1)如图,作AE⊥BC于点E,∵===,∴BD=3CD=6,∴CB=CD+BD=8,则=,,∴,∵∠C=∠C,∴△ADC∽△BAC;(2)∵△ADC∽△BAC,∴,即,∴AD=AC=4,∵AE⊥BC,∴DE=CD=1,∴AE==,∴sinB==.【点评】本题主要考查相似三角形的判定与性质及勾股定理、等腰三角形的性质、三角函数的定义,熟练掌握相似三角形的判定与性质是解题的关键.22.(10分)(2017•浦东新区一模)如图,是某广场台阶(结合轮椅专用坡道)景观设计的模型,以及该设计第一层的截面图,第一层有十级台阶,每级台阶的高为0.15米,宽为0.4米,轮椅专用坡道AB的顶端有一个宽2米的水平面BC;《城市道路与建筑物无障碍设计规范》第17条,新建轮椅专用坡道在不同坡度的情况下,坡道高度应符合以下表中的规定:坡度1:201:161:12最大高度(米) 1.50 1.000.75(1)选择哪个坡度建设轮椅专用坡道AB是符合要求的?说明理由;(2)求斜坡底部点A与台阶底部点D的水平距离AD.【分析】(1)计算最大高度为:0.15×10=1.5(米),由表格查对应的坡度为:1:20;(2)作梯形的高BE、CF,由坡度计算AE和DF的长,相加可得AD的长.【解答】解:(1)∵第一层有十级台阶,每级台阶的高为0.15米,∴最大高度为0.15×10=1.5(米),由表知建设轮椅专用坡道AB选择符合要求的坡度是1:20;(2)如图,过B作BE⊥AD于E,过C作CF⊥AD于F,∴BE=CF=1.5,EF=BC=2,∵=,∴=,∴AE=DF=30,∴AD=AE+EF+DF=60+2=62,答:斜坡底部点A与台阶底部点D的水平距离AD为62米.【点评】本题考查了坡度坡角问题,在解决坡度的有关问题中,一般通过作高构成直角三角形,坡角即是一锐角,坡度实际就是一锐角的正切值,利用三角函数的定义列等式即可.23.(12分)(2017•浦东新区一模)如图,在△ABC中,AB=AC,点D、E是边BC上的两个点,且BD=DE=EC,过点C作CF∥AB交AE延长线于点F,连接FD 并延长与AB交于点G;(1)求证:AC=2CF;(2)连接AD,如果∠ADG=∠B,求证:CD2=AC•CF.【分析】(1)由BD=DE=EC知BE=2CE,由CF∥AB证△ABE∽△FCE得=2,即AB=2FC,根据AB=AC即可得证;(2)由∠1=∠B证△DAG∽△BAD得∠AGD=∠ADB,即∠B+∠2=∠5+∠6,结合∠B=∠5、∠2=∠3得∠3=∠6,再由CF∥AB得∠4=∠B,继而知∠4=∠5,即可证△ACD∽△DCF得CD2=AC•CF.【解答】证明:(1)∵BD=DE=EC,∴BE=2CE,∵CF∥AB,∴△ABE∽△FCE,∴=2,即AB=2FC,又∵AB=AC,∴AC=2CF;(2)如图,∵∠1=∠B,∠DAG=∠BAD,∴△DAG∽△BAD,∴∠AGD=∠ADB,∴∠B+∠2=∠5+∠6,又∵AB=AC,∠2=∠3,∴∠B=∠5,∴∠3=∠6,∵CF∥AB,∴∠4=∠B,∴∠4=∠5,则△ACD∽△DCF,∴,即CD2=AC•CF.【点评】本题主要考查相似三角形的判定与性质,熟练掌握三角形外角性质和平行线的性质得出三角形相似所需要的条件是解题的关键.24.(12分)(2017•浦东新区一模)已知顶点为A(2,﹣1)的抛物线经过点B (0,3),与x轴交于C、D两点(点C在点D的左侧);(1)求这条抛物线的表达式;(2)联结AB、BD、DA,求△ABD的面积;(3)点P在x轴正半轴上,如果∠APB=45°,求点P的坐标.【分析】(1)设抛物线的解析式为y=a(x﹣2)2﹣1,把(0,3)代入可得a=1,即可解决问题.(2)首先证明∠ADB=90°,求出BD、AD的长即可解决问题.(3)由△PDB∽△ADP,推出PD2=BD•AD=3=6,由此即可解决问题.【解答】解:(1)∵顶点为A(2,﹣1)的抛物线经过点B(0,3),∴可以假设抛物线的解析式为y=a(x﹣2)2﹣1,把(0,3)代入可得a=1,∴抛物线的解析式为y=x2﹣4x+3.(2)令y=0,x2﹣4x+3=0,解得x=1或3,∴C(1,0),D(3,0),∵OB=OD=3,∴∠BDO=45°,∵A(2,﹣1),D(3,0),∴∠ADO=45°,∴∠BDA=90°,∵BD=3,AD=,∴S△ABD=•BD•AD=3.(3)∵∠BDO=∠DPB+∠DBP=45°,∠APB=∠DPB+∠DPA=45°,∴∠DBP=∠APD,∵∠PDB=∠ADP=135°,∴△PDB∽△ADP,∴PD2=BD•AD=3=6,∴PD=,∴OP=3+,∴点P(3+,0).【点评】本题考查二次函数与x轴的交点、待定系数法.三角形的面积、相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识,学会利用相似三角形的性质解决问题,属于中考常考题型.25.(14分)(2017•浦东新区一模)如图,矩形ABCD中,AB=3,BC=4,点E 是射线CB上的动点,点F是射线CD上一点,且AF⊥AE,射线EF与对角线BD 交于点G,与射线AD交于点M;(1)当点E在线段BC上时,求证:△AEF∽△ABD;(2)在(1)的条件下,联结AG,设BE=x,tan∠MAG=y,求y关于x的函数解析式,并写出x的取值范围;(3)当△AGM与△ADF相似时,求BE的长.【分析】(1)首先证明△ABE∽△ADF,推出=,推出=,因为∠BAD=∠EAF,即可证明△AEF∽△ABD.(2)如图连接AG.由△AEF∽△ABD,推出∠ABG=∠AEG,推出A、B、E、G 四点共圆,推出∠ABE+∠AGE=180°,由∠ABE=90°,推出∠AGE=90°,推出∠AGM=∠MDF,推出∠AMG=∠FMD,推出∠MAG=∠EFC,推出y=tan∠MAG=tan∠EFC=,由△ABE∽△ADF,得=,得DF=x,由此即可解决问题.(3)分两种情形①如图2中,当点E在线段CB上时,②如图3中,当点E在CB的延长线上时,分别列出方程求解即可.【解答】(1)证明:∵四边形ABCD是矩形,∴∠BAD=∠ADC=∠ADF=90°,∵AF⊥AE,∴∠EAF=90°,。
2017年上海市数学中考真题(含答案)

2017年上海市数学中考真题(含答案)2017年上海市初中毕业统一学业考试数学试卷注意事项:1.本试卷共25题;2.试卷满分150分,考试时间100分钟;3.答题时,考生务必按照答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;4.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤。
一、选择题:(本大题共6题,每题4分,满分24分)1.下列实数中,无理数是A。
√2;B。
2;C。
-2;D。
(2/7)²。
2.下列方程中,没有实数根的是A。
x²-2x=0;B。
x²-2x-1=0;D。
x²-2x+2=0.3.如果一次函数y=kx+b(k、b是常数,k≠0)的图像经过第一、二、四象限,那么k、b应满足的条件是C。
k>0,且b<0.4.数据2、5、6、6、1、8的中位数和众数分别是D。
5和8.5.下列图形中,既是轴对称又是中心对称图形的是D。
等腰梯形。
6.已知平行四边形ABCD,AC、BD是它的两条对角线,那么下列条件中,能判断这个平行四边形为矩形的是D。
∠BAC=∠ADB。
二、填空题:(本大题共12题,每题4分,满分48分)7.计算:2a·a²=____▲____。
8.不等式组{2x>6.x-2>0}的解集是____▲____。
9.方程2x-3=1的根是____▲____。
10.如果反比例函数y=k/x(k是常数,k≠0)的图像经过点(2,3),那么在这个函数图像所在的每个象限内,y的x值随x的值增大而___▲___。
(填“增大”或“减小”)11.某市前年PM2.5的年均浓度为50微克/立方米,去年比前年下降了10%。
如果今年PM2.5的年均浓度比去年也下降10%,那么今年PM2.5的年均浓度将是___▲___微克/立方米。
12.从不透明的布袋中摸出一个红球的概率可以通过红球的数量除以总球数来计算,即3/(2+3+5)=3/10.13.二次函数的标准形式为y=ax^2+bx+c,其中a决定了开口方向和大小,由于题目中开口向上,所以a>0.又因为顶点坐标为(0,-1),所以c=-1.因此二次函数的解析式为y=ax^2-1.14.根据图1可知,第一季度总产值为100万元,二月份产值为72万元,因此其他两个月份的产值之和为100-72=28万元。
上海市2017浦东区初三数学一模试卷

11 1 2016 学年浦东新区初三一模数学试卷一、选择题(本大题共 6 题,每题 4 分,满分 24 分)1.在下列 y 关于 x 的函数中,一定是二次函数的是………………………………………………( )2017.1(A ) y = 2x 2; (B ) y = 2x - 2 ; (C ) y = ax 2; (D ) y =a .x23 22. 如果向量a 、b 、x 满足 x + a = (a - 2 3b ) ,那么 x 用a 、b 表示正确的…………………()(A ) a - 2b ; (B ) 5a -b ; (C )a - 2 2b ; (D ) 3 1 a - b 23. 已知在 Rt ∆ABC 中, ∠C = 90O, ∠A = α , BC = 2 ,那么 AB 的长等于()(A )2sin α; (B ) 2sin α ;(C )2cos α; (D ) 2cos α4. 在∆ABC 中,点 D 、E 分别在边 AB 、AC ,如果 AD = 2 , BD =4 ,那么由下列条件能够判断DE ∥BC 的是( ) AE (A )AC = ; (B )DE 2BC = ; (C )AE 3AC = ; (D )DE = 13BC 25. 如图, ∆ABC 的两条中线 AD 、CE 交于点G ,且 AD ⊥ C E .联结 BG 并延长与 AC 交于点 F ,如果 AD = 9,CE =12 ,那么下列结论不正确的是( ) (A ) AC = 10; (B ) AB = 15 ; (C ) BG = 10 ;(D ) BF = 156. 如果抛物线 A :y = x2-1 通过左右平移得到抛物线 B ,再通过上下平移抛物线 B 得到抛物线C :y = x 2 - 2x + 2 ,那么抛物线 B 的表达式为()(A ) y = x 2+ 2 ; (B ) y = x 2- 2x -1; (C ) y = x 2- 2x 二、填空题(本大题共 12 题,每题 4 分,满分 48 分); (D ) y = x 2- 2x +1; 7. 已知线段a = 3cm ,b = 4cm ,那么线段a 、b 的比例中项等于 cm ;8. 已知 P 是线段 AB 上的黄金分割点, PB >PA , PB =2 ,那么 PA = ; 9. 已知 a = 2,b = 4 ,且b 和a 反向,用向量a 表示b =;10. 如果抛物线 y = mx2+ (m - 3)x - m + 2 经过原点,那么m =; 11. 如果抛物线 y = (a - 3)x 2- 2 有最低点,那么a 的取值范围是。
2017年上海市黄浦区高考数学一模试卷(解析版)

2017年上海市黄浦区高考数学一模试卷一、填空题(本大题共有12题,满分54分.其中第1~6题每题满分54分,第7~12题每题满分54分)考生应在答题纸相应编号的空格内直接填写结果.[ 1.若集合A={x||x﹣1|<2,x∈R},则A∩Z=.2.抛物线y2=2x的准线方程是.3.若复数z满足(i为虚数单位),则z=.4.已知sin(α+)=,α∈(﹣,0),则tanα=.5.以点(2,﹣1)为圆心,且与直线x+y=7相切的圆的方程是.6.若二项式的展开式共有6项,则此展开式中含x4的项的系数是.7.已知向量(x,y∈R),,若x2+y2=1,则的最大值为.8.已知函数y=f(x)是奇函数,且当x≥0时,f(x)=log2(x+1).若函数y=g (x)是y=f(x)的反函数,则g(﹣3)=.9.在数列{a n}中,若对一切n∈N*都有a n=﹣3a n,且+1=,则a1的值为.10.甲、乙两人从6门课程中各选修3门.则甲、乙所选的课程中至多有1门相同的选法共有.11.已知点O,A,B,F分别为椭圆的中心、左顶点、上顶点、右焦点,过点F作OB的平行线,它与椭圆C在第一象限部分交于点P,若,则实数λ的值为.12.已知为常数),,且当x1,x2∈[1,4]时,总有f(x1)≤g(x2),则实数a的取值范围是.二、选择题(本大题共有4题,满分20分.)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.13.若x ∈R ,则“x >1”是“”的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分也非必要条件14.关于直线l ,m 及平面α,β,下列命题中正确的是( )A .若l ∥α,α∩β=m ,则l ∥mB .若l ∥α,m ∥α,则l ∥mC .若l ⊥α,m ∥α,则l ⊥mD .若l ∥α,m ⊥l ,则m ⊥α15.在直角坐标平面内,点A ,B 的坐标分别为(﹣1,0),(1,0),则满足tan ∠PAB•tan ∠PBA=m (m 为非零常数)的点P 的轨迹方程是( )A .B .C .D .16.若函数y=f (x )在区间I 上是增函数,且函数在区间I 上是减函数,则称函数f (x )是区间I 上的“H 函数”.对于命题:①函数是(0,1)上的“H 函数”;②函数是(0,1)上的“H 函数”.下列判断正确的是( )A .①和②均为真命题B .①为真命题,②为假命题C .①为假命题,②为真命题D .①和②均为假命题 三、解答题(本大题共有5题,满分76分.)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.17.在三棱锥P ﹣ABC 中,底面ABC 是边长为6的正三角形,PA ⊥底面ABC ,且PB 与底面ABC 所成的角为.(1)求三棱锥P ﹣ABC 的体积;(2)若M 是BC 的中点,求异面直线PM 与AB 所成角的大小(结果用反三角函数值表示).18.已知双曲线C以F1(﹣2,0)、F2(2,0)为焦点,且过点P(7,12).(1)求双曲线C与其渐近线的方程;(2)若斜率为1的直线l与双曲线C相交于A,B两点,且(O为坐标原点).求直线l的方程.19.现有半径为R、圆心角(∠AOB)为90°的扇形材料,要裁剪出一个五边形工件OECDF,如图所示.其中E,F分别在OA,OB上,C,D在上,且OE=OF,EC=FD,∠ECD=∠CDF=90°.记∠COD=2θ,五边形OECDF的面积为S.(1)试求S关于θ的函数关系式;(2)求S的最大值.20.已知集合M是满足下列性质的函数f(x)的全体:在定义域内存在实数t,使得f(t+2)=f(t)+f(2).(1)判断f(x)=3x+2是否属于集合M,并说明理由;(2)若属于集合M,求实数a的取值范围;(3)若f(x)=2x+bx2,求证:对任意实数b,都有f(x)∈M.21.已知数列{a n},{b n}满足b n=a n﹣a n(n=1,2,3,…).+1(1)若b n=10﹣n,求a16﹣a5的值;(2)若且a1=1,则数列{a2n+1}中第几项最小?请说明理由;(3)若c n=a n+2a n+1(n=1,2,3,…),求证:“数列{a n}为等差数列”的充分必要(n=1,2,3,…)”.条件是“数列{c n}为等差数列且b n≤b n+12017年上海市黄浦区高考数学一模试卷参考答案与试题解析一、填空题(本大题共有12题,满分54分.其中第1~6题每题满分54分,第7~12题每题满分54分)考生应在答题纸相应编号的空格内直接填写结果.[ 1.若集合A={x||x﹣1|<2,x∈R},则A∩Z={0,1,2} .【考点】交集及其运算.【分析】化简集合A,根据交集的定义写出A∩Z即可.【解答】解:集合A={x||x﹣1|<2,x∈R}={x|﹣2<x﹣1<2,x∈R}={x|﹣1<x<3,x∈R},则A∩Z={0,1,2}.故答案为{0,1,2}.2.抛物线y2=2x的准线方程是.【考点】抛物线的简单性质.【分析】先根据抛物线方程求得p,进而根据抛物线的性质,求得答案.【解答】解:抛物线y2=2x,∴p=1,∴准线方程是x=﹣故答案为:﹣3.若复数z满足(i为虚数单位),则z=1+2i.【考点】复数代数形式的乘除运算.【分析】直接利用复数代数形式的乘除运算化简得答案.【解答】解:由,得z=1+2i.故答案为:1+2i.4.已知sin(α+)=,α∈(﹣,0),则tanα=﹣2.【考点】运用诱导公式化简求值;同角三角函数间的基本关系.【分析】由α∈(﹣,0)sin(α+)=,利用诱导公式可求得cosα,从而可求得sinα与tanα.【解答】解:∵sin(α+)=cosα,sin(α+)=,∴cosα=,又α∈(﹣,0),∴sinα=﹣,∴tanα==﹣2.故答案为:﹣2.5.以点(2,﹣1)为圆心,且与直线x+y=7相切的圆的方程是(x﹣2)2+(y+1)2=18.【考点】圆的切线方程.【分析】由点到直线的距离求出半径,从而得到圆的方程.【解答】解:将直线x+y=7化为x+y﹣7=0,圆的半径r==3,所以圆的方程为(x﹣2)2+(y+1)2=18.故答案为(x﹣2)2+(y+1)2=18.6.若二项式的展开式共有6项,则此展开式中含x4的项的系数是10.【考点】二项式定理的应用.【分析】根据题意求得n=5,再在二项展开式的通项公式中,令x的幂指数等于4,求得r的值,可得展开式中含x4的项的系数.【解答】解:∵二项式的展开式共有6项,故n=5,=•(﹣1)r•x10﹣3r,令10﹣3r=4,∴r=2,则此展开式的通项公式为T r+1中含x4的项的系数=10,故答案为:10.7.已知向量(x,y∈R),,若x2+y2=1,则的最大值为+1.【考点】向量的模.【分析】利用≤+r即可得出.【解答】解:设O(0,0),P(1,2).=≤+r=+1=+1.∴的最大值为+1.故答案为:.8.已知函数y=f(x)是奇函数,且当x≥0时,f(x)=log2(x+1).若函数y=g (x)是y=f(x)的反函数,则g(﹣3)=﹣7.【考点】反函数.【分析】根据反函数与原函数的关系,可知反函数的定义域是原函数的值域,即可求解.【解答】解:∵反函数与原函数具有相同的奇偶性.∴g(﹣3)=﹣g(3),∵反函数的定义域是原函数的值域,∴log2(x+1)=3,解得:x=7,即g(3)=7,故得g(﹣3)=﹣7.故答案为:﹣7.9.在数列{a n}中,若对一切n∈N*都有a n=﹣3a n,且+1=,则a1的值为﹣12.【考点】数列的极限.【分析】由题意可得数列{a n}为公比为﹣的等比数列,运用数列极限的运算,解方程即可得到所求.【解答】解:在数列{a n}中,若对一切n∈N*都有a n=﹣3a n+1,可得数列{a n}为公比为﹣的等比数列,=,可得====,可得a1=﹣12.故答案为:﹣12.10.甲、乙两人从6门课程中各选修3门.则甲、乙所选的课程中至多有1门相同的选法共有200.【考点】排列、组合及简单计数问题.【分析】根据题意,甲、乙所选的课程中至多有1门相同,其包含两种情况:①甲乙所选的课程全不相同,②甲乙所选的课程有1门相同;分别计算每种情况下的选法数目,相加可得答案.【解答】解:根据题意,分两种情况讨论:①甲乙所选的课程全不相同,有C63×C33=20种情况,②甲乙所选的课程有1门相同,有C61×C52×C32=180种情况,则甲、乙所选的课程中至多有1门相同的选法共有180+20=200种情况;故答案为:200.11.已知点O,A,B,F分别为椭圆的中心、左顶点、上顶点、右焦点,过点F作OB的平行线,它与椭圆C在第一象限部分交于点P,若,则实数λ的值为.【考点】直线与椭圆的位置关系.【分析】由题意画出图形,求出的坐标,代入,结合隐含条件求得实数λ的值.【解答】解:如图,A(﹣a,0),B(0,b),F(c,0),则P(c,),∴,,由,得,即b=c,∴a2=b2+c2=2b2,.则.故答案为:.12.已知为常数),,且当x1,x2∈[1,4]时,总有f(x1)≤g(x2),则实数a的取值范围是.【考点】函数恒成立问题.【分析】依题意可知,当x1,x2∈[1,4]时,f(x1)max≤g(x2)min,利用对勾函数的单调性质可求g(x2)min=g(1)=3;再对f(x)=2ax2+2x中的二次项系数a分a=0、a>0、a<0三类讨论,利用函数的单调性质可求得f(x)在区间[1,4]上的最大值,解f(x)max≤3即可求得实数a的取值范围.【解答】解:依题意知,当x1,x2∈[1,4]时,f(x1)max≤g(x2)min,由“对勾'函数单调性知,=2x+=2(x+)在区间[1,4]上单调递增,∴g(x2)min=g(1)=3;∵=2ax2+2x,当a=0时,f(x)=2x在区间[1,4]上单调递增,∴f(x)max=f(4)=8≤3不成立,故a≠0;∴f(x)=2ax2+2x为二次函数,其对称轴方程为:x=﹣,当a>0时,f(x)在区间[1,4]上单调递增,f(x)max=f(4)=8≤3不成立,故a>0不成立;当a<0时,1°若﹣≤1,即a≤﹣时,f(x)在区间[1,4]上单调递减,f(x)max=f(1)=2a+2≤3恒成立,即a≤﹣时满足题意;2°若1<﹣<4,即﹣<a<﹣时,f(x)max=f(﹣)=﹣≤3,解得:﹣<a≤﹣;3°若﹣≥4,即﹣≤a<0时,f(x)在区间[1,4]上单调递增,f(x)max=f(4)=32a+8≤3,解得a≤﹣∉(﹣,0),故不成立,综合1°2°3°知,实数a的取值范围是:(﹣∞,﹣].故答案为:.二、选择题(本大题共有4题,满分20分.)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.13.若x∈R,则“x>1”是“”的()A.充分非必要条件 B.必要非充分条件C.充要条件D.既非充分也非必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】根据充分必要条件的定义判断即可.【解答】解:由x>1,一定能得到得到<1,但当<1时,不能推出x>1 (如x=﹣1时),故x>1是<1 的充分不必要条件,故选:A.14.关于直线l,m及平面α,β,下列命题中正确的是()A.若l∥α,α∩β=m,则l∥m B.若l∥α,m∥α,则l∥mC.若l⊥α,m∥α,则l⊥m D.若l∥α,m⊥l,则m⊥α【考点】空间中直线与直线之间的位置关系;空间中直线与平面之间的位置关系.【分析】在A中,l与m平行或异面;在B中,l与m相交、平行或异面;在C 中,由线面垂直的性质定理得l⊥m;在D中,m与α相交、平行或m⊂α.【解答】解:由直线l,m及平面α,β,知:在A中,若l∥α,α∩β=m,则l与m平行或异面,故A错误;在B中,若l∥α,m∥α,则l与m相交、平行或异面,故B错误;在C中,若l⊥α,m∥α,则由线面垂直的性质定理得l⊥m,故C正确;在D中,若l∥α,m⊥l,则m与α相交、平行或m⊂α,故D错误.故选:C.15.在直角坐标平面内,点A,B的坐标分别为(﹣1,0),(1,0),则满足tan ∠PAB•tan∠PBA=m(m为非零常数)的点P的轨迹方程是()A.B.C.D.【考点】轨迹方程.【分析】设P(x,y),则由题意,(m≠0),化简可得结论.【解答】解:设P(x,y),则由题意,(m≠0),化简可得,故选C.16.若函数y=f(x)在区间I上是增函数,且函数在区间I上是减函数,则称函数f(x)是区间I上的“H函数”.对于命题:①函数是(0,1)上的“H函数”;②函数是(0,1)上的“H函数”.下列判断正确的是()A.①和②均为真命题B.①为真命题,②为假命题C.①为假命题,②为真命题D.①和②均为假命题【考点】命题的真假判断与应用.【分析】对函数,G(x)=在(0,1)上的单调性进行判断,得命题①是真命题.对函数=,H(x)=在(0,1)上单调性进行判断,得命题②是假命题.【解答】解:对于命题①:令t=,函数=﹣t2+2t,∵t=在(0,1)上是增函数,函数y=﹣t2+2t在(0,1)上是增函数,∴在(0,1)上是增函数;G(x)=在(0,1)上是减函数,∴函数是(0,1)上的“H函数“,故命题①是真命题.对于命题②,函数=是(0,1)上的增函数,H(x)=是(0,1)上的增函数,故命题②是假命题;故选:B.三、解答题(本大题共有5题,满分76分.)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.17.在三棱锥P﹣ABC中,底面ABC是边长为6的正三角形,PA⊥底面ABC,且PB与底面ABC所成的角为.(1)求三棱锥P﹣ABC的体积;(2)若M是BC的中点,求异面直线PM与AB所成角的大小(结果用反三角函数值表示).【考点】棱柱、棱锥、棱台的体积;异面直线及其所成的角.【分析】(1)在Rt△PAB中计算PA,再代入棱锥的体积公式计算;(2)取棱AC的中点N,连接MN,NP,分别求出△PMN的三边长,利用余弦定理计算cos∠PMN即可.【解答】解:(1)∵PA⊥平面ABC,∴∠PBA为PB与平面ABC所成的角,即,∵PA⊥平面ABC,∴PA⊥AB,又AB=6,∴,∴.(2)取棱AC的中点N,连接MN,NP,∵M,N分别是棱BC,AC的中点,∴MN∥BA,∴∠PMN为异面直线PM与AB所成的角.∵PA⊥平面ABC,所以PA⊥AM,PA⊥AN,又,AN=AC=3,BM=BC=3,∴AM==3,,,所以,故异面直线PM与AB所成的角为.18.已知双曲线C以F1(﹣2,0)、F2(2,0)为焦点,且过点P(7,12).(1)求双曲线C与其渐近线的方程;(2)若斜率为1的直线l与双曲线C相交于A,B两点,且(O为坐标原点).求直线l的方程.【考点】直线与双曲线的位置关系;双曲线的标准方程.【分析】(1)设出双曲线C方程,利用已知条件求出c,a,解得b,即可求出双曲线方程与渐近线的方程;(2)设直线l的方程为y=x+t,将其代入方程,通过△>0,求出t的范围,设A(x1,y1),B(x2,y2),利用韦达定理,通过x1x2+y1y2=0,求解t即可得到直线方程.【解答】解:(1)设双曲线C的方程为,半焦距为c,则c=2,,a=1,…所以b2=c2﹣a2=3,故双曲线C的方程为.…双曲线C的渐近线方程为.…(2)设直线l的方程为y=x+t,将其代入方程,可得2x2﹣2tx﹣t2﹣3=0(*)…△=4t2+8(t2+3)=12t2+24>0,若设A(x1,y1),B(x2,y2),则x1,x2是方程(*)的两个根,所以,又由,可知x1x2+y1y2=0,…即x1x2+(x1+t)(x2+t)=0,可得,故﹣(t2+3)+t2+t2=0,解得,所以直线l方程为.…19.现有半径为R、圆心角(∠AOB)为90°的扇形材料,要裁剪出一个五边形工件OECDF,如图所示.其中E,F分别在OA,OB上,C,D在上,且OE=OF,EC=FD,∠ECD=∠CDF=90°.记∠COD=2θ,五边形OECDF的面积为S.(1)试求S关于θ的函数关系式;(2)求S的最大值.【考点】函数模型的选择与应用.【分析】(1)设M是CD中点,连OM,推出∠COM=∠DOM=,MD=Rsinθ,利用△CEO≌△DFO,转化求解∠DFO=,在△DFO中,利用正弦定理+S ODF+S OCE=S△COD+2S ODF的解析式即可.,求解S=S△COD(2)利用S的解析式,通过三角函数的最值求解即可.【解答】解:(1)设M是CD中点,连OM,由OC=OD,可知OM⊥CD,∠COM=∠DOM=,,MD=Rsinθ,又OE=OF,EC=FD,OC=OD,可得△CEO≌△DFO,故∠EOC=∠DOF,可知,…又DF⊥CD,OM⊥CD,所以MO∥DF,故∠DFO=,在△DFO中,有,可得…所以S=S+S ODF+S OCE=S△COD+2S ODF=△COD=…(2)…=(其中)…当,即时,sin(2θ+φ)取最大值1.又,所以S的最大值为.…20.已知集合M是满足下列性质的函数f(x)的全体:在定义域内存在实数t,使得f(t+2)=f(t)+f(2).(1)判断f(x)=3x+2是否属于集合M,并说明理由;(2)若属于集合M,求实数a的取值范围;(3)若f(x)=2x+bx2,求证:对任意实数b,都有f(x)∈M.【考点】抽象函数及其应用.【分析】(1)利用f(x)=3x+2,通过f(t+2)=f(t)+f(2)推出方程无解,说明f(x)=3x+2不属于集合M.(2)由属于集合M,推出有实解,即(a﹣6)x2+4ax+6(a﹣2)=0有实解,若a=6时,若a≠6时,利用判断式求解即可.(3)当f(x)=2x+bx2时,方程f(x+2)=f(x)+f(2)⇔3×2x+4bx﹣4=0,令g (x)=3×2x+4bx﹣4,则g(x)在R上的图象是连续的,当b≥0时,当b<0时,判断函数是否有零点,证明对任意实数b,都有f(x)∈M.【解答】解:(1)当f(x)=3x+2时,方程f(t+2)=f(t)+f(2)⇔3t+8=3t+10…此方程无解,所以不存在实数t,使得f(t+2)=f(t)+f(2),故f(x)=3x+2不属于集合M.…(2)由属于集合M,可得方程有实解⇔a[(x+2)2+2]=6(x2+2)有实解⇔(a ﹣6)x2+4ax+6(a﹣2)=0有实解,…若a=6时,上述方程有实解;若a≠6时,有△=16a2﹣24(a﹣6)(a﹣2)≥0,解得,故所求a的取值范围是.…(3)当f(x)=2x+bx2时,方程f(x+2)=f(x)+f(2)⇔2x+2+b(x+2)2=2x+bx2+4+4b ⇔3×2x+4bx﹣4=0,…令g(x)=3×2x+4bx﹣4,则g(x)在R上的图象是连续的,当b≥0时,g(0)=﹣1<0,g(1)=2+4b>0,故g(x)在(0,1)内至少有一个零点;当b<0时,g(0)=﹣1<0,,故g(x)在内至少有一个零点;故对任意的实数b,g(x)在R上都有零点,即方程f(x+2)=f(x)+f(2)总有解,所以对任意实数b,都有f(x)∈M.…21.已知数列{a n},{b n}满足b n=a n+1﹣a n(n=1,2,3,…).(1)若b n=10﹣n,求a16﹣a5的值;(2)若且a1=1,则数列{a2n+1}中第几项最小?请说明理由;(3)若c n=a n+2a n+1(n=1,2,3,…),求证:“数列{a n}为等差数列”的充分必要条件是“数列{c n}为等差数列且b n≤b n+1(n=1,2,3,…)”.【考点】数列与函数的综合;数列的应用;数列递推式.【分析】(1)判断{b n}是等差数列.然后化简a16﹣a5=(a16﹣a15)+(a15﹣a14)+(a14﹣a13)+…+(a6﹣a5)利用等差数列的性质求和即可.(2)利用a2n+3﹣a2n+1=22n+1﹣231﹣2n,判断a2n+3<a2n+1,求出n<7.5,a2n+3>a2n+1求出n>7.5,带带数列{a2n+1}中a17最小,即第8项最小..法二:化简,求出a2n+1=a1+b1+b2+b3+…+b2n=,利用基本不等式求出最小值得到数列{a2n+1}中的第8项最小.(3)若数列{a n}为等差数列,设其公差为d,说明数列{c n}为等差数列.由b n=a n+1﹣a n=d(n=1,2,3,…),推出b n≤b n+1,若数列{c n}为等差数列且b n≤b n+1(n=1,2,3,…),设{c n}的公差为D,转化推出b n+1=b n(n=1,2,3,…),说明数列{a n}为等差数列.得到结果.【解答】解:(1)由b n=10﹣n,可得b n+1﹣b n=(9﹣n)﹣(10﹣n)=﹣1,故{b n}是等差数列.所以a16﹣a5=(a16﹣a15)+(a15﹣a14)+(a14﹣a13)+…+(a6﹣a5)=…(2)a2n+3﹣a2n+1=(a2n+3﹣a2n+2)+(a2n+2﹣a2n+1)=b2n+2+b2n+1=(22n+2+231﹣2n)﹣(22n+1+232﹣2n)=22n+1﹣231﹣2n…由a2n+3<a2n+1⇔22n+1﹣231﹣2n<0⇔n<7.5,a2n+3>a2n+1⇔22n+1﹣231﹣2n>0⇔n>7.5,…故有a3>a5>a7>…>a15>a17<a19<a20<…,所以数列{a2n+1}中a17最小,即第8项最小.…法二:由,…可知a2n+1=a1+b1+b2+b3+…+b2n==…(当且仅当22n+1=233﹣2n,即n=8时取等号)所以数列{a2n+1}中的第8项最小.…(3)若数列{a n}为等差数列,设其公差为d,则c n+1﹣c n=(a n+1﹣a n)+2(a n+2﹣a n+1)=d+2d=3d为常数,所以数列{c n}为等差数列.…由b n=a n+1﹣a n=d(n=1,2,3,…),可知b n≤b n+1(n=1,2,3,…).…若数列{c n}为等差数列且b n≤b n+1(n=1,2,3,…),设{c n}的公差为D,则c n+1﹣c n=(a n+1﹣a n)+2(a n+2﹣a n+1)=b n+2b n+1=D(n=1,2,3,…),…又b n+1+2b n+2=D,故(b n+1﹣b n)+2(b n+2﹣b n+1)=D﹣D=0,又b n+1﹣b n≥0,b n+2﹣b n+1≥0,故b n+1﹣b n=b n+2﹣b n+1=0(n=1,2,3,…),…所以b n+1=b n(n=1,2,3,…),故有b n=b1,所以a n+1﹣a n=b1为常数.故数列{a n}为等差数列.综上可得,“数列{a n}为等差数列”的充分必要条件是“数列{c n}为等差数列且b n ≤b n+1(n=1,2,3,…)”.…2017年2月18日。
【广州】2017广东广州黄埔初三一模【无解析】

2017年黄埔区初中毕业班综合测试数学(本试卷分选择题和非选择题两部分,三大题25小题,共4页,满分150分.考试用时120分钟.) 注意事项:1.答卷前,考生务必在答题卡第1面、第3面上用黑色字迹的钢笔或签字笔填写学校、班级、姓名;填写考生号、座位号,再用2B 铅笔把对应这两个号码的标号涂黑.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号;不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B 铅笔画图.答案必须写在答题卡各题指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;改动的答案也不能超出指定的区域.不准使用铅笔、圆珠笔和涂改液.不按以上要求作答的答案无效. 4.考生必须保持答题卡的整洁,考试结束后,将答题卡交回,本试卷自留.第一部分选择题(共30分)―、选择题(本大题共10小题,每小题3分,满分30分,在每小题给出的四个选项中,有一项是符合题目要求的.)1.5-的相反数是().A .5B .5-C .15D .15-2.如图所示的几何体的左视图是().A .B .C .D .3.下列事件中是必然事件的是().A .打开电视机,正在播广告B .掷一枚质地均匀的骰子,骰子停止后朝上的点数是6C .地球总是绕着太阳转D .今年10月1日,广州市一定会下雨4.化简2(12)a a ---的结果是().A .41a --B .41a -C .1D .1-5.一个等腰三角形的两边长分别为2和5,则它的周长为().A .7B .9C .12D .9或126.一元二次方程2450x x -+=根的情况是().A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根7.如图是某班为贫困地区捐书情况的条形统计图,则这个班平均每名学生捐书()本.A .3B .3.5C .4D .58.已知ABC △,90A ∠=︒,将ABC △绕点A 沿顺时针方向旋转85︒,点B 旋转到点E ,点C 旋转到点F ,得到AEF △.则下列结论错误的是().A .85BAE ∠=︒B .AC AF = C .EF BC =D .85EAF ∠=︒9.已知102x ≤≤,那么函数2286y x x =-+-的最大值是(). A .6- B . 2.5- C .2 D .110.如图,AB 是⊙O 的弦,CD 是⊙O 的直径,15CD =,CD AB ⊥于M ,如果3sin 5ACB ∠=,则AB =().A .24B .12C .9D .6第二部分非选择题(共120分) 二、填空题(本大题共6小题,每小题3分,满分18分.)11.计算32()a 的结果是__________.12.如图,O 为直线AB 上一点,26COB ∠=︒,1∠=__________度.13.分解因式:22m m -=__________.1C B A14.已知命题“如果两个三角形全等,那么这两个三角形的面积相等”.它的逆命题是__________.15.定义新运算:对于任意实数a ,b 都有:()1a b a a b ⊕=-+,其中等式右边是通常的加法、减法及乘法运算.如:252(25)12(3)15⊕=⨯-+=⨯-+=-,那么方程313x ⊕=的解为x =__________.16.如图,在ABC △中90C ∠=︒,AC BC ==,D 是AB 的中点,点E ,F 分别在AC 、BC 上运动(点E 不与点A 、C 重合)且保持AE CF =,连接DE ,DF ,EF .则DE DF CE CF ⋅+⋅=__________.三、解答题(本大题共9小题,满分102分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分9分)解不等式:532x x -≤,并把解集在数轴上表示出来.18.(本小题满分9分)如图,M 为矩形ABCD 边AD 的中点,求证:BM CM =.19.(本小题满分10分)已知()()a b A b a b a a b =---. (1)化简A ;(2)如果a ,b 是方程2320x x -+=的两个根,求A 的值.20.(本小题满分10分)已知点(1,)P a 在反比例函数2y x=的图象上,点P 关于y 轴的对称点P '在一次函数4y kx =+的图象上. (1)求a 的值; (2)求此一次函数的解析式.21.(本小题满分12分)某市“艺术节”期间,小明、小亮都想去观看魔术表演,但是只有一张魔术表演门票,他们决定采用抽卡片的办法确定谁去.规则如下:将正面分别标有数字1、2、3、4的四张卡片(除数字外其余都相同)洗匀后,背面朝上放置在桌面上,随机抽出一张记下数字后放回.然后重新洗匀后背面朝上放回到桌面上,再随机抽出一张记下数字.如果两次抽到的数字之和为奇数,则小明去;如果两次抽到的数字之和为偶数,则小亮去.(1)请用列表或画树状图的方法列举两次抽取卡片,依次记下两个数字所有可能出现的结果; (2)你认为这个规则公平吗?请说明理由.FED CB A x M DCB A22.(本小题满分12分)小明家离学校2千米,平时骑自行车上学.这天自行车坏了,小明只好步行上学,结果这天比平时慢了13小时到学校.已知小明骑自行车的速度是步行的4倍,求小明步行和骑自行车的速度各是多少?23.(本小题满分12分)如图,已知在等腰ABC △中,30A B ∠=∠=︒,CD AC ⊥交AB 于点D . (1)尺规作图:作线段AD 的中点E (保留作图痕迹,不要求写作法).并连接CE ; (2)已知AD =P 是线段BC 上一点,若以P ,D ,B 为顶点的三角形与BCE △相似,DP 的长为多少?24.(本小题满分14分)如图,已知边长为4的正方形ABCD ,点E 是边AB 的中点,点O 是线段AE 上的一个动点(O 不与A 、E 重合),以O 为圆心,OB 为半径的圆与边AD 相交于点M ,过点M 作⊙O 的切线交DC 于点N ,连接OM ,ON .(1)证明:BC 是⊙O 的切线;(2)问OB 为何值时,⊙O 经过AD 的中点?(3)DMN △的周长是否一个定值?请说明理由.第24题第24题备用25.(本小题满分14分)已知直线1l :(0)y kx k =≠;抛物线:21y ax bx =++. (1)若抛物线经过(1,)t ,(3,)t 两点,且抛物线的顶点在直线y x =上,求此时抛物线的顶点坐标; (2)若把直线1l 向上平移2(1)k +个单位长度得到直线2l ,且无论非零实数k 为何值,直线2l 与抛物线都只有一个交点.①求此时抛物线的解析式;②已知MN 是过点(0,2)且平行于x 轴的直线,点P 是此抛物线上的一个动点(点P 不在y 轴上),过点P 作直线PQ y 轴与直线MN 交于点Q ,O 为原点.求证POQ △是等腰三角形.D CBAN。
2017年上海市黄浦区高考一模数学试卷【解析版】

2017年上海市黄浦区高考数学一模试卷一、填空题(本大题共有12题,满分54分.其中第1~6题每题满分54分,第7~12题每题满分54分)考生应在答题纸相应编号的空格内直接填写结果.[ 1.(4分)若集合A={x||x﹣1|<2,x∈R},则A∩Z=.2.(4分)抛物线y2=2x的准线方程是.3.(4分)若复数z满足(i为虚数单位),则z=.4.(4分)已知sin(α+)=,α∈(﹣,0),则tanα=.5.(4分)以点(2,﹣1)为圆心,且与直线x+y=7相切的圆的方程是.6.(4分)若二项式的展开式共有6项,则此展开式中含x4的项的系数是.7.(5分)已知向量(x,y∈R),,若x2+y2=1,则的最大值为.8.(5分)已知函数y=f(x)是奇函数,且当x≥0时,f(x)=log2(x+1).若函数y=g(x)是y=f(x)的反函数,则g(﹣3)=.9.(5分)在数列{a n}中,若对一切n∈N*都有a n=﹣3a n+1,且=,则a的值为.10.(5分)甲、乙两人从6门课程中各选修3门.则甲、乙所选的课程中至多有1门相同的选法共有.11.(5分)已知点O,A,B,F分别为椭圆的中心、左顶点、上顶点、右焦点,过点F作OB的平行线,它与椭圆C在第一象限部分交于点P,若,则实数λ的值为.12.(5分)已知(a为常数),,且当x1,x2∈[1,4]时,总有f(x1)≤g(x2),则实数a的取值范围是.二、选择题(本大题共有4题,满分20分.)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.13.(5分)若x∈R,则“x>1”是“”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件14.(5分)关于直线l,m及平面α,β,下列命题中正确的是()A.若l∥α,α∩β=m,则l∥m B.若l∥α,m∥α,则l∥mC.若l⊥α,m∥α,则l⊥m D.若l∥α,m⊥l,则m⊥α15.(5分)在直角坐标平面内,点A,B的坐标分别为(﹣1,0),(1,0),则满足tan∠P AB•tan∠PBA=m(m为非零常数)的点P的轨迹方程是()A.B.C.D.16.(5分)若函数y=f(x)在区间I上是增函数,且函数在区间I上是减函数,则称函数f(x)是区间I上的“H函数”.对于命题:①函数是(0,1)上的“H函数”;②函数是(0,1)上的“H函数”.下列判断正确的是()A.①和②均为真命题B.①为真命题,②为假命题C.①为假命题,②为真命题D.①和②均为假命题三、解答题(本大题共有5题,满分76分.)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.17.(14分)在三棱锥P﹣ABC中,底面ABC是边长为6的正三角形,P A⊥底面ABC,且PB与底面ABC所成的角为.(1)求三棱锥P﹣ABC的体积;(2)若M是BC的中点,求异面直线PM与AB所成角的大小(结果用反三角函数值表示).18.(14分)已知双曲线C以F1(﹣2,0)、F2(2,0)为焦点,且过点P(7,12).(1)求双曲线C与其渐近线的方程;(2)若斜率为1的直线l与双曲线C相交于A,B两点,且(O为坐标原点).求直线l的方程.19.(14分)现有半径为R、圆心角(∠AOB)为90°的扇形材料,要裁剪出一个五边形工件OECDF,如图所示.其中E,F分别在OA,OB上,C,D在上,且OE=OF,EC=FD,∠ECD=∠CDF=90°.记∠COD=2θ,五边形OECDF的面积为S.(1)试求S关于θ的函数关系式;(2)求S的最大值.20.(16分)已知集合M是满足下列性质的函数f(x)的全体:在定义域内存在实数t,使得f(t+2)=f(t)+f(2).(1)判断f(x)=3x+2是否属于集合M,并说明理由;(2)若属于集合M,求实数a的取值范围;(3)若f(x)=2x+bx2,求证:对任意实数b,都有f(x)∈M.21.(18分)已知数列{a n},{b n}满足b n=a n+1﹣a n(n=1,2,3,…).(1)若b n=10﹣n,求a16﹣a5的值;(2)若且a1=1,则数列{a2n+1}中第几项最小?请说明理由;(3)若c n=a n+2a n+1(n=1,2,3,…),求证:“数列{a n}为等差数列”的充分必要条件是“数列{c n}为等差数列且b n≤b n+1(n=1,2,3,…)”.2017年上海市黄浦区高考数学一模试卷参考答案与试题解析一、填空题(本大题共有12题,满分54分.其中第1~6题每题满分54分,第7~12题每题满分54分)考生应在答题纸相应编号的空格内直接填写结果.[ 1.(4分)若集合A={x||x﹣1|<2,x∈R},则A∩Z={0,1,2}.【解答】解:集合A={x||x﹣1|<2,x∈R}={x|﹣2<x﹣1<2,x∈R}={x|﹣1<x<3,x∈R},则A∩Z={0,1,2}.故答案为{0,1,2}.2.(4分)抛物线y2=2x的准线方程是.【解答】解:抛物线y2=2x,∴p=1,∴准线方程是x=﹣故答案为:x=﹣.3.(4分)若复数z满足(i为虚数单位),则z=1+2i.【解答】解:由,得z=1+2i.故答案为:1+2i.4.(4分)已知sin(α+)=,α∈(﹣,0),则tanα=﹣2.【解答】解:∵sin(α+)=cosα,sin(α+)=,∴cosα=,又α∈(﹣,0),∴sinα=﹣,∴tanα==﹣2.故答案为:﹣2.5.(4分)以点(2,﹣1)为圆心,且与直线x+y=7相切的圆的方程是(x﹣2)2+(y+1)2=18.【解答】解:将直线x+y=7化为x+y﹣7=0,圆的半径r==3,所以圆的方程为(x﹣2)2+(y+1)2=18.故答案为(x﹣2)2+(y+1)2=18.6.(4分)若二项式的展开式共有6项,则此展开式中含x4的项的系数是10.【解答】解:∵二项式的展开式共有6项,故n=5,则此展开式的通项公式为T r+1=•(﹣1)r•x10﹣3r,令10﹣3r=4,∴r=2,中含x4的项的系数=10,故答案为:10.7.(5分)已知向量(x,y∈R),,若x2+y2=1,则的最大值为+1.【解答】解:设O(0,0),P(1,2).=≤+r=+1=+1.∴的最大值为+1.故答案为:.8.(5分)已知函数y=f(x)是奇函数,且当x≥0时,f(x)=log2(x+1).若函数y=g(x)是y=f(x)的反函数,则g(﹣3)=﹣7.【解答】解:∵反函数与原函数具有相同的奇偶性.∴g(﹣3)=﹣g(3),∵反函数的定义域是原函数的值域,∴log2(x+1)=3,解得:x=7,即g(3)=7,故得g(﹣3)=﹣7.故答案为:﹣7.9.(5分)在数列{a n}中,若对一切n∈N*都有a n=﹣3a n+1,且的值为﹣12.=,则a【解答】解:在数列{a n}中,若对一切n∈N*都有a n=﹣3a n+1,可得数列{a n}为公比为﹣的等比数列,=,可得====,可得a1=﹣12.故答案为:﹣12.10.(5分)甲、乙两人从6门课程中各选修3门.则甲、乙所选的课程中至多有1门相同的选法共有200.【解答】解:根据题意,分两种情况讨论:①甲乙所选的课程全不相同,有C63×C33=20种情况,②甲乙所选的课程有1门相同,有C61×C52×C32=180种情况,则甲、乙所选的课程中至多有1门相同的选法共有180+20=200种情况;故答案为:200.11.(5分)已知点O,A,B,F分别为椭圆的中心、左顶点、上顶点、右焦点,过点F作OB的平行线,它与椭圆C在第一象限部分交于点P,若,则实数λ的值为.【解答】解:如图,A(﹣a,0),B(0,b),F(c,0),则P(c,),∴,,由,得,即b=c,∴a2=b2+c2=2b2,.则.故答案为:.12.(5分)已知(a为常数),,且当x1,x2∈[1,4]时,总有f(x1)≤g(x2),则实数a的取值范围是.【解答】解:法1°:依题意知,当x1,x2∈[1,4]时,f(x1)max≤g(x2)min,由“对勾“函数单调性知,=2x+=2(x+)在区间[1,4]上单调递增,∴g(x2)min=g(1)=3;∵=2ax2+2x,当a=0时,f(x)=2x在区间[1,4]上单调递增,∴f(x)max=f(4)=8≤3不成立,故a≠0;∴f(x)=2ax2+2x为二次函数,其对称轴方程为:x=﹣,当a>0时,f(x)在区间[1,4]上单调递增,f(x)max=f(4)=8≤3不成立,故a>0不成立;当a<0时,1°若﹣≤1,即a≤﹣时,f(x)在区间[1,4]上单调递减,f(x)max=f(1)=2a+2≤3恒成立,即a≤﹣时满足题意;2°若1<﹣<4,即﹣<a<﹣时,f(x)max=f(﹣)=﹣≤3,解得:﹣<a≤﹣;3°若﹣≥4,即﹣≤a<0时,f(x)在区间[1,4]上单调递增,f(x)max=f(4)=32a+8≤3,解得a≤﹣∉(﹣,0),故不成立,综合1°2°3°知,实数a的取值范围是:(﹣∞,﹣].法2°:由法1°知g(x2)min=g(1)=3,∵=2ax2+2x,∴当x1∈[1,4]时,f(x1)=2ax2+2x≤3恒成立,∴a≤=(﹣)2﹣,∴当=,即x=3时,=﹣,∴实数a的取值范围是:(﹣∞,﹣].故答案为:.二、选择题(本大题共有4题,满分20分.)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.13.(5分)若x∈R,则“x>1”是“”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件【解答】解:由x>1,一定能得到得到<1,但当<1时,不能推出x>1 (如x=﹣1时),故x>1是<1 的充分不必要条件,故选:A.14.(5分)关于直线l,m及平面α,β,下列命题中正确的是()A.若l∥α,α∩β=m,则l∥m B.若l∥α,m∥α,则l∥mC.若l⊥α,m∥α,则l⊥m D.若l∥α,m⊥l,则m⊥α【解答】解:由直线l,m及平面α,β,知:在A中,若l∥α,α∩β=m,则l与m平行或异面,故A错误;在B中,若l∥α,m∥α,则l与m相交、平行或异面,故B错误;在C中,若l⊥α,m∥α,则由线面垂直的性质定理得l⊥m,故C正确;在D中,若l∥α,m⊥l,则m与α相交、平行或m⊂α,故D错误.故选:C.15.(5分)在直角坐标平面内,点A,B的坐标分别为(﹣1,0),(1,0),则满足tan∠P AB•tan∠PBA=m(m为非零常数)的点P的轨迹方程是()A.B.C.D.【解答】解:设P(x,y),则由题意,(m≠0),化简可得,故选:C.16.(5分)若函数y=f(x)在区间I上是增函数,且函数在区间I上是减函数,则称函数f(x)是区间I上的“H函数”.对于命题:①函数是(0,1)上的“H函数”;②函数是(0,1)上的“H函数”.下列判断正确的是()A.①和②均为真命题B.①为真命题,②为假命题C.①为假命题,②为真命题D.①和②均为假命题【解答】解:对于命题①:令t=,函数=﹣t2+2t,∵t=在(0,1)上是增函数,函数y=﹣t2+2t在(0,1)上是增函数,∴在(0,1)上是增函数;G(x)=在(0,1)上是减函数,∴函数是(0,1)上的“H函数“,故命题①是真命题.对于命题②,函数=是(0,1)上的增函数,H(x)=是(0,1)上的增函数,故命题②是假命题;故选:B.三、解答题(本大题共有5题,满分76分.)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.17.(14分)在三棱锥P﹣ABC中,底面ABC是边长为6的正三角形,P A⊥底面ABC,且PB与底面ABC所成的角为.(1)求三棱锥P﹣ABC的体积;(2)若M是BC的中点,求异面直线PM与AB所成角的大小(结果用反三角函数值表示).【解答】解:(1)∵P A⊥平面ABC,∴∠PBA为PB与平面ABC所成的角,即,∵P A⊥平面ABC,∴P A⊥AB,又AB=6,∴,∴.(2)取棱AC的中点N,连接MN,NP,∵M,N分别是棱BC,AC的中点,∴MN∥BA,∴∠PMN为异面直线PM与AB所成的角.∵P A⊥平面ABC,所以P A⊥AM,P A⊥AN,又,AN=AC=3,BM=BC=3,∴AM==3,,,所以,故异面直线PM与AB所成的角为.18.(14分)已知双曲线C以F1(﹣2,0)、F2(2,0)为焦点,且过点P(7,12).(1)求双曲线C与其渐近线的方程;(2)若斜率为1的直线l与双曲线C相交于A,B两点,且(O为坐标原点).求直线l的方程.【解答】解:(1)设双曲线C的方程为,半焦距为c,则c=2,,a=1,…(2分)所以b2=c2﹣a2=3,故双曲线C的方程为.…(4分)双曲线C的渐近线方程为.…(6分)(2)设直线l的方程为y=x+t,将其代入方程,可得2x2﹣2tx﹣t2﹣3=0(*)…(8分)△=4t2+8(t2+3)=12t2+24>0,若设A(x1,y1),B(x2,y2),则x1,x2是方程(*)的两个根,所以,又由,可知x1x2+y1y2=0,…(11分)即x1x2+(x1+t)(x2+t)=0,可得,故﹣(t2+3)+t2+t2=0,解得,所以直线l方程为.…(14分)19.(14分)现有半径为R、圆心角(∠AOB)为90°的扇形材料,要裁剪出一个五边形工件OECDF,如图所示.其中E,F分别在OA,OB上,C,D在上,且OE=OF,EC=FD,∠ECD=∠CDF=90°.记∠COD=2θ,五边形OECDF的面积为S.(1)试求S关于θ的函数关系式;(2)求S的最大值.【解答】解:(1)设M是CD中点,连OM,由OC=OD,可知OM⊥CD,∠COM=∠DOM=,,MD=R sinθ,又OE=OF,EC=FD,OC=OD,可得△CEO≌△DFO,故∠EOC=∠DOF,可知,…(2分)又DF⊥CD,OM⊥CD,所以MO∥DF,故∠DFO=,在△DFO中,有,可得…(5分)所以S=S+S ODF+S OCE=S△COD+2S ODF=△COD=…(8分)(2)…(10分)=(其中)…(12分)当,即时,sin(2θ+φ)取最大值1.又,所以S的最大值为.…(14分)20.(16分)已知集合M是满足下列性质的函数f(x)的全体:在定义域内存在实数t,使得f(t+2)=f(t)+f(2).(1)判断f(x)=3x+2是否属于集合M,并说明理由;(2)若属于集合M,求实数a的取值范围;(3)若f(x)=2x+bx2,求证:对任意实数b,都有f(x)∈M.【解答】解:(1)当f(x)=3x+2时,方程f(t+2)=f(t)+f(2)⇔3t+8=3t+10…(2分)此方程无解,所以不存在实数t,使得f(t+2)=f(t)+f(2),故f(x)=3x+2不属于集合M.…(4分)(2)由属于集合M,可得方程有实解⇔a[(x+2)2+2]=6(x2+2)有实解⇔(a ﹣6)x2+4ax+6(a﹣2)=0有实解,…(7分)若a=6时,上述方程有实解;若a≠6时,有△=16a2﹣24(a﹣6)(a﹣2)≥0,解得,故所求a的取值范围是.…(10分)(3)当f(x)=2x+bx2时,方程f(x+2)=f(x)+f(2)⇔2x+2+b(x+2)2=2x+bx2+4+4b⇔3×2x+4bx﹣4=0,…(12分)令g(x)=3×2x+4bx﹣4,则g(x)在R上的图象是连续的,当b≥0时,g(0)=﹣1<0,g(1)=2+4b>0,故g(x)在(0,1)内至少有一个零点;当b<0时,g(0)=﹣1<0,,故g(x)在内至少有一个零点;故对任意的实数b,g(x)在R上都有零点,即方程f(x+2)=f(x)+f(2)总有解,所以对任意实数b,都有f(x)∈M.…(16分)21.(18分)已知数列{a n},{b n}满足b n=a n+1﹣a n(n=1,2,3,…).(1)若b n=10﹣n,求a16﹣a5的值;(2)若且a1=1,则数列{a2n+1}中第几项最小?请说明理由;(3)若c n=a n+2a n+1(n=1,2,3,…),求证:“数列{a n}为等差数列”的充分必要条件是“数列{c n}为等差数列且b n≤b n+1(n=1,2,3,…)”.【解答】解:(1)由b n=10﹣n,可得b n+1﹣b n=(9﹣n)﹣(10﹣n)=﹣1,故{b n}是等差数列.所以a16﹣a5=(a16﹣a15)+(a15﹣a14)+(a14﹣a13)+…+(a6﹣a5)=…(4分)(2)a2n+3﹣a2n+1=(a2n+3﹣a2n+2)+(a2n+2﹣a2n+1)=b2n+2+b2n+1=(22n+2+231﹣2n)﹣(22n+1+232﹣2n)=22n+1﹣231﹣2n…(6分)由a2n+3<a2n+1⇔22n+1﹣231﹣2n<0⇔n<7.5,a2n+3>a2n+1⇔22n+1﹣231﹣2n>0⇔n>7.5,…(8分)故有a3>a5>a7>…>a15>a17<a19<a20<…,所以数列{a2n+1}中a17最小,即第8项最小.…(10分)法二:由,…(5分)可知a2n+1=a1+b1+b2+b3+…+b2n==…(8分)(当且仅当22n+1=233﹣2n,即n=8时取等号)所以数列{a2n+1}中的第8项最小.…(10分)(3)若数列{a n}为等差数列,设其公差为d,则c n+1﹣c n=(a n+1﹣a n)+2(a n+2﹣a n+1)=d+2d=3d为常数,所以数列{c n}为等差数列.…(12分)由b n=a n+1﹣a n=d(n=1,2,3,…),可知b n≤b n+1(n=1,2,3,…).…(13分)若数列{c n}为等差数列且b n≤b n+1(n=1,2,3,…),设{c n}的公差为D,则c n+1﹣c n=(a n+1﹣a n)+2(a n+2﹣a n+1)=b n+2b n+1=D(n=1,2,3,…),…(15分)又b n+1+2b n+2=D,故(b n+1﹣b n)+2(b n+2﹣b n+1)=D﹣D=0,又b n+1﹣b n≥0,b n+2﹣b n+1≥0,故b n+1﹣b n=b n+2﹣b n+1=0(n=1,2,3,…),…(17分)所以b n+1=b n(n=1,2,3,…),故有b n=b1,所以a n+1﹣a n=b1为常数.故数列{a n}为等差数列.综上可得,“数列{a n}为等差数列”的充分必要条件是“数列{c n}为等差数列且b n≤b n+1(n=1,2,3,…)”.…(18分)。
上海市各市县2017届中考数学试题分类汇编-初三一模锐角三角比
上海市各市县2017届中考数学试题分类汇编初三一模解直角三角形的应用题型一:锐角三角比的概念【2017年奉贤一模3】如果把一个锐角ABC △的三边的长都扩大为原来的3倍,那么锐角A 的余切值( )(A )扩大为原来的3倍;(B )缩小为原来的13;(C )没有变化;(D )不能确定; 【参考答案】C【2017年嘉定一模2】在ABC Rt △中,︒90=C ∠,5=AB ,3=AC ,下列选项中正确的是( )A 、53sin =AB 、53cos =AC 、53tan =AD 、53cot =A 【参考答案】B【2017年奉贤一模2】如果在Rt ABC △中,=90C ∠︒,2AC =,3BC =,那么下列各式正确的是( )(A )2tan 3B =;(B )2cos 3B =;(C )2sin 3B =;(D )2cot 3B =; 【参考答案】A【2017年静安一模4】在ABC Rt ∆中,, 90=∠C 如果m AB =,,α=∠A 那么AC 的长为( )A.αsin ⋅mB.αcos ⋅mC.αtan m ⋅D.αcot ⋅m【参考答案】B【2017年浦东新区一模3】已知在Rt ABC ∆中,90O C ∠=,A α∠=,2BC =,那么AB 的长等于( )(A )2sin α; (B )2sin α; (C )2cos α; (D )2cos α 【参考答案】A【2017年松江一模1】已知在Rt △ABC 中,90C ∠=︒,如果BC =2,∠A =α ,则AC 的长为( )(A )2sin α; (B )2cos α; (C )2tan α; (D )2cot α.【参考答案】D【2017年崇明一模2】在ABC R △t 中,,13,1290∠==°=BC AC A ,那么B tan 的值是( )125.A 512.B 1312.C 135.D 【参考答案】B【2017年长宁、金山一模2】在ABC ∆中,90C ∠=︒,5AB =,4BC =,那么A ∠的正弦值是( ) A. 34 B.43 C. 35 D. 45【参考答案】D【2017年虹口一模1】如图,在Rt ABC ∆中,=90C ︒∠,A ∠、B ∠和C ∠的对边分别是a 、b 和c ,下列锐角三角比中,值为cb 的是( ) .sin A A .cos B A .t a n C A .c o t D A【参考答案】B【2017年闵行一模2】在Rt △ABC 中,90C ︒∠=,CD AB ⊥,垂足为点D ,下列四个三角比正确的是( )A. sin AC A AB =B. cos AD A AC =C. tan CD A BD =D. cot CD A AD= 【参考答案】B【2017年长宁、金山一模11】设α是锐角,如果tan 2α=,那么cot α=___________. 【参考答案】12【2017年嘉定一模11】在ABC Rt △中,︒=∠90C ,如果1tan 2A ∠=,那么sin A ∠= . 【参考答案】55【2017年松江一模11】已知在△ABC 中,90C ∠=︒,sin A =34,BC =6,则AB 的长为____________. 【参考答案】8【2017年宝山一模10】如图,ABC △中,=90C ∠︒,若CD AB ⊥于D ,且=4BD ,=9AD ,则tan A ;【参考答案】23题型二:特殊角的三角比的值【2017年宝山一模1】已知30A ∠=︒,下列判断正确的是( ) A 、1sin 2A ∠=; B 、1cos 2A ∠=; C 、1tan 2A ∠=; D 、1cot 2A ∠=【参考答案】A【2017年静安一模5】如果锐角α的正弦值为33,那么下列结论中正确的是( ) A. 30=α B. 60=α C. 30<α< 45 D. 6045<<α【参考答案】C【2017年黄浦一模11】计算:sin 60tan30︒︒⋅= 【参考答案】12【2017年杨浦一模15】已知α为锐角,tan 2cos30α︒=,那么α= 度【参考答案】60【2017年宝山一模19】 计算:0cot 45cos30(2007)tan 602sin 45π︒-︒+-︒-︒【参考答案】3212++ 【2017年奉贤一模19】 计算:24cos 30cot 45tan 602sin 45︒-︒︒+︒【参考答案】2232-【2017年嘉定一模19】计算:sin30tan30+ cos60cot30 【参考答案】233【2017年静安一模19】 计算:cos30sin 4tan 0cot 4︒+5︒6︒-5︒【参考答案】63234+++ 【2017年浦东新区一模19】 计算:212cos 30sin 30cot 302sin 45-+- 【参考答案】1+3+2【2017年普陀一模19】 计算:2cot 30cos 453tan 302sin 601+-⋅+ 【参考答案】312-【2017年松江一模19】计算:()sin 603tan 30cos 602cos 451cot 30+⋅-⋅ 【参考答案】21+【2017年徐汇一模19】计算:2tan 45sin 60cot 30cot 45cos301--+- 【参考答案】323--【2017年长宁、金山一模19】计算:21tan 45sin 30tan 30cos 60cot 303sin 45︒︒⋅︒-︒⋅︒+︒ 【参考答案】2【2017年崇明一模19】计算: 2tan 45sin 30cot 602sin 453tan 60⋅+-【参考答案】56【2017年虹口一模19】 计算:22cot 304sin 452cos 30cos 60︒-︒︒-︒【参考答案】223-题型三:解直角三角形【2017年闵行一模13】已知在Rt △ABC 中,90C ︒∠=,6BC =,2sin 3A =,那么AB = 【参考答案】9【2017年普陀一模17】 如果等腰三角形的腰与底边的比是5:6,那么底角的余弦值等于 ;【参考答案】35【2017年静安一模14】在ABC ∆中,如果10==AC AB ,54cos =B ,那么ABC ∆的重心到底边的距离为________. 【参考答案】2【2017年嘉定一模10】如图2,在平面直角坐标系y x O 内有一点Q ,5=OQ ,射线OQ 与x 轴正半轴的夹角为α,如果4sin 5α=,那么点Q 的坐标为 . 图2O xy Q【参考答案】(3,4)【2017年杨浦一模21】已知:如图,梯形ABCD 中,AD ∥BC ,ABD C ∠=∠,4AD =,9BC =,锐角DBC ∠的正弦值为23; (1)求对角线BD 的长;(2)求梯形ABCD 的面积;【参考答案】(1)6BD =;(2)26;【2017年青浦一模21】已知:如图5,在平面直角坐标系xoy 中,反比例函数xy 8=的图像与正比例函数)0(≠=k kx y 的图像相交于横坐标为2的点A ,平移直线OA ,使它经过点B (3,0),与y 轴交于点C 。
2017年上海数学一模专题汇编——三角函数
1、(静安一模)函数2()13sin 4f x x π⎛⎫=-+⎪⎝⎭的最小正周期为 . 2、(静安一模)已知α为锐角,且3cos(),45πα+=则sin α= . 3、(黄浦一模)已知1sin()23πα+=,(,0)2πα∈-,则tan α的值为 4、(长宁嘉定一模)函数sin()3y x πω=-(0ω>)的最小正周期是π,则ω=5、(金山一模)如果5sin 13α=-,且α为第四象限角,则tan α的值是 6、(金山一模)函数cos sin ()sin cos x x f x x x=的最小正周期是7、(闵行一模)集合{|cos(cos )0,[0,]}x x x ππ=∈= (用列举法表示)8、(浦东一模)函数()cos sin )f x x x x x =+-的最小正周期为 9、(普陀一模)若22ππα-<<,3sin 5α=,则cot 2α= 10、(松江一模)已知(sin ,cos )a x x =,(sin ,sin )b x x =,则函数()f x a b =⋅的最小正周期为11、(虹口一模)设函数()sin cos f x x x =-,且()1f a =,则sin 2a =12、(虹口一模)已知角A 是ABC ∆的内角,则“1cos 2A =”是“sin A =”的 条件(填“充分非必要”、“必要非充分”、“充要条件”、“既非充分又非必要”之一)13、(杨浦一模)若ABC ∆中,4a b +=,o30C ∠=,则ABC ∆面积的最大值是 。
14、(宝山一模)若函数cos sin sin cos x x y x x=的最小正周期为a π,则实数a 的值为 。
15、(崇明一模)已知,A B 分别是函数()2sin f x x ω=(0)ω>在y 轴右侧图像上的第一个 最高点和第一个最低点,且2AOB π∠=,则该函数的最小正周期是 。
16、(奉贤一模)已知函数()sin cos f x x x ωω=+(0)ω>,x R ∈,若函数()f x 在区间 (,)ωω-内单调递增,且函数()f x 的图像关于直线x ω=对称,则ω的值为 。
2015-2017年 上海初三 数学一模 第18题专题
上海市初三一模考试 第18题汇总【★】1. [2017虹口一模] 如图,在梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD =1,BC =3,点P 是边AB 上一点,如果把△BCP 沿折痕CP 向上翻折,点B 恰好与点D 重合,那么sin ∠ADP 为__________.DCB A AB C DC BA第1题图 第2题图 第3题图2. [2017嘉定一模] 在Rt △ABC 中,D 是斜边AB 的中点,点M 、N 分别在边AC 、BC 上,将△CMN 沿直线MN 翻折,使得点C 的对应点E 落在射线CD 上. 如果∠B =α,那么∠AME 的度数为__________.(用含α的代数式表示)3. [2017静安一模] 如图,一张直角三角形纸片ABC ,∠C =90°,AB =24,tan B =32,将它折叠使直角顶点C 与斜边AB 的中点重合,那么折痕的长为__________.4. [2017 闵行一模] 如图,已知△ABC 是边长为2的等边三角形,点D 在边BC 上,将△ABD 沿着直线AD 翻折,点B 落在点B 1处,如果B 1D ⊥AC ,那么BD =__________.DCA BEDACBMNAB CD E第4题图 第5题图 第6题图5. [2017松江一模] 如图,在△ABC 中,∠ACB =90°,AB =9,cos B =32,把△ABC 绕着点C 旋转,使点B 与AB 边上的点D 重合,点A 落在点E ,则点A 、E 之间的距离为__________.6. [2016长宁、金山一模] 如图,ABCD 为正方形,E 是BC 边上一点,将正方形折叠,使A 点与E 点重合,折痕为MN ,如果tan ∠AEN =31,DC +CE =10,那么△ANE 的面积为__________.7. [2016松江一模] 已知在△ABC 中,∠C =90°,BC =3,AC =4,点D 是AB 边上一点,将△ABC 沿着直线CD 翻折,点A 落在直线AB 上的点'A 处,则CD A'sin ∠=__________. 8. [2016徐汇一模] 如图,在Rt △ABC 中,∠BAC =90°,AB =3,53cos =B ,将△ABC 绕着点A 旋转得△ADE ,点B 的对应点D 落在边BC 上,联结CE ,那么CE 的长是__________.AB CDEA BCD第8题图 第9题图 第10题图9. [2016嘉定一模] 如图,在梯形ABCD 中,AD ∥BC ,∠ABC =90°,AB =CB ,4tan 3C ∠=,点E 在边CD 上运动,联结BE. 如果EC =EB ,那么DECD的值是__________. 10. [2015长宁一模] 如图,正方形ABCD 绕点A 逆时针旋转,得到正方形'D C'AB'. 当两个正方形重叠部分的面积是原正方形面积的41时,1sin '2B AD ∠=__________. 11. [2015金山一模] 如图,在Rt △ABC 中,∠C =90°,AC =4,BC =3. 将△ABC 绕着点C 旋转90°,点A 、B 的对应点分别是D 、E ,那么ADE ∠tan 的值为__________.12. [2015崇明一模] 如图,将边长为6cm 的正方形ABCD 折叠,使点D 落在AB 边的中点E 处,折痕为FH ,点C 落在Q 处,EQ 与BC 交于点G ,那么△EBG 的周长是__________cm.B CAQFEGHABCD第11题图 第12题图13. [2015嘉定一模] 在△ABC 中,AB =9,AC =5,AD 是∠BAC 的平分线交BC 于点D ,△ABD 沿直线AD 翻折 后,点B 落到点B 1处,如果BAC DC B ∠=∠211,那么BD =__________. DABCEDAB C第13题图 第14题图 第15题图14. [2015闸北一模] 如图,在Rt △ABC 中,∠C =90°,点D 在边AB 上,线段DC 绕点D 逆时针旋转,端点C 恰巧落在边AC 上的点E 处. 如果m DB AD =,n ECAE=,那么m 与n 满足的关系式是:m =__________.(用含n 的代数式表示m )15. [2015虹口一模] 如图,在平行四边形ABCD 中,过点A 作AE ⊥BC ,垂足为E ,联结DE ,F 为线段DE 上一点,且∠AFE =∠B. 若AB =5,AD =8,AE =4,则AF 的长为__________.16. [2015奉贤一模] 已知在△ABC 中,∠C =90°,AC =3,BC =4. 在平面内将△ABC 绕B 点旋转,点A 落到'A ,点C 落到'C ,若旋转后点C 的对应点'C 和点A 、点B 正好在同一直线上,那么∠AC'A'的正切值等于__________.【★★】17. [2017奉贤一模] 如图,在矩形ABCD 中,AB =6,AD =3,点P 是边AD 上的一点,联结BP ,将△ABP 沿着BP 所在直线翻折得到△EBP ,点A 落在点E 处,边BE 与边CD 相交于点G ,如果CG =2DG ,那么DP 的长是__________.GPE D CBAC'AB CDB'PQ ABCDE第17题图 第18题图 第19题图18. [2017浦东新区一模] 如图,在Rt △ABC 中,∠C =90°,∠B =60°,将△ABC 绕点A 逆时针旋转60°,点B 、C 分别落在点B'、'C 处,联结'BC 与AC 边交于点D ,那么'DC BD=__________. 19. [2017普陀一模] 如图,DE ∥BC ,且过△ABC 的重心,分别与AB 、AC 交于点D 、E ,点P 是线段DE 上一点,CP 的延长线交AB 于点Q ,如果41DE DP ,那么CPE DPQ △△:S S 的值是__________. 20. [2017杨浦一模] 如图,△ABC 中,AB =AC =5,BC =6,BD ⊥AC 于点D ,将△BCD 绕点B 逆时针旋转,旋转角的大小与∠CBA 相等,如果点C 、D 旋转后分别落在点E 、F 的位置,那么∠EFD 的正切值是__________. 21. [2016普陀一模] 已知A(3,2)是平面直角坐标中的一点,点B 是x 轴负半轴上一动点,联结AB ,并以A B 为边在x 轴上方作矩形ABCD ,且满足BC :AB =1:2. 设点C 的横坐标是a ,如果用含a 的代数式表示D 点的坐标,那么D 点的坐标是__________.22. [2016浦东新区一模] 在△ABC 中,AB =5,AC =4,BC =3,D 是边AB 上的一点,E 是边AC 上的一点(D 、E 均与端点不重合),如果△CDE 与△ABC 相似,那么CE =__________.DCBA第20题图23. [2016奉贤一模] 如图,已知平行四边形ABCD 中,AB =52,AD =6,21B cot =,将边AB 绕点A 旋转,使得点B 落在平行四边形ABCD 的边上,其对应点为B'(点B'不与点B 重合),那么sin ∠CAB'=__________.DCB APA B F ECDA BCD第23题图 第24题图 第25题图24. [2016闵行一模] 将一副三角尺如图摆放,其中在Rt △ABC 中,∠ACB =90°,∠B =60°,在Rt △EDF 中,∠EDF =90°,∠E =45°. 点D 为边AB 的中点,DE 交AC 于点P ,DF 经过点C ,将△EDF 绕点D 顺时针方向旋转角α(︒<<︒600α)后得到DF'E'△,DE'交AC 于点M ,DF'交BC 于点N ,那么CNPM的值为__________. 25. [2016静安、青浦一模] 将□ABCD 绕点A 旋转后,点D 落在边AB 上的点D',点C 落到'C ,且点'C 、B 、C 在一直线上,如果AB =13,AD =3,那么∠A 的余弦值为__________.26. [2016杨浦一模] 如图,已知△ABC 沿角平分线BE 所在的直线翻折,点A 恰好落在边BC 的中点M 处,且AM =BE ,那么∠EBC 的正切值是__________.ECB AA BCDEDCBA第26题图 第27题图 第28题图27. [2016闸北一模] 如图,将一张矩形纸片ABCD 沿着过点A 的折痕翻折,使点B 落在边AD 上的点F ,折痕交BC 于点E ,将折叠后的纸片再次沿着另一条过点A 的折痕翻折,点E 恰好与点D 重合,此时折痕交DC 于点G ,则CG :GD 的值为__________.28. [2016虹口一模] 如图,在矩形ABCD 中,AB =6,AD =10,点E 是边BC 的中点,联结AE ,若将△ABE 沿AE 翻折,点B 落在点F 处,联结FC ,则cos ∠ECF =__________.29. [2015 浦东、松江、闵行、杨浦、(静安、青浦)一模] 把一个三角形绕其中一个顶点逆时针旋转并放大或缩小(这个顶点不变),我们把这样的三角形运动称为三角形的T —变换,这个顶点称为T —变换中心,旋转角称为T —变换角,三角形与原三角形的对应边之比称为T —变换比. 已知△ABC 在直角坐标平面内,点A(0,-1),B )23(,,C(0,2),将△ABC 进行T —变换,T —变换中心为点A ,T —变换角为60°,T —变换比为23,那么经过T —变换后点C 所对应的点的坐标为__________.30. [2015 徐汇一模] 如图,在△ABC 中,∠ABC =90°,AB =6,BC =8. 点M 、N 分别在边AB 、BC 上,沿直线MN 将△ABC 折叠,点B 落在点P 处,如果AP ∥BC 且AP =4,那么BN =__________.第30题图【★★★】31. [2017 宝山一模] 如图,D 为直角△ABC 的斜边AB 上一点,DE ⊥AB 交AC 于E ,如果△AED 沿DE 翻折,A 恰好与B 重合,联结CD 交BE 于F ,如果AC =8,tan A =21,那么CF :DF =__________. FABCDEFAB CDEHMN DCBA第31题图 第32题图 第33题图32. [2017崇明一模] 如图,已知△ABC 中,∠ABC =45°,AH ⊥BC 于点H ,点D 在AH 上,且DH =CH ,联结BD ,将△BHD 绕点H 旋转,得到△EHF (点B 、D 分别与点E 、F 对应),联结AE. 当点F 落在AC 上时(F 不与C 重合),如果BC =4,tanC =3,那么AE 的长为__________.33. [2017黄浦一模] 如图,菱形ABCD 形内两点M 、N ,满足MB ⊥BC ,MD ⊥DC ,NB ⊥BA ,ND ⊥DA ,若四边形BMDN 的面积是菱形ABCD 面积的15,则cos A =__________. 34. [2017金山、长宁一模] 如图,在△ABC 中,∠C =90°,AC =8,BC =6,D 是AB 的中点,点E 在边AC 上,将△ADE 沿DE 翻折,使得点A 落在点A'处,当A'E ⊥AC 时,A'B =__________.A BCQDFEPAB C第34题图 第35题图 第36题图35. [2017青浦一模] 如图,已知△ABC ,将△ABC 绕点A 顺时针旋转,使点C 落在边AB 上的点E 处,点B 落在点D 处,连接BD ,如果∠DAC =∠DBA ,那么ABBD的值是__________. 36. [2017徐汇一模] 如图,在□ABCD 中,AB :BC =2:3,点E 、F 分别在边CD 、BC 上,点E 是边CD 的中点,CF =2BF ,∠A =120°,过点A 分别作AP ⊥BE 、AQ ⊥DF ,垂足分别为P 、Q ,那么AQAP的值是__________.37. [2016崇明一模] 如图,等边△ABC 中,D 是边BC 上一点,且BD :DC =1:3,把△ABC 折叠,使点A 落在边BC 上的点D 处,那么ANAM的值为__________. DCMNBAABDCEAB DCE第37题图 第38题图 第39题图38. [2016黄浦一模] 如图,在梯形ABCD 中,AD ∥BC ,∠B =45°,点E 是AB 的中点,DE =DC ,∠EDC =90°.若AB=2,则AD 的长是__________.39. [2016宝山一模] 如图,在等边△ABC 内有一点D ,AD =5,BD =6,CD =4,将△ABD 绕A 点逆时针旋转, 使AB 与AC 重合,点D 旋转至点E ,则∠CDE 的正弦值为__________.40. [2016宝山一模] 如图,抛物线322--=x x y 交x 轴于A (-1,0)、B (3,0),交y 轴于C (0,-3),M 是抛物线的顶点,现将抛物线沿平行于y 轴的方向向上平移三个单位,则曲线CMB 在平移过程中扫过的面积为 __________(面积单位).第40题图41. [2015普陀一模] 如图,已知△ABC 中,AB =AC ,tan B =2,AD ⊥BC 于点D ,G 是△ABC 的重心,将△ABC 绕着重心G 旋转,得到△A 1B 1C 1,并且点B 1在直线AD 上,联结CC 1,那么tanCC 1B 1的值等于__________.ABDCEMHNA BDCE第41题图 第42题图 第43题图42. [2015黄浦一模] 如图,在梯形ABCD 中,AD ∥BC ,BE ⊥CD ,垂足为E ,联结AE ,∠AEB =∠C ,且 cos ∠C =52. 若AD =1,则AE 的长是__________. 43. [2015宝山一模] 如图,直角梯形ABCD 中,AD ∥BC ,CD =2,AB =BC ,AD =1,动点M 、N 分别在AB 边和BC 边的延长线上运动,而且AM =CN ,联结AC 交MN 于E ,MH ⊥AC 于H ,则EH =___________.。
2017届上海初三数学各区一模压轴题汇总(15套全)
2016~2017学年度上海市各区初三一模数学压轴题汇总(18+24+25)共15 套整理廖老师宝山区一模压轴题18 (宝山)如图,D为直角DABC的斜边AB上一点,DE A AB交AC于E,如果DAED沿着DE翻折,A恰1好与B重合,联结CD交BE于F,如果AC= 8,tan A = 1,那么CF : DF = .23224 (宝山)如图,二次函数y二ax - x+ 2 (a? 0)的图像与x轴交于A、B两点,与y轴交于点C ,已知点2A(- 4,0).(1 )求抛物线与直线AC的函数解析式;(2)若点D(m , n)是抛物线在第二象限的部分上的一动点,四边形OCDA的面积为S,求S关于m的函数关系;(3)若点E为抛物线上任意一点,点F为x轴上任意一点,当以A、C、E、F为顶点的四边形是平行四边形时,请直接写出满足条件的所有点E的坐标.25 (宝山)如图(1)所示,E为矩形ABCD的边AD上一点,动点P、Q同时从点B出发,点P以1cm/s的速度沿着折线BE- ED- DC运动到点C时停止,点Q以2cm/s的速度沿着BC运动到点C时停止。
设P、Q同时2出发t秒时,D BPQ的面积为ycm,已知y与t的函数关系图像如图(2)(其中曲线0G为抛物线的一部分,其余各部分均为线段)•(1)试根据图(2 )求0<t?5时,DBPQ的面积y关于t的函数解析式;(2)求出线段BC、BE、ED的长度;(3)当t为多少秒时,以B、P、Q为顶点的三角形和DABE相似;(4)如图(3)过点E作EF A BC于F , DBEF绕点B按顺时针方向旋转一定角度,如果 D BEF中E、F的对应(2)第25题点H、丨恰好和射线BE、CD的交点G在一条直线,求此时C、I两点之间的距离.DC(1)崇明县一模压轴题18(崇明)如图,已知ABC中,ABC 45°, AH丄BC于点H,点D在AH上,且DH CH,联结BD,将VBHD绕点H旋转,得到EHF (点B、D分别与点E、F对应),联结AE ,当点F落在AC上时,(F不与C重合)如果BC 4,tanC 3,那么AE的长为___________________ ;3 c24 (崇明)在平面直角坐标系中,抛物线y -x2bx c与y轴交于点A(0,3),与x轴的正半轴交于点B(5,0),5点D在线段0B上,且0D 1,联结AD、将线段AD绕着点D顺时针旋转90,得到线段DE,过点E作直线l x 轴,垂足为H,交抛物线于点F .(1)求这条抛物线的解析式;(2)联结DF,求cot EDF的值;(3)点G在直线I上,且EDG 45,求点G的坐标.25 (崇明)在ABC中,ACB 90 , cot A - , AC 6 2,以BC为斜边向右侧作等腰直角EBC , P是BE延2长线上一点,联结PC,以PC为直角边向下方作等腰直角PCD , CD交线段BE于点F,联结BD .CD BC (2) 若PE x , BDP 的面积为y ,求y 关于x 的函数解析式,并写出定义域;(3) 当 BDF 为等腰三角形时,求 PE 的长.奉贤区一模压轴题18 (奉贤)如图3,在矩形ABCD 中, AB=6, AD=3,点P 是边AD 上的一点,联结 BP,将厶ABP 沿着BP 所在直线翻折 得到△ EBP 点A 落在点E 处,边BE 与边CD 相交于点 G 如果CG=DG 那么DP 的长是 _________________ .PC CE (1)求证:325 (奉贤)已知,如图 8, Rt A ABC 中, Z ACB 90° BC=8, cot Z BA(=-,点 D 在边 BC 上(不与点 B 、C 重合),点 E4 在边BC 的延长线上, Z DAE Z BAC 点F 在线段 AE 上,Z ACF Z B.设BDx .24 (奉贤)如图,在平面直角坐标系中xOy 中,抛物线y 交于点C (0,3),抛物线的顶点为点 D, 联结AC BG DB(1) 求这条抛物线的表达式及顶点D 的坐标; (2) 求证: △AC3ADBC(3) 如果点 E 在x 轴上,且在点2 x bx c 与x 轴相交于点A (-1,0)和点B,与y 轴相 DC B 的右侧,/ BCE M ACO 求点E 的坐标。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.
8.计算: 2 a 2b 3 a b =
.
9.已知点 P 是线段 AB 的黄金分割点(AP>BP),若 AB=2,则 AP BP=
.
10.已知二次函数 y f x的图像开口向上,对称轴为直线 x=4,则 f 1
f 5(. 填“>”
或“<”)
11.计算: sin 60 tan 30
2.50
3.60
?
(A)3.60 和 2.40; (B)2.56 和 3.00; (C)2.56 和 2.88; (D)2.88 和 3.00.
A
C
图2
图3
图4
B
图5
CA
B
图6
二、填空题:(本大题共 12 题,每题 4 分,满分 48 分)
7.已知线段 a 是线段 b、c 的比例中项,如果 a=3,b=2,那么 c=
AE∶EB=2∶1.
(1)求线段 EF 的长;(2)设 AB a , AD b ,试用 a 、 b 表示向量 EC .
B
C
E
F
A
D
图 11
21.如图 12,在△ABC 中,∠ACB=90°,AB=5,tanA= 1 ,将△ABC 沿直线 l 翻折,恰好使 2
点 A 与点 B 重合,直线 l 分别交边 AB、AC 于点 D、E.
(D) AD BC AB DE .
A
D B
图1
E C
3.已知一个坡的坡比为 i,坡角为 ,则下列等式成立的是(
)
(A) i sin ;
(B) i cos ;
(C) i tan ;
(D) i cot .
4.已知向量 a 和 b 都是单位向量,则下列等式成立的是( )
(1)求△ABC 的面积;(2)求 sin∠CBE 的值.
B
l
D
C
图 12
E
A
第3页共6页
22.(本题满分 10 分) 如图,在坡 AP 的坡脚 A 处竖有一根电线杆 AB,为固定电线杆在地面 C 处和坡面 D 处
各装一根等长的引拉线 BC 和 BD,过点 D 作地面 MN 的垂线 DH,H 为垂足,已知点 C、A、 H 在一直线上.若测得 AC=7 米,AD=12 米,坡角为 30°.试求电线杆 AB 的高度.(精确到 0.1 米)
y
O
x
图 16
第5页共6页
25.如图 17,△ABC 边 AB 上点 D、E(不与点 A、B 重合),满足∠DCE=∠ABC.已知∠ACB=90°, AC=3,BC=4. (1)当 CD⊥AB 时,求线段 BE 的长; (2)当△CDE 是等腰三角形时,求线段 AD 的长; (3)设 AD=x,BE=y,求 y 关于 x 的函数关系式,并写出定义域.
(A) a b ; (B) a b 2 ;
(C) a b 0 ; (D) a b 0 .
5.已知二次函数 y x 2 ,将它的图像向左平移 2 个单位,再向上平移 3 个单位,则所得图
像的表达式是( )
(A) y x 22 3 ;
(B) y x 22 3 ;
B
B
E
A
D
图 14
C
A
D
图 15
F C
第4页共6页
24.在平面直角坐标系 xOy 中,对称轴平行于 y 轴的抛物线过点 A(1,0)、B(3,0)和 C(4,6). (1)求抛物线的表达式; (2)现将此抛物线先沿 x 轴方向向右平移 6 个单位,再沿 y 轴方向平移 k 个单位,若所得 抛物线与 x 轴交于点 D、E(点 D 在点 E 的左边),且使△ACD∽△AEC(顶点 A、C、D 依 次对应顶点 A、E、C),试求 k 的值,并注明方向.
.
12.已知 G 是等腰直角△ABC 的重心,若 AC=BC=2,则线段 CG 的长为
.
13.若两个相似三角形的相似比为 2∶3,则它们的面积比为
.
14.等边三角形的周长为 C,面积为 S,则面积 S 关于周长 C 的函数解析式是
.
15.如图 7,正方形 DEFG 的边 EF 在△ABC 的边 BC 上,顶点 D、G 分别在边 AB、AC 上.
黄浦区 2016 学年度第一学期九年级期终调研测试
数学试卷
(满分 150 分,考试时间 100 分钟)
一、选择题:(本大题共 6 题,每题 4 分,满分 24 分)
1.下列抛物线中,与抛物线 y x 2 2x 4 具有相同对称轴的是(
)
(A) y 4x 2 2x 1 ;
(B) y 2x 2 4x 1 ;
若四边形 BMDN 的面积是菱形 ABCD 面积的 1 ,则 cosA=
.5Biblioteka 三、解答题:(本大题共 7 题,满分 78 分)
19.用配方法把二次函数 y 1 x 2 4x 5 化为 y ax m2 k 的形式,再指出该函数
2
图像的开口方向、对称轴和顶点坐标.
20.如图 11,在梯形 ABCD 中,AD∥BC,AD=3,BC=2,点 E、F 分别在两腰上,且 EF∥AD,
B P
D
MC
A
图 13
H
N
23.如图 14,点 D 位于△ABC 边 AC 上,已知 AB 是 AD 与 AC 的比例中项. (1)求证:∠ACB=∠ABD; (2)现有点 E、F 分别在边 AB、BC 上(如图 15),满足∠EDF=∠A+∠C,当 AB=4,BC=5,
CA=6 时,求证:DE=DF.
C
C
B
E
D
AB
图 17
A
备用图
第6页共6页
(C) y 2x 2 x 4 ;
(D) y x 2 4x 2 .
2.如图 1,点 D、E 位于△ABC 的两边上,下列条件能判定 DE∥BC 的是(
)
(A) AD DB AE EC ;
(B) AD AE BD EC ;
(C) AD CE AE BD ;
tan =0.45,两楼的间距为 30 米,则小明家所住楼 AB 的高度是
米.
17.如图 9,在△ABC 中,∠C=90°,AC=8,BC=6,D 是边 AB 的中点.现有一点 P 位于边
AC 上,使得△ADP 与△ABC 相似,则线段 AP 的长为
.
B B
•D
A
M
N
C
C
图9
A
D
图 10
18.如图 10,菱形 ABCD 形内两点 M、N,满足 MB⊥BC,MD⊥DC,NB⊥BA,ND⊥DA,
(C) y x 22 3 ;
(D) y x 22 3.
6.Word 文本中的图形,在图形格式中大小菜单下显示有图形的绝对高度和绝对宽度,同一 个图形随其放置方向的变化,所显示的绝对高度和绝对宽度也随之变化.如下图 2、3、4 是同一个三角形以三条不同的边水平放置时,它们所显示的绝对高度和绝对宽度如下表.
第1页共6页
现有△ABC,已知 AB=AC,当它以底边 BC 水平放置时(如图 5),它所显示的绝对高度
和绝对宽度如下表,那么当△ABC 以腰 AB 水平放置时(如图 6),它所显示的绝对高度
和绝对宽度分别是( )
图形
图2
图3
图4
图5
图6
绝对高度
1.50
2.00
1.20
2.40
?
绝对宽度
2.00
1.50
已知 BC=6,△ABC 的面积为 9,则正方形 DEFG 的面积为
.
B
D
A
D
G
P
B
E
F
C
图7
A
图8
C
第2页共6页
16.如图 8,小明家所在小区的前后两栋楼 AB、CD,小明在自己所住楼 AB 的底部 A 处,
利用对面楼 CD 墙上玻璃(与地面垂直)的反光,测得楼 AB 顶部 B 处的仰角是 .若