2020年中考数学一模试题(及答案)
2020年上海市中考数学一模试卷附答案解析

2020年上海市中考数学一模试卷含答案解析一.选择题(共6小题,每题4分,满分24分)1.函数y=﹣2x2先向右平移1个单位,再向下平移2个单位,所得函数解析式是()A.y=﹣2(x﹣1)2+2B.y=﹣2(x﹣1)2﹣2C.y=﹣2(x+1)2+2D.y=﹣2(x+1)2﹣22.在Rt△ABC中,∠C=90°,若BC=3,AC=4,则sin B的值为()A.B.C.D.3.下列说法中,正确的是()A.如果k=0,是非零向量,那么k=0B.如果是单位向量,那么=1C.如果||=||,那么=或=﹣D.已知非零向量,如果向量=﹣5,那么∥4.如图,在6×6的正方形网格中,联结小正方形中两个顶点A、B,如果线段AB与网格线的其中两个交点为M、N,那么AM:MN:NB的值是()A.3:5:4B.3:6:5C.1:3:2D.1:4:25.使用家用燃气灶烧开同一壶水所需的燃气量y(单位:m3)与旋钮的旋转角度x(单位:度)(0°<x≤90°)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某种家用节能燃气灶烧开同一壶水的旋钮的旋转角度x与燃气量y的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮的旋转角度约为()A.33°B.36°C.42°D.49°6.如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连结BD、DP,BD与CF相交于点H,给出下列结论:①BE=2AE②△DFP∽△BPH③DP2=PH•PC;④FE:BC=,其中正确的个数为()A.1B.2C.3D.4二.填空题(共12小题,每题4分,满分48分)7.如果tanα=,那么锐角α的度数是.8.已知f(x)=,那么f(3)=.9.已知线段AB=2,如果点P是线段AB的黄金分割点,且AP>BP,那么AP的值为.10.已知点A(x1,y1)、B(x2,y2)为抛物线y=(x﹣2)2上的两点,如果x1<x2<2,那么y1y2.(填“>”“<”或“=”)11.如果点A(﹣3,y1)和点B(﹣2,y2)是抛物线y=x2+a上的两点,那么y1y2.(填“>”、“=”、“<”).12.抛物线y=﹣2(x﹣1)2+3在对称轴右侧的部分是的.(填“上升”或“下降”)13.如图,某小区门口的栏杆从水平位置AB绕固定点O旋转到位置DC,已知栏杆AB的长为3.5米,OA的长为3米,点C到AB的距离为0.3米,支柱OE的高为0.6米,那么栏杆端点D离地面的距离为米.14.如图,在菱形ABCD中,O、E分别是AC、AD的中点,联结OE.如果AB=3,AC=4,那么cot∠AOE=.15.如图,在四边形ABCD中,∠B=∠D=90°,AB=3,BC=2,tan A=,则CD=.16.已知在Rt△ABC中,∠C=90°,AC=3,BC=4,⊙C与斜边AB相切,那么⊙C的半径为.17.在方格纸中,每个小格的顶点叫做格点,以格点连线为边的三角形叫做格点三角形.如图,请在边长为1个单位的2×3的方格纸中,找出一个格点三角形DEF.如果△DEF 与△ABC相似(相似比不为1),那么△DEF的面积为.18.如图,在等腰△ABC中,AB=AC=4,BC=6,点D在底边BC上,且∠DAC=∠ACD,将△ACD沿着AD所在直线翻折,使得点C落到点E处,联结BE,那么BE的长为.三.解答题(共7小题,满分78分)19.计算:3tan30°﹣+cos45°+20.已知:在平行四边形ABCD中,AB:BC=3:2.(1)根据条件画图:作∠BCD的平分线,交边AB于点E,取线段BE的中点F,联结DF交CE于点G.(2)设=,=,那么向量=;(用向量、表示),并在图中画出向量在向量和方向上的分向量.21.如图1为放置在水平桌面l上的台灯,底座的高AB为5cm,长度均为20cm的连杆BC、CD与AB始终在同一平面上.(1)转动连杆BC,CD,使∠BCD成平角,∠ABC=150°,如图2,求连杆端点D离桌面l的高度DE.(2)将(1)中的连杆CD再绕点C逆时针旋转,经试验后发现,如图3,当∠BCD=150°时台灯光线最佳.求此时连杆端点D离桌面l的高度比原来降低了多少厘米?22.如图,梯形ABCD中,AD∥BC,∠ADC=90°,AD=2,BC=4,tan B=3.以AB为直径作⊙O,交边DC于E、F两点.(1)求证:DE=CF;(2)求:直径AB的长.23.水城门位于淀浦河和漕港河三叉口,是环城水系公园淀浦河梦蝶岛区域重要的标志性景观.在课外实践活动中,某校九年级数学兴趣小组决定测量该水城门的高.他们的操作方法如下:如图,先在D处测得点A的仰角为20°,再往水城门的方向前进13米至C处,测得点A的仰角为31°(点D、C、B在一直线上),求该水城门AB的高.(精确到0.1米)(参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36,sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)24.已知:在平面直角坐标系xOy中,对称轴为直线x=﹣2的抛物线经过点C(0,2),与x轴交于A(﹣3,0)、B两点(点A在点B的左侧).(1)求这条抛物线的表达式;(2)联结BC,求∠BCO的余切值;(3)如果过点C的直线,交x轴于点E,交抛物线于点P,且∠CEO=∠BCO,求点P 的坐标.25.如图,在△ABC中,AB=AC=10,BC=16,点D为BC边上的一个动点(点D不与点B、点C重合).以D为顶点作∠ADE=∠B,射线DE交AC边于点E,过点A作AF ⊥AD交射线DE于点F.(1)求证:AB•CE=BD•CD;(2)当DF平分∠ADC时,求AE的长;(3)当△AEF是等腰三角形时,求BD的长.参考答案与试题解析一.选择题(共6小题,每题4分,满分24分)1.【分析】先确定物线y=﹣2x2的顶点坐标为(0,0),再把点(0,0)平移所得对应点的坐标为(1,﹣2),然后根据顶点式写出平移后的抛物线解析式.【解答】解:抛物线y=﹣2x2的顶点坐标为(0,0),把(0,0)先向右平移1个单位,再向下平移2个单位所得对应点的坐标为(1,﹣2),所以平移后的抛物线解析式为y=﹣2(x﹣1)2﹣2.故选:B.2.【分析】根据三角函数的定义解决问题即可.【解答】解:如图,在Rt△ABC中,∵∠C=90°,BC=3,AC=4,∴AB===5,∴sin B==,故选:A.3.【分析】根据平面向量的性质一一判断即可.【解答】解:A、如果k=0,是非零向量,那么k=0,错误,应该是k=.B、如果是单位向量,那么=1,错误.应该是||=1.C、如果||=||,那么=或=﹣,错误.模相等的向量,不一定平行.D、已知非零向量,如果向量=﹣5,那么∥,正确.故选:D.4.【分析】根据平行线分线段成比例定理得出即可.【解答】解:∵=,=,∴AM:MN:NB=1:3:2,故选:C.5.【分析】根据题意和二次函数的性质,可以确定出对称x的取值范围,从而可以解答本题.【解答】解:由图象可知,物线开口向上,该函数的对称轴x>且x<54,∴36<x<54,即对称轴位于直线x=36与直线x=54之间且靠近直线x=36,故选:C.6.【分析】由正方形的性质和相似三角形的判定与性质,即可得出结论.【解答】解:∵△BPC是等边三角形,∴BP=PC=BC,∠PBC=∠PCB=∠BPC=60°,在正方形ABCD中,∵AB=BC=CD,∠A=∠ADC=∠BCD=90°∴∠ABE=∠DCF=30°,∴BE=2AE;故①正确;∵PC=CD,∠PCD=30°,∴∠PDC=75°,∴∠FDP=15°,∵∠DBA=45°,∴∠PBD=15°,∴∠FDP=∠PBD,∵∠DFP=∠BPC=60°,∴△DFP∽△BPH;故②正确;∵∠PDH=∠PCD=30°,∠DPH=∠DPC,∴△DPH∽△CPD,∴,∴DP2=PH•PC,故③正确;∵∠ABE=30°,∠A=90°∴AE=AB=BC,∵∠DCF=30°,∴DF=DC=BC,∴EF=AE+DF=﹣BC,∴FE:BC=(2﹣3):3故④正确,故选:D.二.填空题(共12小题,每题4分,满分48分)7.【分析】直接利用特殊角的三角函数值进而代入求出答案.【解答】解:∵tanα=,∴锐角α的度数是:60°.故答案为:60°.8.【分析】将x=3代入f(x)=计算即可.【解答】解:当x=3是,f(3)==,故答案为.9.【分析】直接利用黄金分割的定义计算.【解答】解:∵点P是线段AB的黄金分割点,且AP>BP,∴AP=AB=×2=﹣1.故答案为﹣1.10.【分析】根据二次函数的性质得到抛物线y=(x﹣2)2的开口向上,对称轴为直线x=2,则在对称轴左侧,y随x的增大而减小,所以x1<x2<2时,y1>y2.【解答】解:∵y=(x﹣2)2,∴a=1>0,∴抛物线开口向上,∵抛物线y=(x﹣2)2对称轴为直线x=2,∵x1<x2<2,∴y1>y2.故答案为>.11.【分析】根据二次函数的图象和性质得出抛物线的对称轴是直线x=0,抛物线的开口向上,当x<0时,y随x的增大而减小,再比较即可.【解答】解:∵y=x2+a,∴抛物线的对称轴是直线x=0,抛物线的开口向上,当x<0时,y随x的增大而减小,∵﹣3<﹣2<0,∴y1>y2,故答案为:>.12.【分析】根据a<0,知抛物线开口向下,则在对称轴右侧的部分呈下降趋势.【解答】解:∵a=﹣2<0,∴抛物线开口向下,∴对称轴右侧的部分呈下降趋势.故答案为:下降.13.【分析】过D作DG⊥AB于G,过C作CH⊥AB于H,则DG∥CH,根据相似三角形的性质即可得到结论.【解答】解:过D作DG⊥AB于G,过C作CH⊥AB于H,则DG∥CH,∴△ODG∽△OCH,∴=,∵栏杆从水平位置AB绕固定点O旋转到位置DC,∴CD=AB=3.5m,OD=OA=3m,CH=0.3m,∴OC=0.5m,∴=,∴DG=1.8m,∵OE=0.6m,∴栏杆D端离地面的距离为1.8+0.6=2.4m.故答案为:2.4.14.【分析】连接OD,根据菱形的性质、勾股定理求出OD,根据三角形中位线定理得到∠AOE=∠ACD,根据余切的定义计算,得到答案.【解答】解:连接OD,∵四边形ABCD为菱形,∴OD⊥AC,OA=OC=AC=2,由勾股定理得,OD===,∵O、E分别是AC、AD的中点,∴OE∥CD,∴∠AOE=∠ACD,∴cot∠AOE=cot∠ACD===,故答案为:.15.【分析】延长AD和BC交于点E,在直角△ABE中利用三角函数求得BE的长,则EC 的长即可求得,然后在直角△CDE中利用三角函数的定义求解.【解答】解:延长AD和BC交于点E.∵在直角△ABE中,tan A==,AB=3,∴BE=4,∴EC=BE﹣BC=4﹣2=2,∵△ABE和△CDE中,∠B=∠EDC=90°,∠E=∠E,∴∠DCE=∠A,∴直角△CDE中,tan∠DCE=tan A==,∴设DE=4x,则DC=3x,在直角△CDE中,EC2=DE2+DC2,∴4=16x2+9x2,解得:x=,则CD=.故答案是:.16.【分析】r的长即为斜边AB上的高,由勾股定理易求得AB的长,根据直角三角形面积的不同表示方法,即可求出r的值.【解答】解:Rt△ABC中,∠C=90°,AC=3,BC=4;由勾股定理,得:AB2=32+42=25,∴AB=5;又∵AB是⊙C的切线,∴CD⊥AB,∴CD=r;∵S△ABC=AC•BC=AB•r,∴r=,故答案为:.17.【分析】根据相似三角形的判定定理得到△DEF∽△ABC,根据三角形的面积公式计算,得到答案.【解答】解:如图,在△DEF中,DE=,EF=2,DF=,则=,==,==,∴==,∴△DEF∽△ABC,△DEF的面积=×2×1=1,故答案为:1.18.【分析】只要证明△ABD∽△MBE,得=,只要求出BM、BD即可解决问题.【解答】解:∵AB=AC,∴∠ABC=∠C,∵∠DAC=∠ACD,∴∠DAC=∠ABC,∵∠C=∠C,∴△CAD∽△CBA,∴=,∴=,∴CD=,BD=BC﹣CD=,∵∠DAM=∠DAC=∠DBA,∠ADM=∠ADB,∴△ADM∽△BDA,∴=,即=,∴DM=,MB=BD﹣DM=,∵∠ABM=∠C=∠MED,∴A、B、E、D四点共圆,∴∠ADB=∠BEM,∠EBM=∠EAD=∠ABD,∴△ABD∽△MBE,(不用四点共圆,可以先证明△BMA∽△EMD,推出△BME∽AMD,推出∠ADB=∠BEM也可以!)∴=,∴BE==1.故答案为:1.三.解答题(共7小题,满分78分)19.【分析】代入特殊角的三角函数值即可.【解答】解:原式=3×﹣+×+=﹣2+2+﹣1=2﹣1.20.【分析】(1)首先作∠BCD的平分线,然后作BE的垂直平分线即可;(2)首先判定△GEF∽△GCD,然后根据AB:BC=3:2,得==,进而得出EF=CD,CG=CE,最后根据向量运算即可得结论,即可画出分向量.【解答】解:(1)作∠BCD的平分线,交边AB于点E,取线段BE的中点F,联结DF 交CE于点G.作图如下:(2)∵CE为∠BCD的平分线,∴∠BCE=∠DCE又∵AB∥CD∴∠DCE=∠BEC∴△GEF∽△GCD∵AB:BC=3:2∴==∴EF=CD,CG=CE∵=,=,∴==,==∵+=,=﹣﹣∴=﹣(+)=﹣(+)=﹣﹣同理可得,=﹣=(+)=(﹣)=﹣)在向量和方向上的分向量,如图所示:故答案为:=.21.【分析】(1)如图2中,作BO⊥DE于O.解直角三角形求出OD即可解决问题.(2)过C作CG⊥BH,CK⊥DE,由题意得,BC=CD=20m,CG=KH,解直角三角形即可得到结论.【解答】解:(1)如图2中,作BO⊥DE于O.∵∠OEA=∠BOE=∠BAE=90°,∴四边形ABOE是矩形,∴∠OBA=90°,∴∠DBO=150°﹣90°=60°,∴OD=BD•sin60°=20(cm),∴DE=OD+OE=OD+AB=(20+5)cm;(2)过C作CG⊥BH,CK⊥DE,由题意得,BC=CD=20m,CG=KH,∴在Rt△CGB中,sin∠CBH=,∴CG=10cm,∴KH=10cm,∵∠BCG=90°﹣60°=30°,∴∠DCK=150°﹣90°﹣30°=30°,在Rt△DCK中,sin∠DCK===,∴DK=10cm,∴(20+5)﹣(15+10)=10﹣10,答:比原来降低了(10﹣10)厘米.22.【分析】(1)直接利用垂径定理结合平行线分线段成比例定理得出DH=HC,进而得出答案;(2)过点A作AG⊥BC,垂足为点G,再利用已知结合勾股定理得出答案.【解答】(1)证明:过点O作OH⊥DC,垂足为H.∵AD∥BC,∠ADC=90°,OH⊥DC,∴∠BCN=∠OHC=∠ADC=90°.∴AD∥OH∥BC.又∵OA=OB.∴DH=HC.∵OH⊥DC,OH过圆心,∴EH=HF,∴DH﹣EH=HC﹣HF.即:DE=CF.(2)解:过点A作AG⊥BC,垂足为点G,∠AGB=90°,∵∠AGB=∠BCN=90°,∴AG∥DC.∵AD∥BC,∴AD=CG.∵AD=2,BC=4,∴BG=BC﹣CG=2.在Rt△AGB中,∵tan B=3,∴AG=BG•tan B=2×3=6.在Rt△AGB中,AB2=AG2+BG2∴AB=.23.【分析】在Rt△ABD中可得出BD=,在Rt△ABC中,可得BC=,则可得BD﹣BC=13,求出AB即可.【解答】解:由题意得,∠ABD=90°,∠D=20°,∠ACB=31°,CD=13,在Rt△ABD中,∵tan∠D=,∴BD==,在Rt△ABC中,∵tan∠ACB=,∴BC==,∵CD=BD﹣BC,∴13=,解得AB≈11.7米.答:水城门AB的高为11.7米.24.【分析】(1)设抛物线的表达式为y=ax2+bx+c,将A,B的坐标及对称轴方程代入即可;(2)分别求出点B,C的坐标,直接在Rt△OBC中,根据余切定义即可求出;(3)设点E的坐标是(x,0),求出点E的坐标,再求出CE的解析式,即可求出其与抛物线的交点坐标.【解答】解:(1)设抛物线的表达式为y=ax2+bx+c,将点C(0,2)、A(﹣3,0)、对称轴直线x=﹣2代入,得:,解得:,,∴这条抛物线的表达式为;(2)令y=0,那么,解得x1=﹣3,x2=﹣1,∵点A的坐标是(﹣3,0),∴点B的坐标是(﹣1,0),∵C(0,2),∴OB=1,OC=2,在Rt△OBC中,∠BOC=90°,∴;(3)设点E的坐标是(x,0),得OE=|x|.∵∠CEO=∠BCO,∴cot∠CEO=cot∠BCO,在Rt△EOC中,∴,∴|x|=4,∴点E坐标是(4,0)或(﹣4,0),∵点C坐标是(0,2),∴,∴,或解得和(舍去),或和(舍去);∴点P坐标是(,)或(,).25.【分析】(1)根据等腰三角形的性质得到∠B=∠C,根据三角形的外角性质得到∠BAD =∠CDE,得到△BAD∽△CDE,根据相似三角形的性质证明结论;(2)证明DF∥AB,根据平行线的性质得到=,证明△BDA∽△BAC,根据相似三角形的性质列式计算,得到答案;(3)分点F在DE的延长线上、点F在线段DE上两种情况,根据等腰三角形的性质计算即可.【解答】(1)证明:∵AB=AC,∴∠B=∠C,∠ADC=∠BAD+∠B,∠ADE=∠B,∴∠BAD=∠CDE,又∠B=∠C,∴△BAD∽△CDE,∴=,即AB•CE=BD•CD;(2)解:∵DF平分∠ADC,∵∠CDE=∠BAD,∴∠ADE=∠BAD,∴DF∥AB,∴=,∵∠BAD=∠ADE=∠B,∴∠BAD=∠C,又∠B=∠B,∴△BDA∽△BAC,∴=,即=解得,BD=,∴=,解得,AE=;(3)解:作AH⊥BC于H,∵AB=AC,AH⊥BC,∴BH=HC=BC=8,由勾股定理得,AH===6,∴tan B==,∴tan∠ADF==,设AF=3x,则AD=4x,由勾股定理得,DF==5x,∵△BAD∽△CDE,∴=,当点F在DE的延长线上,F A=FE时,DE=5x﹣3x=2x,∴=,解得,CD=5,当EA=EF时,DE=EF=2.5x,∴=,解得,CD=,∴BD=BC﹣CD=;当AE=AF=3x时,DE=x,∴=,解得,CD=,∴BD=BC﹣CD=;当点F在线段DE上时,∠AFE为钝角,∴只有F A=FE=3x,则DE=8x,∴=,解得,CD=20>16,不合题意,∴△AEF是等腰三角形时,BD的长为11或或.。
2020年中考数学一模试卷【答案+解析】

2020年中考数学一模试卷一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求)1.(3分)4的算术平方根是()A.4B.2C.±2D.±42.(3分)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(3分)PM2.5是指大气中直径不大于0.0000025米的颗粒物,将0.0000025用科学记数法表示为()A.2.5×105B.2.5×106C.2.5×10﹣5D.2.5×10﹣64.(3分)方程x2﹣3x+2=0的解是()A.x1=1,x2=2B.x1=﹣1,x2=﹣2C.x1=1,x2=﹣2D.x1=﹣1,x2=25.(3分)下列计算正确的是()A.x3+x2=x5B.x3•x2=x5C.x6÷x2=x3D.(x3)2=x5 6.(3分)如图是由几个相同的小正方体组成的一个几何体,若该几何体的俯视图的面积为5,则这个几何体的主视图的面积为()A.3B.4C.5D.67.(3分)已知点A(2,m),B(﹣1,6)在反比例函数y=的图象上,则m的值为()A.﹣3B.﹣6C.3D.68.(3分)将二次函数y=x2的图象先向左平移2个单位,再向上平移3个单位,得到的二次函数的表达式为()A.y=2x2+3B.y=﹣2x2﹣3C.y=(x﹣2)2﹣3D.y=(x+2)2+3 9.(3分)如图,在周长为12cm的▱ABCD中,AB<AD,AC、BD相交于点O,OE⊥BD交AD于E,则△ABE的周长为()A.4cm B.5cm C.6cm D.7cm10.(3分)如图,⊙O的半径为5,OC垂直弦AB于点C,OC=3,则弦AB的长为()A.4B.5C.6D.8二、填空题(本大题共4个小题,每小题4分,共16分)11.(4分)分式方程=的解为.12.(4分)已知点P1(﹣2,y1),P2(2,y2)在二次函数y=(x+1)2﹣2的图象上,则y1y2.(填“>”,“<”或“=”)13.(4分)如图,正方形ABCD的边长为2,BE平分∠DBC交CD于点E,将△BCE绕点C顺时针旋转90°得到△DCF,延长BE交DF于G,则BF的长为.14.(4分)如图,BC是⊙O的直径,AB、AD是⊙O的切线,若∠C=40°,则∠A的度数为.三、解答题(本大题共6个小题,共54分)15.(12分)(1)计算:2cos45°﹣|﹣|+()0﹣(﹣2)2;(2)解不等式组:.16.(6分)计算:(+)÷.17.(8分)数学活动课上,老师和学生一起去测量学校升旗台上旗杆AB的高度.如图,老师测得升旗台前斜坡AC的坡度为1:10(即AE:CE=1:10),学生小明站在离升旗台水平距离为35m(即CE=35m)处的C点,测得旗杆顶端B的仰角α=30°,已知小明身高CD=1.6m,求旗杆AB的高度.(参考数据:tan30°≈0.58,结果保留整数)18.(8分)为了解今年初四学生的数学学习情况,某校在第一轮模拟测试后,对初四全体同学的数学成绩作了统计分析,绘制如下图表:请结合图表所给出的信息解答系列问题:成绩频数频率优秀45b良好a0.3合格1050.35不合格60c (1)该校初四学生共有多少人?(2)求表中a,b,c的值,并补全条形统计图.(3)初四(一)班数学老师准备从成绩优秀的甲、乙、丙、丁四名同学中任意抽取两名同学做学习经验介绍,求恰好选中甲、乙两位同学的概率.19.(10分)如图,一次函数y=kx+b(k<0)的图象与反比例函数y=的图象都经过点A (a,4),一次函数y=kx+b(k<0)的图象经过点C(3,0),且与两坐标轴围成的三角形的面积为3.(1)求这两个函数的表达式;(2)将直线AB向下平移5个单位长度后与第四象限内的反比例函数图象交于点D,连接AD、BD,求△ADB的面积.20.(10分)如图,AB为⊙O的直径,P为BA延长线上一点,点C在⊙O上,连接PC,D为半径OA上一点,PD=PC,连接CD并延长交⊙O于点E,且E是的中点.(1)求证:PC是⊙O的切线;(2)求证:CD•DE=2OD•PD;(3)若AB=8,CD•DE=15,求P A的长.一、填空题(本大题共5个小题,每小题4分,共20分)21.(4分)已知直线y=ax+b经过点(﹣1,2),则a﹣b的值为.22.(4分)有四张正面分别标有数字﹣2,﹣6,2,6的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中抽取一张,将该卡片上的数字记为a;不放回,再从中抽取一张,将该卡片上的数字记为b,则使关于x的不等式组的解集中有且只有3个非负整数解的概率为.23.(4分)在平面直角坐标系中,若点P(a,b)的坐标满足a=b≠0,则称点P为“对等点”.已知二次函数y=x2+mx﹣m的图象上存在两个不同的“对等点”,且这两个“对等点”关于原点对称,则m的值为.24.(4分)如图,矩形ABCD中,AB=6,AD=2,E是边CD上一点,将△ADE沿直线AE折叠得到△AFE,BF的延长线交边CD于点G,则DG的最大值为.25.(4分)如图,直线y=﹣x+b与x、y轴的正半轴交于点A,B,与双曲线y=﹣交于点C(点C在第二象限内),点D,过点C作CE⊥x轴于点E,记四边形OBCE的面积为S1,△OBD的面积为S2,若=,则b的值为.二、解答题(本大题共3个小题,共30分)26.(8分)某商场打算在年前用30000元购进一批彩灯进行销售,由于进货厂家促销,实际可以以8折的价格购进这批彩灯,结果可以比计划多购进了100盏彩灯.(1)该商场购进这种彩灯的实际进价为多少元?(2)该商场打算在实际进价的基础上,每盏灯加价50%的销售,但可能会面临滞销,因此将有20%的彩灯需要降价,以5折出售,该商场要想获利不低于15000元,应至少在购进这种彩灯多少盏?27.(10分)如图,在正方形ABCD中,点E是BC边上一点,连接AE,将△ABE绕点E 顺时针旋转得到△A1B1E,点B1在正方形ABCD内,连接AA1、BB1;(1)求证:△AA1E∽△BB1E;(2)延长BB1分别交线段AA1,DC于点F、G,求证:AF=A1F;(3)在(2)的条件下,若AB=4,BE=1,G是DC的中点,求AF的长.28.(12分)如图,已知二次函数y=ax2﹣8ax+6(a>0)的图象与x轴分别交于A、B两点,与y轴交于点C,点D在抛物线的对称轴上,且四边形ABDC为平行四边形.(1)求此抛物线的对称轴,并确定此二次函数的表达式;(2)点E为x轴下方抛物线上一点,若△ODE的面积为12,求点E的坐标;(3)在(2)的条件下,设抛物线的顶点为M,点P是抛物线的对称轴上一动点,连接PE、EM,过点P作PE的垂线交抛物线于点Q,当∠PQE=∠EMP时,求点Q到抛物线的对称轴的距离.参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求)1.(3分)4的算术平方根是()A.4B.2C.±2D.±4【分析】如果一个非负数x的平方等于a,那么x是a的算术平方根,由此即可求出结果.【解答】解:∵22=4,∴4算术平方根为2.故选:B.2.(3分)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,故此选项不合题意;B、是轴对称图形,不是中心对称图形,故此选项不合题意;C、是轴对称图形,是中心对称图形,故此选项符合题意;D、是轴对称图形,不是中心对称图形,故此选项不合题意;故选:C.3.(3分)PM2.5是指大气中直径不大于0.0000025米的颗粒物,将0.0000025用科学记数法表示为()A.2.5×105B.2.5×106C.2.5×10﹣5D.2.5×10﹣6【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000025=2.5×10﹣6,故选:D.4.(3分)方程x2﹣3x+2=0的解是()A.x1=1,x2=2B.x1=﹣1,x2=﹣2C.x1=1,x2=﹣2D.x1=﹣1,x2=2【分析】把方程的左边的式子进行分解,得出两式相乘的形式,再根据“两式相乘值为0,这两式中至少有一式值为0”来解题.【解答】解:原方程可化为:(x﹣1)(x﹣2)=0∴x1=1,x2=2.故选:A.5.(3分)下列计算正确的是()A.x3+x2=x5B.x3•x2=x5C.x6÷x2=x3D.(x3)2=x5【分析】根据合并同类项,同底数幂的乘除法,幂的乘方,对各选项分析判断后利用排除法求解.【解答】解:A、x3与x2不是同类项,不能合并,原计算错误,故此选项不符合题意;B、x3•x2=x5,原计算正确,故此选项符合题意;C、x6÷x2=x4,原计算错误,故此选项不符合题意;D、(x3)2=x6,原计算错误,故此选项不符合题意.故选:B.6.(3分)如图是由几个相同的小正方体组成的一个几何体,若该几何体的俯视图的面积为5,则这个几何体的主视图的面积为()A.3B.4C.5D.6【分析】根据从正面看所得到的图形,即可得出这个几何体的主视图的面积.【解答】解:根据该几何体的俯视图的面积为5,可知每个小正方体的棱长为1,从正面看有两层,底层是三个正方形,上层是一个正方形,所以这个几何体的主视图的面积为4.故选:B.7.(3分)已知点A(2,m),B(﹣1,6)在反比例函数y=的图象上,则m的值为()A.﹣3B.﹣6C.3D.6【分析】将点A、B的坐标分别代入函数解析式,列出方程组,通过解方程组求得k、m 的值即可.【解答】解:把点A(2,m),B(﹣1,6)分别代入,得.解得k=﹣6,m=﹣3.故选:A.8.(3分)将二次函数y=x2的图象先向左平移2个单位,再向上平移3个单位,得到的二次函数的表达式为()A.y=2x2+3B.y=﹣2x2﹣3C.y=(x﹣2)2﹣3D.y=(x+2)2+3【分析】抛物线y=x2的顶点坐标为(0,0),向左平移2个单位,再向上平移3个单位,所得的抛物线的顶点坐标为(﹣2,3),根据顶点式可确定所得抛物线解析式.【解答】解:依题意可知,原抛物线顶点坐标为(0,0),平移后抛物线顶点坐标为(﹣2,3),又因为平移不改变二次项系数,所以所得抛物线解析式为:y=(x+2)2+3.故选:D.9.(3分)如图,在周长为12cm的▱ABCD中,AB<AD,AC、BD相交于点O,OE⊥BD 交AD于E,则△ABE的周长为()A.4cm B.5cm C.6cm D.7cm【分析】根据平行四边形的性质得出OB=OD,进而利用线段垂直平分线得出BE=ED,进而解答即可.【解答】解:∵四边形ABCD是平行四边形,∴OB=OD,∵OE⊥BD,∴OE是BD的线段垂直平分线,∴BE=ED,∵△ABE的周长=AB+AE+BE=AB+AE+ED=AB+AD=6cm.故选:C.10.(3分)如图,⊙O的半径为5,OC垂直弦AB于点C,OC=3,则弦AB的长为()A.4B.5C.6D.8【分析】连接OA,由垂径定理得:AC=BC,根据勾股定理,可以求出AC的长,从而得AB的长.【解答】解:如图,连接OA,∵OC⊥AB于点C,∴AC=BC,∵⊙O的半径是5,∴OA=5,又OC=3,所以在Rt△AOC中,AC===4,所以AB=2AC=8.故选:D.二、填空题(本大题共4个小题,每小题4分,共16分)11.(4分)分式方程=的解为x=2.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:5x=6x﹣2,解得:x=2,经检验x=2是分式方程的解.故答案为:x=2.12.(4分)已知点P1(﹣2,y1),P2(2,y2)在二次函数y=(x+1)2﹣2的图象上,则y1<y2.(填“>”,“<”或“=”)【分析】根据点P1、P2的横坐标结合二次函数图象上点的坐标特征,即可得出y1、y2的值,比较后即可得出结论.【解答】解:当x=﹣2时,y1=(﹣2+1)2﹣2=﹣1;当x=2时,y2=(2+1)2﹣2=7.∵﹣1<7,∴y1<y2.故答案为<.13.(4分)如图,正方形ABCD的边长为2,BE平分∠DBC交CD于点E,将△BCE绕点C顺时针旋转90°得到△DCF,延长BE交DF于G,则BF的长为6﹣2.【分析】过点E作EM⊥BD于点M,则△DEM为等腰直角三角形,根据角平分线以及等腰直角三角形的性质即可得出ME的长度,再根据正方形以及旋转的性质即可得出线段BF的长.【解答】解:过点E作EM⊥BD于点M,如图所示.∵四边形ABCD为正方形,∴∠BDC=45°,∠BCD=90°,∴△DEM为等腰直角三角形.∴EM=DE,∵BE平分∠DBC,EM⊥BD,∴EM=EC,设EM=EC=x,∵CD=2,∴DE=2﹣x,∴x=(2﹣x),解得x=4﹣2,∴CM=4﹣2,由旋转的性质可知:CF=CE=4﹣2,∴BF=BC+CF=2+4﹣2=6﹣2.故答案为:6﹣2.14.(4分)如图,BC是⊙O的直径,AB、AD是⊙O的切线,若∠C=40°,则∠A的度数为100°.【分析】连接OD,根据圆周角定理求出∠BOD,根据切线的性质得到∠ABO=90°,∠ADO=90°,根据四边形内角和等于360°计算即可.【解答】解:连接OD,由圆周角定理得,∠BOD=2∠C=80°,∵BC是⊙O的直径,AB、AD是⊙O的切线,∴OB⊥AB,OD⊥AD,∴∠ABO=90°,∠ADO=90°,∴∠A=180°﹣∠BOD=100°,故答案为:100°.三、解答题(本大题共6个小题,共54分)15.(12分)(1)计算:2cos45°﹣|﹣|+()0﹣(﹣2)2;(2)解不等式组:.【分析】(1)本题涉及零指数幂、平方、特殊角的三角函数值、绝对值、二次根式化简5个知识点.在计算时,需要针对每个知识点分别进行计算,然后根据实数的运算法则求得计算结果.(2)先求出不等式组中每一个不等式的解集,再求出它们的公共部分即可得解.【解答】解:(1)2cos45°﹣|﹣|+()0﹣(﹣2)2=2×﹣+1﹣4=﹣+1﹣4=﹣3;(2),解不等式①得x>1.5;解不等式②得x≤3.故不等式组的解集为1.5<x≤3.16.(6分)计算:(+)÷.【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:原式=•=•=.17.(8分)数学活动课上,老师和学生一起去测量学校升旗台上旗杆AB的高度.如图,老师测得升旗台前斜坡AC的坡度为1:10(即AE:CE=1:10),学生小明站在离升旗台水平距离为35m(即CE=35m)处的C点,测得旗杆顶端B的仰角α=30°,已知小明身高CD=1.6m,求旗杆AB的高度.(参考数据:tan30°≈0.58,结果保留整数)【分析】首先根据题意分析图形,本题涉及到两个直角三角形,进而求得BE、AE的大小,再利用AB=BE﹣AE可求出答案.【解答】解:作DG⊥AE于G,则∠BDG=α,则四边形DCEG为矩形.∴DG=CE=35m,EG=DC=1.6m在直角三角形BDG中,BG=DG•×tanα=35×0.58=20.3m,∴BE=20.3+1.6=21.9m.∵斜坡AC的坡比为i AC=1:10,CE=35m,∴EA=35×=3.5,∴AB=BE﹣AE=21.9﹣3.5≈18m.答:旗杆AB的高度为18m.18.(8分)为了解今年初四学生的数学学习情况,某校在第一轮模拟测试后,对初四全体同学的数学成绩作了统计分析,绘制如下图表:请结合图表所给出的信息解答系列问题:成绩频数频率优秀45b良好a0.3合格1050.35不合格60c(1)该校初四学生共有多少人?(2)求表中a,b,c的值,并补全条形统计图.(3)初四(一)班数学老师准备从成绩优秀的甲、乙、丙、丁四名同学中任意抽取两名同学做学习经验介绍,求恰好选中甲、乙两位同学的概率.【分析】(1)利用合格的人数除以该组频率进而得出该校初四学生总数;(2)利用(1)中所求,结合频数÷总数=频率,进而求出答案;(3)根据题意画出树状图,然后求得全部情况的总数与符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:(1)由题意可得:该校初四学生共有:105÷0.35=300(人),答:该校初四学生共有300人;(2)由(1)得:a=300×0.3=90(人),b==0.15,c==0.2;如图所示;(3)画树形图得:∴一共有12种情况,抽取到甲和乙的有2种,∴P(抽到甲和乙)==.19.(10分)如图,一次函数y=kx+b(k<0)的图象与反比例函数y=的图象都经过点A (a,4),一次函数y=kx+b(k<0)的图象经过点C(3,0),且与两坐标轴围成的三角形的面积为3.(1)求这两个函数的表达式;(2)将直线AB向下平移5个单位长度后与第四象限内的反比例函数图象交于点D,连接AD、BD,求△ADB的面积.【分析】(1)先由一次函数y=kx+b(k<0)的图象经过点C(3,0),得出3k+b=0①,由于一次函数y=kx+b的图象与y轴的交点是(0,b),根据三角形的面积公式可求得b 的值,然后利用待定系数法即可求得函数解析式;(2)将直线AB向下平移5个单位后得到直线ED的解析式为y=﹣x﹣3,得到E(﹣,0),解方程组得到B(6,﹣2),连接AE,BE,根据三角形的面积公式即可得到结论.【解答】解:(1)∵一次函数y=kx+b(k<0)的图象经过点C(3,0),∴3k+b=0①,点C到y轴的距离是3,∵k<0,∴b>0,∵一次函数y=kx+b的图象与y轴的交点是(0,b),∴×3×b=3,解得:b=2.把b=2代入①,解得:k=﹣,则函数的解析式是y=﹣x+2.故这个函数的解析式为y=﹣x+2;把点A(a,4)代入y=﹣x+2得,4=﹣a+2,解得:a=﹣3,∴A(﹣3,4),∴m=﹣12,∴反比例函数的解析式为y=﹣;(2)∵将直线AB向下平移5个单位后得到直线ED的解析式为y=﹣x﹣3,当y=0时,即0=﹣x﹣3,解得:x=﹣,∴E(﹣,0),解得,,,∴B(6,﹣2),连接AE,BE,∵AB∥DE,∴S△ADB=S△AEB=(3+)×4+(3+)×2=.20.(10分)如图,AB为⊙O的直径,P为BA延长线上一点,点C在⊙O上,连接PC,D为半径OA上一点,PD=PC,连接CD并延长交⊙O于点E,且E是的中点.(1)求证:PC是⊙O的切线;(2)求证:CD•DE=2OD•PD;(3)若AB=8,CD•DE=15,求P A的长.【分析】(1)连接OC,OE,根据等腰三角形的性质得到∠E=∠OCE,求得∠E+∠ODE =90°,得到∠PCD=∠ODE,得到OC⊥PC,于是得到结论;(2)连接AC,BE,BC,根据相似三角形的性质得到=,推出CD•DE=AO2﹣OD2;由△ACP∽△CBP,得到,得到PD2=PD2+2PD•OD+OD2﹣OA2,于是得到结论;(3)由(2)知,CD•DE=AO2﹣OD2;把已知条件代入得到OD=1(负值舍去),求得AD=3,由(2)知,CD•DE=2OD•PD,于是得到结论.【解答】(1)证明:连接OC,OE,∵OC=OE,∴∠E=∠OCE,∵E是的中点,∴=,∴∠AOE=∠BOE=90°,∴∠E+∠ODE=90°,∵PC=PD,∴∠PCD=∠PDC,∵∠PDC=∠ODE,∴∠PCD=∠ODE,∴∠PCD+∠OCD=∠ODE+∠E=90°,∴PC是⊙O的切线;(2)证明:连接AC,BE,BC,∵∠ACD=∠DBE,∠CAD=∠DEB,∴△ACD∽△EBD,∴=,∴CD•DE=AD•BD=(AO﹣OD)(AO+OD)=AO2﹣OD2;∵AB为⊙O的直径,∴∠ACB=90°,∵∠PCO=90°,∴∠ACP+∠ACO=∠ACO+∠BCO=90°,∴∠ACP=∠BCO,∵∠BCO=∠CBO,∴∠ACP=∠PBC,∵∠P=∠P,∴△ACP∽△CBP,∴,∴PC2=PB•P A=(PD+DB)(PD﹣AD)=(PD+OD+OA)(PD+OD﹣OA)=(PD+OD)2﹣OA2=PD2+2PD•OD+OD2﹣OA2,∵PC=PD,∴PD2=PD2+2PD•OD+OD2﹣OA2,∴OA2﹣OD2=2OD•PD,∴CD•DE=2OD•PD;(3)解:∵AB=8,∴OA=4,由(2)知,CD•DE=AO2﹣OD2;∵CD•DE=15,∴15=42﹣OD2,∴OD=1(负值舍去),由(2)知,CD•DE=2OD•PD,∴PD==,∴P A=PD﹣AD=.一、填空题(本大题共5个小题,每小题4分,共20分)21.(4分)已知直线y=ax+b经过点(﹣1,2),则a﹣b的值为﹣2.【分析】由点的坐标,利用一次函数图象上点的坐标特征可求出a﹣b的值,此题得解.【解答】解:∵直线y=ax+b经过点(﹣1,2),∴2=﹣a+b,∴a﹣b=﹣2.故答案为:﹣2.22.(4分)有四张正面分别标有数字﹣2,﹣6,2,6的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中抽取一张,将该卡片上的数字记为a;不放回,再从中抽取一张,将该卡片上的数字记为b,则使关于x的不等式组的解集中有且只有3个非负整数解的概率为.【分析】首先根据题意可求得,所有可能结果,然后解不等式组求得不等式组的解集得出符合要求的点的坐标,再利用概率公式即可求得答案.【解答】解:根据题意列出树状图得:则(a,b)的等可能结果有:(﹣2,﹣6),(﹣2,2),(﹣2,6),(﹣6,﹣2),(﹣6,2),(﹣6,6),(2,﹣2),(2,6),(2,﹣6),(6,﹣2),(6,2),(6,﹣6)共12种;,解①得:x<7,当a>0,解②得:x>,根据不等式组的解集中有且只有3个非负整数解,则3<x<7时符合要求,故=3,即b=6,a=2符合要求,当a<0,解②得:x<,根据不等式组的解集中有且只有3个非负整数解,则x<3时符合要求,故=3,即b=﹣6,a=﹣2符合要求,故所有组合中只有2种情况符合要求,故使关于x的不等式组的解集中有且只有3个非负整数解的概率为:=.故答案为:.23.(4分)在平面直角坐标系中,若点P(a,b)的坐标满足a=b≠0,则称点P为“对等点”.已知二次函数y=x2+mx﹣m的图象上存在两个不同的“对等点”,且这两个“对等点”关于原点对称,则m的值为1.【分析】设这两个“对等点”的坐标为(a.a)和(﹣a,﹣a),代入抛物线的解析式,两式相减,计算即可求得.【解答】解:设这两个“对等点”的坐标为(a.a)和(﹣a,﹣a),代入y=x2+mx﹣m得,①﹣②得2a=2am,解得m=1,故答案为1.24.(4分)如图,矩形ABCD中,AB=6,AD=2,E是边CD上一点,将△ADE沿直线AE折叠得到△AFE,BF的延长线交边CD于点G,则DG的最大值为2.【分析】如图,以点A为圆心,AD长为半径画弧,过点B作弧的切线交CD于点G,切点为F,此时点E和点G重合,DG的最大值即为DE的长.再根据矩形性质和勾股定理即可求出DG的长.【解答】解:如图,以点A为圆心,AD长为半径画弧,过点B作弧的切线交CD于点G,切点为F,此时点E和点G重合,DG的最大值即为DE的长.∵BC=AD=2,AB=CD=6,根据翻折可知:DE=EF=x,AF=AD=2,则CE=CD﹣DE=6﹣x,在Rt△ABF中,根据勾股定理,得BF==4,则BE=BF+EF=4+x,在Rt△BEC中,根据勾股定理,得(4+x)2=(6﹣x)2+(2)2,解得x=2.则DG的最大值为2.故答案为:2.25.(4分)如图,直线y=﹣x+b与x、y轴的正半轴交于点A,B,与双曲线y=﹣交于点C(点C在第二象限内),点D,过点C作CE⊥x轴于点E,记四边形OBCE的面积为S1,△OBD的面积为S2,若=,则b的值为3.【分析】根据双曲线的对称性得到BC=AD,设BC=AD=a,用a表示出点C和得D的坐标,根据梯形面积公式、三角形面积公式求出a、b的关系,根据反比例函数图象上点的坐标特征列出方程,解方程求出b.【解答】解:由题意点B的坐标为(0,b),点A的坐标为(b,0),∴OA=OB=b,∵直线y=﹣x+b关于直线y=x对称,反比例函数y=﹣关于y=x对称,∴BC=AD,设BC=AD=a,则C(﹣a,b+a),D(b+a,﹣a),∵=,∴=,整理得,12a2+17ab﹣14b2=0,解得,a1=b,a2=﹣b(舍去),则D(b,﹣b),∴b×(﹣b)=﹣4,解得,b1=3,b2=﹣3(舍去),∴b=3,故答案为:3.二、解答题(本大题共3个小题,共30分)26.(8分)某商场打算在年前用30000元购进一批彩灯进行销售,由于进货厂家促销,实际可以以8折的价格购进这批彩灯,结果可以比计划多购进了100盏彩灯.(1)该商场购进这种彩灯的实际进价为多少元?(2)该商场打算在实际进价的基础上,每盏灯加价50%的销售,但可能会面临滞销,因此将有20%的彩灯需要降价,以5折出售,该商场要想获利不低于15000元,应至少在购进这种彩灯多少盏?【分析】(1)设该商场实际购进每盏彩灯为x元,则实际进价为0.8x元,根据实际比计划多购进100盏彩灯,列方程求解;(2)设再购进彩灯a盏,根据利润=售价﹣进价和货栈要想获得利润不低于15000元列出不等式并解答.【解答】解:(1)设该商场实际购进每盏彩灯为x元,则实际进价为0.8x元,依题意得:=+100,解得x=75,经检验x=75是所列方程的根,则0.8x=0.8×75=60(元).答:该货栈实际购进每盏彩灯为60元;(2)设再购进彩灯a盏,由(1)知,实际购进30000÷60=500(盏),依题意得:(500+a)(1﹣20%)×60×50%+(500+a)×20%×[60×(1+50%)×0.5﹣60]≥15000,解得a≥.因为a取正整数,所以a=215.答:至少再购进彩灯215盏.27.(10分)如图,在正方形ABCD中,点E是BC边上一点,连接AE,将△ABE绕点E 顺时针旋转得到△A1B1E,点B1在正方形ABCD内,连接AA1、BB1;(1)求证:△AA1E∽△BB1E;(2)延长BB1分别交线段AA1,DC于点F、G,求证:AF=A1F;(3)在(2)的条件下,若AB=4,BE=1,G是DC的中点,求AF的长.【分析】(1)由EB=EB1,EA=EA1,可得∠EBB1=∠EB1B,∠EAA1=∠EA1A,由∠BEB1=∠AEA1,可得∠EBB1=∠EB1B=∠EAA1=∠EA1A,由此即可证明;(2)连接BF,延长EB1交AA1于M.由△MFB1∽△MEA1,推出△MEF∽△MA1B1,推出∠MFE=∠MB1A1=90°,即EF⊥AA1,由EA=EA1,可得AF=F A1;(3)首先求出AE,由cos∠GBC=cos∠EAF===,在Rt△AEF中,根据AF=AE•cos∠EAF,计算即可;【解答】(1)证明:如图∵EB=EB1,EA=EA1,∴∠EBB1=∠EB1B,∠EAA1=∠EA1A,∵∠BEB1=∠AEA1,∴∠EBB1=∠EB1B=∠EAA1=∠EA1A,∴△AA1E∽△BB1E.(2)证明:连接BF,延长EB1交AA1于M.∵∠BB1B=∠FB1M=∠MA1E,∠FMB1=∠EMA1,∴△MFB1∽△MEA1,∴=,∴=,∵∠EMF=∠A1MB1,∴△MEF∽△MA1B1,∴∠MFE=∠MB1A1=90°,∴EF⊥AA1,∵EA=EA1,∴AF=F A1.(3)解:在Rt△ABE中,∵AB=4,BE=1,∴AE==,∵DG=GC,∴cos∠GBC=cos∠EAF===,在Rt△AEF中,AF=AE•cos∠EAF=•=.28.(12分)如图,已知二次函数y=ax2﹣8ax+6(a>0)的图象与x轴分别交于A、B两点,与y轴交于点C,点D在抛物线的对称轴上,且四边形ABDC为平行四边形.(1)求此抛物线的对称轴,并确定此二次函数的表达式;(2)点E为x轴下方抛物线上一点,若△ODE的面积为12,求点E的坐标;(3)在(2)的条件下,设抛物线的顶点为M,点P是抛物线的对称轴上一动点,连接PE、EM,过点P作PE的垂线交抛物线于点Q,当∠PQE=∠EMP时,求点Q到抛物线的对称轴的距离.【分析】(1)先求出对称轴为x=4,进而求出AB=4,进而求出点A,B坐标,即可得出结论;(2)利用面积的和差建立方程求解,即可得出结论;(3)Ⅰ、当点Q在对称轴右侧时,先判断出点E,M,Q,P四点共圆,得出∠EMQ=90°,利用同角的余角相等判断出∠EMF=∠HGM,得出tan∠EMF==2,得出HG =HM=1,进而求出Q(8,6),得出结论;Ⅱ、当点Q在对称轴左侧时,先判断出△PDQ∽△EFP,得出,进而判断出DP=,PF=2QD,即可得出结论.【解答】解:(1)对称轴为直线x=﹣=4,则CD=4,∵四边形ABDC为平行四边形,∴DC∥AB,DC=AB,∴DC=AB=4,∴A(2,0),B(6,0),把点A(2,0)代入得y=ax2﹣8ax+12得4a﹣16a+6=0,解得a=,∴二次函数解析式为y=x2﹣4x+6;(2)如图1,设E(m,m2﹣4m+6),其中2<m<6,作EN⊥y轴于N,如图2,∵S梯形CDEN﹣S△OCD﹣S△OEN=S△ODE,∴(4+m)(6﹣m2+4m﹣6)﹣×4×6﹣m(﹣m2+4m﹣6)=12,化简得:m2﹣11m+24=0,解得m1=3,m2=8(舍),∴点E的坐标为(3,﹣);(3)Ⅰ、当点Q在对称轴右侧时,如图2,过点E作EF⊥PM于F,MQ交x轴于G,∵∠PQE=∠PME,∴点E,M,Q,P四点共圆,∵PE⊥PQ,∴∠EPQ=90°,∴∠EMQ=90°,∴∠EMF+∠HMG=90°,∵∠HMG+∠HGM=90°,∴∠EMF=∠HGM,在Rt△EFM中,EF=1,FM=,tan∠EMF==2,∴tan∠HGM=2,∴,∴HG=HM=1,∴点G(5,0),∵M(4,﹣2),∴直线MG的解析式为y=2x﹣10①,∵二次函数解析式为y=x2﹣4x+6②,联立①②解得,(舍)或,∴Q(8,6),∴点Q到对称轴的距离为8﹣4=4;Ⅱ、当点Q在对称轴左侧时,如图3,过点E作EF⊥PM于F,过点Q作QD⊥PM于D,∴∠DQP+∠QPD=90°,∵∠EPQ=90°,∴∠DPQ+∠FPE=90°,∴∠DQP=∠FPE,∵∠PDQ=∠EFP,∴△PDQ∽△EFP,∴,由Ⅰ知,tan∠PQE==2,∵EF=1,∴=,∴DP=,PF=2QD,设Q(n,n2﹣4n+6),∴DQ=4﹣n,DH=n2﹣4n+6,∴PF=DH+FH﹣DP=n2﹣4n+6+﹣=n2﹣4n+7,∴n2﹣4n+7=2(4﹣n),∴n=2+(舍)或n=2﹣,∴DQ=4﹣n=2+,即点Q到对称轴的距离为4或2+.。
2020年中考数学一模试卷(含解析) (11)

2020年中考数学一模试卷一、选择题1.﹣2020的绝对值是()A.﹣2020B.2020C.﹣D.2.如果有一个正方体,它的展开图可能是下列四个展开图中的()A.B.C.D.3.下列计算正确的是()A.(x﹣8y)(x﹣y)=x2+8y2B.(a﹣1)2=a2﹣1C.﹣x(x2+x﹣1)=﹣x3+x2﹣x D.(6xy+18x)÷x=6y+184.若正比例函数y=mx(m是常数,m≠0)的图象经过点A(m,4),且y的值随x值的增大而减小,则m等于()A.2B.﹣2C.4D.﹣45.如图,将三角板的直角顶点放在直尺的一边上.若∠1=65°,则∠2的度数为()A.15°B.35°C.25°D.40°6.在平面直角坐标系中,将直线y=3x的图象向左平移m个单位,使其与直线y=﹣x+6的交点在第二象限,则m的取值范围是()A.m>2B.m<2C.m>6D.m<67.如图,已知四边形ABCD中,AC平分∠BAD,AB=AC=5,AD=3,BC=CD.则点C 到AB的距离是()A.B.C.3D.28.如图,矩形ABCD中,AB=,BC=3,AE⊥BD于E,则EC=()A.B.C.D.9.如图,△ABC内接于⊙O,AC=5,BC=12,且∠A=90°+∠B,则点O到AB的距离为()A.B.C.D.410.二次函数y=x2+bx+c的图象经过坐标原点O和点A(7,0),直线AB交y轴于点B(0,﹣7),动点C(x,y)在直线AB上,且1<x<7,过点C作x轴的垂线交抛物线于点D,则CD的最值情况是()A.有最小值9B.有最大值9C.有最小值8D.有最大值8二、填空题(共4小题,每题3分,共计12分)11.将实数0,﹣,2.7,﹣1.4,0.14用“<”号连接起来应为.12.任意五边形的内角和与外角和的差为度.13.如图,在平面直角坐标系中,菱形OABC的边OA在x轴的负半轴上,反比例函数y=(x<0)的图象经过对角线OB的中点D和顶点C.若菱形OABC的面积为6,则k 的值等于.14.如图,线段BC和动点A构成△ABC,∠BAC=120°,BC=3,则△ABC周长的最大值.三、解答题(共11小题,计78分.解答应写出过程)15.计算:16.先化简,再求值:(x+1)÷(2+),其中x=﹣.17.如右图,已知点P是线段MN外一点,请利用直尺和圆规画一点Q,使得点Q到M、N两点的距离相等,且点Q与点M、P在同一条直线上.(保留作图痕迹)18.如图,AB∥CF,D,E分别是AB,AC上的点,DE=EF.求证:△ADE≌△CFE.19.某学校开展了主题为“垃圾分类,绿色生活新时尚”的宣传活动,为了解学生对垃圾分类知识的掌握情况,该校环保社团成员在校园内随机抽取了部分学生进行问卷调查,将他们的得分按优秀、良好、合格、不合格四个等级进行统计,并绘制了如下不完整的统计表和条形统计图.等级频数频率优秀2040%良好合格10m%不合格5n%请根据以上信息,解答下列问题:优秀良(1)本次调查随机抽取了名学生;表中m=,n=;(2)补全条形统计图;(3)若全校有2000名学生,请你估计该校掌握垃圾分类知识达到“优秀”和“良好”等级的学生共有多少人.20.图1是一种淋浴喷头,图2是图1的示意图,若用支架把喷头固定在点A处,手柄长AB=25cm,AB与墙壁DD′的夹角∠D′AB=37°,喷出的水流BC与AB形成的夹角∠ABC=72°,现在住户要求:当人站在E处淋浴时,水流正好喷洒在人体的C处,且使DE=50cm,CE=130cm.问:安装师傅应将支架固定在离地面多高的位置?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,sin72°≈0.95,cos72°≈0.31,tan72°≈3.08,sin35°≈0.57,cos35°≈0.82,tan35°≈0.70).21.甲骑自行车从A地出发前往B地,同时乙步行从B地出发前往A地,如图的折线OPQ和线段EF,分别表示甲、乙两人与A地的距离y甲、y乙与他们所行时间x(h)之间的函数关系(1)求线段OP对应的y甲与x的函数关系式并注明自变量x的取值范围;(2)求y乙与x的函数关系式以及乙到达A地所用的时间;(3)经过小时,甲、乙两人相距2km.22.为纪念建国70周年,某校举行班级歌咏比赛,歌曲有:《我爱你,中国》,《歌唱祖国》,《我和我的祖国》(分别用字母A,B,C依次表示这三首歌曲).比赛时,将A,B,C这三个字母分别写在3张无差别不透明的卡片正面上,洗匀后正面向下放在桌面上,八(1)班班长先从中随机抽取一张卡片,放回后洗匀,再由八(2)班班长从中随机抽取一张卡片,进行歌咏比赛.(1)八(1)班抽中歌曲《我和我的祖国》的概率是;(2)试用画树状图或列表的方法表示所有可能的结果,并求出八(1)班和八(2)班抽中不同歌曲的概率.23.已知在Rt△ABC中,∠C=90°;以斜边AB上的一点O为圆心作圆O,与AC、BC分别相切与点D、E.(1)求证:CD=CE;(2)若AC=8,AB=10;求AD的长.24.已知二次函数L与y轴交于点C(0,3),且过点(1,0),(3,0).(1)求二次函数L的解析式及顶点H的坐标(2)已知x轴上的某点M(t,0);若抛物线L关于点M对称的新抛物线为L′,且点C、H的对应点分别为C′,H′;试说明四边形CHC′H′为平行四边形.(3)若平行四边形的边与某一条对角线互相垂直时,称这种平行四边形为“和谐四边形”;在(2)的条件下,当平行四边形CHC′H′为“和谐四边形”时,求t的值.25.问题提出:(1)如图1,在四边形ABCD中,AB=BC,AD=CD=3,∠BAD=∠BCD=90°,∠ADC=60°,则四边形ABCD的面积为;问题探究:(2)如图2,在四边形ABCD中,∠BAD=∠BCD=90°,∠ABC=135°,AB=2,BC=3,在AD、CD上分别找一点E、F,使得△BEF的周长最小,并求出△BEF的最小周长;问题解决:(3)如图3,在四边形ABCD中,AB=BC=2,CD=10,∠ABC=150°,∠BCD=90°,则在四边形ABCD中(包含其边沿)是否存在一点E,使得∠AEC=30°,且使四边形ABCE的面积最大.若存在,找出点E的位置,并求出四边形ABCE的最大面积;若不存在,请说明理由.参考答案一、选择题(每题3分,共计36分)1.﹣2020的绝对值是()A.﹣2020B.2020C.﹣D.【分析】根据绝对值的定义直接进行计算.解:根据绝对值的概念可知:|﹣2020|=2020,故选:B.2.如果有一个正方体,它的展开图可能是下列四个展开图中的()A.B.C.D.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.解:由原正方体的特征可知,含有4,6,8的数字的三个面一定相交于一点,而选项B、C、D中,经过折叠后与含有4,6,8的数字的三个面一定相交于一点不符.故选:A.3.下列计算正确的是()A.(x﹣8y)(x﹣y)=x2+8y2B.(a﹣1)2=a2﹣1C.﹣x(x2+x﹣1)=﹣x3+x2﹣x D.(6xy+18x)÷x=6y+18【分析】根据各个选项中的式子可以计算出正确的结果,本题得以解决.解:∵(x﹣8y)(x﹣y)=x2﹣9xy+8y2,故选项A错误;∵(a﹣1)2=a2﹣2a+1,故选项B错误;∵﹣x(x2+x﹣1)=﹣x3﹣x2+x,故选项C错误;∵(6xy+18x)÷x=6y+18,故选项D正确;故选:D.4.若正比例函数y=mx(m是常数,m≠0)的图象经过点A(m,4),且y的值随x值的增大而减小,则m等于()A.2B.﹣2C.4D.﹣4【分析】利用待定系数法求出m,再结合函数的性质即可解决问题.解:∵y=mx(m是常数,m≠0)的图象经过点A(m,4),∴m2=4,∴m=±2,∵y的值随x值的增大而减小,∴m<0,∴m=﹣2,故选:B.5.如图,将三角板的直角顶点放在直尺的一边上.若∠1=65°,则∠2的度数为()A.15°B.35°C.25°D.40°【分析】先根据平行线的性质求出∠3的度数,再由余角的定义即可得出结论.解:∵直尺的两边互相平行,∠1=65°,∴∠3=65°,∴∠2=90°﹣65°=25°.故选:C.6.在平面直角坐标系中,将直线y=3x的图象向左平移m个单位,使其与直线y=﹣x+6的交点在第二象限,则m的取值范围是()A.m>2B.m<2C.m>6D.m<6【分析】将直线y=3x的图象向左平移m个单位可得:y=3(x+m),求出直线y=3(x+m),与直线y=﹣x+6的交点,再由此点在第二象限可得出m的取值范围.解:将直线y=3x的图象向左平移m个单位可得:y=3(x+m),联立两直线解析式得:,解得:,即交点坐标为(,),∵交点在第二象限,∴,解得:m>2.故选:A.7.如图,已知四边形ABCD中,AC平分∠BAD,AB=AC=5,AD=3,BC=CD.则点C 到AB的距离是()A.B.C.3D.2【分析】在AB上截取AE=AD=3,连接CE,过C作CF⊥AB于F点,根据SAS定理得出△ADC≌△AEC,故可得出CE=CD,再由垂直平分线的性质求出AF的长,根据勾股定理即可得出结论.解:在AB上截取AE=AD=3,连接CE,过C作CF⊥AB于F点.∵AC平分∠BAD,∴∠BAC=∠DAC.在△ADC与△AEC中,∵,∴△ADC≌△AEC(SAS),∴CE=CD.∵CD=CB,∴CE=CB.∵CF⊥BE,∴CF垂直平分BE.∵AB=5,∴BE=2,∴EF=1,∴AF=4,在Rt△ACF中,∵CF2=AC2﹣AF2=52﹣42=9,∴CF=3.故选:C.8.如图,矩形ABCD中,AB=,BC=3,AE⊥BD于E,则EC=()A.B.C.D.【分析】作EF⊥BC于F,构造Rt△CFE中和Rt△BEF,由已知条件AB=,BC=3,可求得∠ADB=30°,所以Rt△CFE和Rt△BEF都可解,从而求出BE,BF的长,再求出CF的长,在Rt△CFE中利用勾股定理可求出EC的长.解:作EF⊥BC于F,∵四边形ABCD是矩形,∴AD=BC=3,AB=CD=,∠BAD=90°.∴tan∠ADB==,∴∠ADB=30°,∴在Rt△ABE中cos∠ABE===,∴BE=,∴在Rt△BEF中,cos∠FBE===,∴BF=,∴EF==,∴CF=3﹣=,在Rt△CFE中,CE==.故选:D.9.如图,△ABC内接于⊙O,AC=5,BC=12,且∠A=90°+∠B,则点O到AB的距离为()A.B.C.D.4【分析】作直径CD,连BD,过O作OM⊥AB于M,过B作BN⊥CD于N,如图,利用圆周角定理得到∠CBD=90°,再证明CD∥AB得到•∠BDC=∠ABC,所以BD=AC =5.然后利用勾股定理计算出CD,再利用面积法求出BN即可.解:作直径CD,连BD,过O作OM⊥AB于M,过B作BN⊥CD于N,如图,则∠CBD =90°,∵∠A=90°+∠ABC,∴∠ABD+∠D=∠A+∠D=180°,∴CD∥AB,∴∠BCD=∠ABC,∴=,∴BD=AC=5.∴OM=BN,在Rt△ABD中,CD==13,∵×BN×CD=×BC×BD,∴BN═==,∴OM=,即点O到AB的距离为.故选:B.10.二次函数y=x2+bx+c的图象经过坐标原点O和点A(7,0),直线AB交y轴于点B(0,﹣7),动点C(x,y)在直线AB上,且1<x<7,过点C作x轴的垂线交抛物线于点D,则CD的最值情况是()A.有最小值9B.有最大值9C.有最小值8D.有最大值8【分析】根据待定系数法求得抛物线的解析式好我在想AB的解析式,设C(x,x﹣7),则D(x,x2﹣7x),根据图象的位置即可得出CD=﹣(x﹣4)2+9,根据二次函数的性质即可求得.解:∵二次函数y=x2+bx+c的图象经过坐标原点O和点A(7,0),∴,解得,∴二次函数为y=x2﹣7x,∵A(7,0),B(0,﹣7),∴直线AB为:y=x﹣7,设C(x,x﹣7),则D(x,x2﹣7x),∴CD=x﹣7﹣(x2﹣7x)=﹣x2+8x﹣7=﹣(x﹣4)2+9,∴1<x<7范围内,有最大值9,故选:B.二、填空题(共4小题,每题3分,共计12分)11.将实数0,﹣,2.7,﹣1.4,0.14用“<”号连接起来应为﹣<﹣1.4<0<0.14<2.7.【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.解:将实数0,﹣,2.7,﹣1.4,0.14用“<”号连接起来应为﹣<﹣1.4<0<0.14<2.7.故答案为:﹣<﹣1.4<0<0.14<2.7.12.任意五边形的内角和与外角和的差为180度.【分析】利用多边形的内角和公式求出五边形的内角和,再结合其外角和为360度,即可解决问题.解:任意五边形的内角和是180×(5﹣2)=540度;任意五边形的外角和都是360度;所以任意五边形的内角和与外角和的差为540﹣360=180度.故答案为:180.13.如图,在平面直角坐标系中,菱形OABC的边OA在x轴的负半轴上,反比例函数y=(x<0)的图象经过对角线OB的中点D和顶点C.若菱形OABC的面积为6,则k 的值等于﹣2.【分析】根据题意,可以设出点C和点A的坐标,然后利用反比例函数的性质和菱形的性质即可求得k的值,本题得以解决.解:设点A的坐标为(a,0),点C的坐标为(c,),则﹣a•=6,点D的坐标为(,),∴,解得,k=﹣2,故答案为﹣2.14.如图,线段BC和动点A构成△ABC,∠BAC=120°,BC=3,则△ABC周长的最大值3+2.【分析】延长BA到D,使AD=AC,连接CD,作△BCD的外接圆⊙O,当BD的长度最大时,△ABC周长最大,而BD为⊙O的直径时,BD最大.设⊙O的半径为r,连接OB,OC,过点O作OE⊥BC于点E,根据垂径定理得出BE的长,再用正弦函数得出OB的长度,则BD的最大值可得,从而△ABC周长的最大值可得.解:延长BA到D,使AD=AC,连接CD,作△BCD的外接圆⊙O,∵AD=AC,∴△ABC的周长为:AB+BC+AC=AB+BC+AD=BD+BC.∵BC=3,∴当BD的长度最大时,△ABC周长最大,∴当点A与点O重合时,BD为⊙O的直径,BD最大.设⊙O的半径为r,连接OB,OC,过点O作OE⊥BC于点E,∵∠BAC=120°,∴∠BOE=∠AOB=60°.∵BC=3,OE⊥BC,∴BE=,∴=sin60°,∴=,∴r=,∴BD的最大值为2r=2.∴△ABC周长的最大值为3+2.故答案为:3+2.三、解答题(共11小题,计78分.解答应写出过程)15.计算:【分析】原式利用绝对值的代数意义,零指数幂、负整数指数幂法则,以及特殊角的三角函数值计算即可求出值.解:原式=1﹣1+3+4+3×=1﹣1+3+4+=7+.16.先化简,再求值:(x+1)÷(2+),其中x=﹣.【分析】根据分式的加法和除法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.解:(x+1)÷(2+)=(x+1)÷=(x+1)=,当x=﹣时,原式==.17.如右图,已知点P是线段MN外一点,请利用直尺和圆规画一点Q,使得点Q到M、N两点的距离相等,且点Q与点M、P在同一条直线上.(保留作图痕迹)【分析】作线段MN的垂直平分线与射线PM的交点即为所求作的点.解:作MN的垂直平分线l,连接并延长PM交l于点Q.点Q即为所求作的点.18.如图,AB∥CF,D,E分别是AB,AC上的点,DE=EF.求证:△ADE≌△CFE.【分析】首先根据AB∥CF可得∠ADE=∠F,再加上对顶角∠AED=∠CEF,和条件DE=EF可利用ASA证明△ADE≌△CFE.解:∵AB∥CF,∴∠ADE=∠F,在△ADE和△CFE中,,∴△ADE≌△CFE(ASA).19.某学校开展了主题为“垃圾分类,绿色生活新时尚”的宣传活动,为了解学生对垃圾分类知识的掌握情况,该校环保社团成员在校园内随机抽取了部分学生进行问卷调查,将他们的得分按优秀、良好、合格、不合格四个等级进行统计,并绘制了如下不完整的统计表和条形统计图.等级频数频率优秀2040%良好合格10m%不合格5n%请根据以上信息,解答下列问题:优秀良(1)本次调查随机抽取了50名学生;表中m=20,n=10;(2)补全条形统计图;(3)若全校有2000名学生,请你估计该校掌握垃圾分类知识达到“优秀”和“良好”等级的学生共有多少人.【分析】(1)用优秀的人数除以优秀的人数所占的百分比即可得到总人数;(2)根据题意补全条形统计图即可得到结果;(3)全校2000名乘以“优秀”和“良好”等级的学生数所占的百分比即可得到结论.【解答】解:(1)本次调查随机抽取了20÷40%=50名学生,=20%,=10%,∴m=20,n=10,故答案为:50,20,10;(2)补全条形统计图如图所示;(3)2000×=1400人,答:该校掌握垃圾分类知识达到“优秀”和“良好”等级的学生共有1400人.20.图1是一种淋浴喷头,图2是图1的示意图,若用支架把喷头固定在点A处,手柄长AB=25cm,AB与墙壁DD′的夹角∠D′AB=37°,喷出的水流BC与AB形成的夹角∠ABC=72°,现在住户要求:当人站在E处淋浴时,水流正好喷洒在人体的C处,且使DE=50cm,CE=130cm.问:安装师傅应将支架固定在离地面多高的位置?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,sin72°≈0.95,cos72°≈0.31,tan72°≈3.08,sin35°≈0.57,cos35°≈0.82,tan35°≈0.70).【分析】过B作BG⊥D′D于点G,延长EC、GB交于点F,根据锐角三角函数的定义即可求出答案.解:过点B作BG⊥D′D于点G,延长EC、GB交于点F,∵AB=25,DE=50,∴sin37°=,cos37°=,∴GB≈25×0.60=15,GA≈25×0.80=20,∴BF=50﹣15=35,∵∠ABC=72°,∠D′AB=37°,∴∠GBA=53°,∴∠CBF=55°,∴∠BCF=35°,∵tan35°=,∴CF≈=50,∴FE=50+130=180,∴GD=FE=180,∴AD=180﹣20=160,∴安装师傅应将支架固定在离地面160cm的位置.21.甲骑自行车从A地出发前往B地,同时乙步行从B地出发前往A地,如图的折线OPQ 和线段EF,分别表示甲、乙两人与A地的距离y甲、y乙与他们所行时间x(h)之间的函数关系(1)求线段OP对应的y甲与x的函数关系式并注明自变量x的取值范围;(2)求y乙与x的函数关系式以及乙到达A地所用的时间;(3)经过或小时,甲、乙两人相距2km.【分析】(1)根据函数图象中的数据,利用待定系数法可以求得线段OP对应的y甲与x 的函数关系式;(2)利用待定系数法可以求得y乙与x的函数关系式以及乙到达A地所用的时间;(3)根据(1)和(2)中的函数解析式,可以求得经过多少小时,甲、乙两人相距2km.解:(1)设线段OP对应的y甲与x的函数关系式为y甲=kx(k≠0),12=k,得k=18,即线段OP对应的y甲与x的函数关系式为y甲=18x(0<x<);(2)设y乙与x的函数关系式为y乙=ax+b,,解得,即y乙与x的函数关系式为y乙=﹣4.5x+12,当y乙=0时,﹣4.5x+12=0,解得x=,∴乙到达A地所用的时间小时;(3)|(﹣4.5x+12)﹣18x|=2,﹣4.5x+12﹣18x=2或18x﹣(﹣4.5x+12)=2,解得,x=或x=,∴经过或小时,甲、乙两人相距2km.故答案为:或.22.为纪念建国70周年,某校举行班级歌咏比赛,歌曲有:《我爱你,中国》,《歌唱祖国》,《我和我的祖国》(分别用字母A,B,C依次表示这三首歌曲).比赛时,将A,B,C这三个字母分别写在3张无差别不透明的卡片正面上,洗匀后正面向下放在桌面上,八(1)班班长先从中随机抽取一张卡片,放回后洗匀,再由八(2)班班长从中随机抽取一张卡片,进行歌咏比赛.(1)八(1)班抽中歌曲《我和我的祖国》的概率是;(2)试用画树状图或列表的方法表示所有可能的结果,并求出八(1)班和八(2)班抽中不同歌曲的概率.【分析】(1)直接根据概率公式计算可得;(2)画树状图得出所有等可能结果,再从中找到符合条件的结果数,利用概率公式计算可得.解:(1)因为有A,B,C3种等可能结果,所以八(1)班抽中歌曲《我和我的祖国》的概率是;故答案为.(2)树状图如图所示:共有9种可能,八(1)班和八(2)班抽中不同歌曲的概率==.23.已知在Rt△ABC中,∠C=90°;以斜边AB上的一点O为圆心作圆O,与AC、BC分别相切与点D、E.(1)求证:CD=CE;(2)若AC=8,AB=10;求AD的长.【分析】(1)连接OD、OE,根据切线的性质、正方形的判定定理得到四边形OECD 为正方形,根据正方形的性质证明结论;(2)根据勾股定理求出BC,证明△AOD∽△ABC,根据相似三角形的性质列出比例式,计算即可.【解答】(1)证明:连接OD、OE,∵AC、BC都与圆O相切,∴OE⊥BC,OD⊥AC,又∠C=90°,∴四边形OECD为矩形,∵OD=OE,∴四边形OECD为正方形,∴CD=CE;(2)解:设圆O的半径为r,在Rt△ABC中,BC===6,∵OD⊥AC,∠C=90°,∠A=∠A,∴△AOD∽△ABC,∴=,即=,解得,r=,∴AD=AC﹣CD=8﹣=.24.已知二次函数L与y轴交于点C(0,3),且过点(1,0),(3,0).(1)求二次函数L的解析式及顶点H的坐标(2)已知x轴上的某点M(t,0);若抛物线L关于点M对称的新抛物线为L′,且点C、H的对应点分别为C′,H′;试说明四边形CHC′H′为平行四边形.(3)若平行四边形的边与某一条对角线互相垂直时,称这种平行四边形为“和谐四边形”;在(2)的条件下,当平行四边形CHC′H′为“和谐四边形”时,求t的值.【分析】(1)利用待定系数法可求解析式,由配方法可求顶点坐标;(2)由中心对称的性质可得CM=C'M,HM=H'M,可得结论;(3)分四种情况讨论,由两点距离公式和一次函数的性质可求解.解:(1)设二次函数L的解析式为:y=ax2+bx+c(a≠0)由题意可得:解得:∴二次函数L的解析式为:y=x2﹣4x+3,∵y=x2﹣4x+3=(x﹣2)2﹣1,∴顶点H的坐标(2,﹣1)(2)∵若抛物线L关于点M对称的新抛物线为L′,且点C、H的对应点分别为C′,H′;∴CM=C'M,HM=H'M,∴四边形CHC′H′为平行四边形;(3)∵点C(0,3),点H(2,﹣1)∴直线CH解析式为:y=﹣2x+3;若CC'⊥CH时,则CC'解析式为:y=x+3,当y=0时,0=t+3,∴t=﹣6;若HH'⊥CH时,则HH'解析式为:y=x﹣2,当y=0时,0=t﹣2,∴t=4∵若抛物线L关于点M对称的新抛物线为L′,且点C、H的对应点分别为C′,H′;∴点C'(2t,﹣3),点H'(2t﹣2,1)若CH'⊥HH',则H'C2+H'H2=CH2,∴(2t﹣2﹣0)2+(3﹣1)2+(2t﹣2﹣2)2+(1+1)2=(0﹣2)2+(3+1)2,∴t=若CC'⊥CH',则H'C2+C'C2=C'H'2,∴(2t﹣2﹣0)2+(3﹣1)2+(2t﹣0)2+(3+3)2=(0﹣2)2+(3+1)2,∴△<0,方程无解;综上所述:t=或4或﹣6.25.问题提出:(1)如图1,在四边形ABCD中,AB=BC,AD=CD=3,∠BAD=∠BCD=90°,∠ADC=60°,则四边形ABCD的面积为3;问题探究:(2)如图2,在四边形ABCD中,∠BAD=∠BCD=90°,∠ABC=135°,AB=2,BC=3,在AD、CD上分别找一点E、F,使得△BEF的周长最小,并求出△BEF的最小周长;问题解决:(3)如图3,在四边形ABCD中,AB=BC=2,CD=10,∠ABC=150°,∠BCD=90°,则在四边形ABCD中(包含其边沿)是否存在一点E,使得∠AEC=30°,且使四边形ABCE的面积最大.若存在,找出点E的位置,并求出四边形ABCE的最大面积;若不存在,请说明理由.【分析】(1)由题意可证△ABD≌△CBD,可得∠ADB=∠CDB=30°,可求AB=BC =,即可求四边形ABCD的面积;(2)由轴对称的性质可得BE=EM,AB=AM=2,BF=FN,BC=CN=3,可得△BEF 的周长=BE+BF+EF=NF+EF+EM=MN,由勾股定理可求MN的长,即可得△BEF的最小周长;(3)由圆的内接四边形性质可得∠AEC=30°,由矩形的性质可得BC=MN=2,BN=CM,∠CBN=90°,由勾股定理可得CE=4+2=AE,由当点E在AC的垂直平分线上时,S四边形ABCE最大,即可求四边形ABCE的最大面积.解:(1)∵AB=BC,AD=CD=3,∠BAD=∠BCD=90°∴△ABD≌△CBD(SAS)∴∠ADB=∠CDB,且∠ADC=60°∴∠ADB=∠CDB=30°,且∠BAD=∠BCD=90°∴AB=BC=∴四边形ABCD的面积=2××3×=3故答案为:3(2)如图,作点B关于AD的对称点M,作点B关于CD的对称点N,连接MN,交AD 于点E,交CD于点F,过点M作MG⊥BC,交CB的延长线于点G,∵点B,点M关于AD对称∴BE=EM,AB=AM=2,∴BM=4∵点B,点N关于CD对称∴BF=FN,BC=CN=3∴△BEF的周长=BE+BF+EF=NF+EF+EM=MN∵∠ABC=135°,∴∠GBM=45°,且GM⊥BG,∴∠GBM=∠GMB=45°∴BG=GM,且BG2+GM2=BM2,∴BG=4=GM,∴GN=BG+BC+CN=4+3+3=10,∴在Rt△GMN中,MN===2∴△BEF的最小周长为2(3)作△ABC的外接圆,交CD于点E,连接AC,AE,过点A作AM⊥CD于点M,作BN⊥AM于点N,∵四边形ABCE是圆内接四边形∴∠ABC+∠AEC=180°∴∠AEC=30°,∵BN⊥AM,AM⊥CD,∠BCD=90°,∴四边形BCMN是矩形∴BC=MN=2,BN=CM,∠CBN=90°,∵∠ABC=150°,∴∠ABN=60°,且BN⊥AM∴∠BAN=30°,∴BN=AB=1,AN=BN=∴AM=+2,CM=1∵∠AEC=30°,AM⊥CE,∴AE=2AM=2+4,ME=AM=3+2∴CE=CM+ME=4+2=AE∴点E在AC垂直平分线上,∵S四边形ABCE=S△ABC+S△ACE,且S△ABC是定值,AC长度是定值,点E在△ABC的外接圆上,∴当点E在AC的垂直平分线上时,S四边形ABCE最大∴S四边形ABCE=S四边形ABCM+S△AME=××1+=8+4。
2020年度中考初三数学一模试卷(含答案解析)

2020年初三数学一模试卷一、选择题(本大题共10小题,每小题3分,共30分) 1.-3的绝对值是 A .-13B .-3C .13D .32.函数中y =x2-x 自变量x 的取值范围是A .x ≥2B .x ≤2C .x ≠2D .x >23.在下列四个图形中,是中心对称图形的是A .B .C .D .4.下列运算正确的是 A .2a 2+a 2=3a 4B .(-2a 2)3=8a 6C .a 3÷a 2=aD .(a -b )2=a 2-b 25.某校有25名同学参加某比赛,预赛成绩各不相同,取前13名参加决赛,其中一名同学已经知道自己的成绩,能否进入决赛,只需要再知道这25名同学成绩的 A .最高分B .方差C .中位数D .平均数6.下列图形中,主视图为①的是A .BC .D .7.已知a -b =2,则a 2-b 2-4b 的值为 A .2B .4C .6D .88.下列判断错误的是A .对角线互相垂直且相等的平行四边形是正方形B .对角线互相垂直平分的四边形是菱形C .对角线相等的四边形是矩形D .对角线互相平分的四边形是平行四边形9.如图,平面直角坐标系中,A (-8,0),B (-8,4),C (0,4),反比例函数y =k x的图象分别与线段AB ,BC 交于点D ,E ,连接DE .若点B 关于DE 的对称点恰好在OA 上,则k = A .-20B .-16C .-12D .-810.如图,等边三角形ABC 边长是定值,点O 是它的外心,过点O 任意作一条直线分别交AB ,BC 于点D ,E .将△BDE 沿直线DE 折叠,得到△B ′DE ,若B ′D ,B ′E 分别交AC 于点F ,G ,连接OF ,OG ,则下列判断错误的是 A .△ADF ≌△CGEB .△B ′FG 的周长是一个定值C .四边形FOEC 的面积是一个定值D .四边形OGB ′F 的面积是一个定值二、填空题(本大题共8小题,每小题2分,共16分) 11.16的平方根是 .12.某人近期加强了锻炼,用“微信运动”记录下了一天的行走步数为12400,将12400用科学记数法表示应为 . 13.若3m =5,3n =8,则32m +n= .14.用一个圆心角为120°,半径为6的扇形作一个圆锥的侧面,则这个圆锥的底面半径为 . 15.如图,四边形ABCD 内接于⊙O ,OC ∥AD ,∠DAB =60°,∠ADC =106°,则∠OCB = . 16.如图,△ABC 中,∠C =90°,AC =3,AB =5,D 为BC 边的中点,以AD 上一点O 为圆心的O 和AB ,BC 均相切,则⊙O 的半径为 .(第16题图)(第15题图)ABCDFGB′O(第10题图)(第9题图)(第6题图①)17.如图,二次函数y =(x +2)2+m 的图象与y 轴交于点C ,与x 轴的一个交点为A (-1,0),点B在抛物线上,且与点C 关于抛物线的对称轴对称.已知一次函数y =kx +b 的图象经过A ,B 两点,根据图象,则满足不等式(x +2)2+m ≤kx +b 的x 的取值范围是 .18.如图,正方形ABCD 和Rt △AEF ,AB =5,AE =AF =4,连接BF ,DE .若△AEF 绕点A 旋转,当∠ABF 最大时,S △ADE = .三、解答题(共84分) 19.(本题满分8分)(1)计算:(π-3)0+2sin45°-⎝ ⎛⎭⎪⎫18-1 (2)解不等式组:⎩⎨⎧1-2x <3x +13<220.(本题满分8分)解方程: (1)x 2-8x +1=0 (2)3x -2-1-x2-x=121.(本题满分8分)如图,□ABCD 中,E 为AD 的中点,直线BE ,CD 相交于点F .连接AF ,BD . (1)求证:AB =DF ;(2)若AB =BD ,求证:四边形ABDF 是菱形.ABCDEF(第18题图)(第17题图)22.(本题满分8分)某校为了深入学习社会主义核心价值观,对本校学生进行了一次相关知识的测试,随机抽取了部分学生的测试成绩进行统计(根据成绩分为A ,B ,C ,D ,E 五个组,x 表示测试成绩,A 组:90≤x ≤100;B 组:80≤x <90;C 组:70≤x <80;D 组:60≤x <70;E 组:x <60),通过对测试成绩的分析,得到如图所示的两幅不完整的统计图,请你根据图中提供的信息解答以下问题:(1)抽取的学生共有________人,请将两幅统计图补充完整; (2)抽取的测试成绩的中位数落在________组内;(3)本次测试成绩在80分以上(含80分)为优秀,若该校初三学生共有1200人,请估计该校初三测试成绩为优秀的学生有多少人?调查测试成绩扇形统计图ADFEBC23.(本题满分8分)有甲,乙两把不同的锁和A,B,C三把不同的钥匙.其中两把钥匙分别能打开这两把锁,第三把钥匙不能打开这两把锁.随机取出两把钥匙开这两把锁,求恰好能都打开的概率.(请用“画树状图”或“列表”等方法给出分析过程)24.(本题满分8分)如图,△ABC中,⊙O经过A,B两点,且交AC于点D,连接BD,∠DBC=∠BAC.(1)证明BC与⊙O相切;(2)若⊙O的半径为6,∠BAC=30°,求图中阴影部分的面积.25.(本题满分8分)某水果商店以12.5元/千克的价格购进一批水果进行销售,运输过程中质量损耗5%,运输费用是0.8元/千克(运输费用按照进货质量计算),假设不计其他费用.(1)商店要把水果售完至少定价为多少元才不会亏本?(2)在销售过程中,商店发现每天水果的销售量y(千克)与销售单价x(元/千克)之间的函数关系如图所示,那么当销售单价定为多少时,每天获得的利润w最大?最大利润是多少?(3)该商店决定每销售1千克水果就捐赠p元利润(p≥1)给希望工程,通过销售记录发现,销售价格大于每千克22元时,扣除捐赠后每天的利润随x增大而减小,直接写出p的取值范围.y/千克)26.(本题满分8分)如图,线段OB 放置在正方形网格中,现请你分别在图1,图2,图3添画(工具只能用直尺)射线OA ,使tan ∠AOB 的值分别为1,2,3.27.(本题满分10分)已知,二次函数y =ax 2+2ax -3a (a >0)图象的顶点为C ,与x 轴交于A ,B 两点(点A 在点B 的左侧),点C ,B 关于过点A 的直线l 对称,直线l 与y 轴交于D . (1)求A ,B 两点坐标及直线l 的解析式; (2)求二次函数解析式;(3)在第三象限抛物线上有一个动点E ,连接OE 交直线l 于点F ,求EFOF的最大值.BO图3B O图2B O图128.(本题满分10分)如图,矩形ABCD ,AB =2,BC =10,点E 为AD 上一点,且AE =AB ,点F 从点E 出发,向终点D 运动,速度为1 cm/s ,以BF 为斜边在BF 上方作等腰Rt △BFG ,以BG ,BF 为邻边作□BFHG ,连接AG .设点F 的运动时间为t 秒,(1)试说明:△ABG ∽△EBF ;(2)当点H 落在直线CD 上时,求t 的值;(3)点F 从E 运动到D 的过程中,直接写出HC 的最小值.图2AB CDE图1ABC DFEG H9.如图,平面直角坐标系中,A(﹣8,0),B(﹣8,4),C(0,4),反比例函数y=的图象分别与线段AB,BC交于点D,E,连接DE.若点B关于DE的对称点恰好在OA上,则k=()A.﹣20 B.﹣16 C.﹣12 D.﹣8【分析】根据A(﹣8,0),B(﹣8,4),C(0,4),可得矩形的长和宽,易知点D的横坐标,E的纵坐标,由反比例函数的关系式,可用含有k的代数式表示出点D的纵坐标和点E的横坐标,由三角形相似和对称,可求出AF的长,然后把问题转化到三角形ADF中,由勾股定理建立方程求出k的值.【解答】解:过点E作EG⊥OA,垂足为G,设点B关于DE的对称点为F,连接DF、EF、BF,如图所示:则△BDE≌△FDE,∴BD=FD,BE=FE,∠DFE=∠DBE=90°易证△ADF∽△GFE∴,∴AF:EG=BD:BE,∵A(﹣8,0),B(﹣8,4),C(0,4),∴AB=OC=EG=4,OA=BC=8,∵D、E在反比例函数y=的图象上,∴E(,4)、D(﹣8,)∴OG=EC=,AD=﹣,∴BD=4+,BE=8+∴,∴AF=,在Rt△ADF中,由勾股定理:AD2+AF2=DF2即:(﹣)2+22=(4+)2解得:k=﹣12故选:C.10.如图,等边三角形ABC边长是定值,点O是它的外心,过点O任意作一条直线分别交AB,BC于点D,E.将△BDE沿直线DE折叠,得到△B′DE,若B′D,B′E分别交AC于点F,G,连接OF,OG,则下列判断错误的是()A.△ADF≌△CGEB.△B′FG的周长是一个定值C.四边形FOEC的面积是一个定值D.四边形OGB'F的面积是一个定值【分析】A、根据等边三角形ABC的内心的性质可知:AO平分∠BAC,根据角平分线的定理和逆定理得:FO平分∠DFG,由外角的性质可证明∠DOF=60°,同理可得∠EOG=60°,∠FOG=60°=∠DOF =∠EOG,可证明△DOF≌△GOF≌△GOE,△OAD≌△OCG,△OAF≌△OCE,可得AD=CG,AF=CE,从而得△ADF≌△CGE;B、根据△DOF≌△GOF≌△GOE,得DF=GF=GE,所以△ADF≌△B'GF≌△CGE,可得结论;C、根据S四边形FOEC=S△OCF+S△OCE,依次换成面积相等的三角形,可得结论为:S△AOC=(定值),可作判断;D、方法同C,将S四边形OGB'F=S△OAC﹣S△OFG,根据S△OFG=•FG•OH,FG变化,故△OFG的面积变化,从而四边形OGB'F的面积也变化,可作判断.【解答】解:A、连接OA、OC,∵点O是等边三角形ABC的内心,∴AO平分∠BAC,∴点O到AB、AC的距离相等,由折叠得:DO平分∠BDB',∴点O到AB、DB'的距离相等,∴点O到DB'、AC的距离相等,∴FO平分∠DFG,∠DFO=∠OFG=(∠FAD+∠ADF),由折叠得:∠BDE=∠ODF=(∠DAF+∠AFD),∴∠OFD+∠ODF=(∠FAD+∠ADF+∠DAF+∠AFD)=120°,∴∠DOF=60°,同理可得∠EOG=60°,∴∠FOG=60°=∠DOF=∠EOG,∴△DOF≌△GOF≌△GOE,∴OD=OG,OE=OF,∠OGF=∠ODF=∠ODB,∠OFG=∠OEG=∠OEB,∴△OAD≌△OCG,△OAF≌△OCE,∴AD=CG,AF=CE,∴△ADF≌△CGE,故选项A正确;B、∵△DOF≌△GOF≌△GOE,∴DF=GF=GE,∴△ADF≌△B'GF≌△CGE,∴B'G=AD,∴△B'FG的周长=FG+B'F+B'G=FG+AF+CG=AC(定值),故选项B正确;C、S四边形FOEC=S△OCF+S△OCE=S△OCF+S△OAF=S△AOC=(定值),故选项C正确;D、S四边形OGB'F=S△OFG+S△B'GF=S△OFD+S△ADF=S四边形OFAD=S△OAD+S△OAF=S△OCG+S△OAF=S△OAC ﹣S△OFG,过O作OH⊥AC于H,∴S△OFG=•FG•OH,由于OH是定值,FG变化,故△OFG的面积变化,从而四边形OGB'F的面积也变化,故选项D不一定正确;故选:D.16.如图,△ABC中,∠C=90°,AC=3,AB=5,D为BC边的中点,以AD上一点O为圆心的⊙O和AB、BC均相切,则⊙O的半径为.【分析】过点O作OE⊥AB于点E,OF⊥BC于点F.根据切线的性质,知OE、OF是⊙O的半径;然后由三角形的面积间的关系(S△ABO+S△BOD=S△ABD=S△ACD)列出关于圆的半径的等式,求得圆的半径即可.【解答】解:过点O作OE⊥AB于点E,OF⊥BC于点F.∵AB、BC是⊙O的切线,∴点E、F是切点,∴OE、OF是⊙O的半径;∴OE=OF;在△ABC中,∠C=90°,AC=3,AB=5,∴由勾股定理,得BC=4;又∵D是BC边的中点,∴S△ABD=S△ACD,又∵S△ABD=S△ABO+S△BOD,∴AB•OE+BD•OF=CD•AC,即5×OE+2×OE=2×3,解得OE=,∴⊙O的半径是.故答案为:.17.如图,二次函数y=(x+2)2+m的图象与y轴交于点C,与x轴的一个交点为A(﹣1,0),点B 在抛物线上,且与点C关于抛物线的对称轴对称.已知一次函数y=kx+b的图象经过A,B两点,根据图象,则满足不等式(x+2)2+m≤kx+b的x的取值范围是﹣4≤x≤﹣1 .【分析】将点A代入抛物线中可求m=﹣1,则可求抛物线的解析式为y=x2+4x+3,对称轴为x=﹣2,则满足(x+2)2+m≤kx+b的x的取值范围为﹣4≤x≤﹣1.【解答】解:抛物线y=(x+2)2+m经过点A(﹣1,0),∴m=﹣1,∴抛物线解析式为y=x2+4x+3,∴点C坐标(0,3),∴对称轴为x=﹣2,∵B与C关于对称轴对称,点B坐标(﹣4,3),∴满足(x+2)2+m≤kx+b的x的取值范围为﹣4≤x≤﹣1,故答案为﹣4≤x≤﹣1.18.如图,正方形ABCD和Rt△AEF,AB=5,AE=AF=4,连接BF,DE.若△AEF绕点A旋转,当∠ABF最大时,S△ADE= 6 .【分析】作DH⊥AE于H,如图,由于AF=4,则△AEF绕点A旋转时,点F在以A为圆心,4为半径的圆上,当BF为此圆的切线时,∠ABF最大,即BF⊥AF,利用勾股定理计算出BF=3,接着证明△ADH≌△ABF得到DH=BF=3,然后根据三角形面积公式求解.【解答】解:作DH⊥AE于H,如图,∵AF=4,当△AEF绕点A旋转时,点F在以A为圆心,4为半径的圆上,∴当BF为此圆的切线时,∠ABF最大,即BF⊥AF,在Rt△ABF中,BF==3,∵∠EAF=90°,∴∠BAF+∠BAH=90°,∵∠DAH+∠BAH=90°,∴∠DAH=∠BAF,在△ADH和△ABF中,∴△ADH≌△ABF(AAS),∴DH=BF=3,∴S△ADE=AE•DH=×3×4=6.故答案为6.22.某校为了深入学习社会主义核心价值观,对本校学生进行了一次相关知识的测试,随机抽取了部分学生的测试成绩进行统计(根据成绩分为A、B、C、D、E五个组,x表示测试成绩,A组:90≤x≤100;B组:80≤x<90;C组:70≤x<80;D组:60≤x<70;E组:x<60),通过对测试成绩的分析,得到如图所示的两幅不完整的统计图,请你根据图中提供的信息解答以下问题:(1)抽取的学生共有400 人,请将两幅统计图补充完整;(2)抽取的测试成绩的中位数落在B组内;(3)本次测试成绩在80分以上(含80分)为优秀,若该校初三学生共有1200人,请估计该校初三测试成绩为优秀的学生有多少人?【分析】(1)根据E组的人数和所占的百分比可以求得本次调查的人数,再根据条形统计图中的数据可以求得B组和C组所占的百分比.根据本次调查的总人数和B组所占的百分比可以求得B组的人数;(2)根据扇形统计图中的数据可以得到中位数落在哪一组;(3)根据统计图中的数据可以计算出该校初三测试成绩为优秀的学生有多少人.【解答】解:(1)本次抽取的学生共有:40÷10%=400(人),故答案为:400;A所占的百分比为:100÷400×100%=25%,C所占的百分比为:80÷400×100%=20%,B组的人数为:400×30%=120,补全的统计图如下图所示;(2)由扇形统计图可知,抽取的测试成绩的中位数落在B组内,故答案为:B;(3)1200×(25%+30%)=660(人),答:该校初三测试成绩为优秀的学生有660人.【点评】本题考查频数分布直方图、扇形统计图、条形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.23.有甲、乙两把不同的锁和三把不同的钥匙,其中两把钥匙分别能打开这两把锁,第三把钥匙不能打开这两把锁.随机取出两把钥匙开这两把锁,求恰好都能打开的概率(请用“画树状图”或“列表”等方法给出分析过程)【分析】首先根据题意列表,得所有等可能的结果,可求得打开一把锁的情况,再利用概率公式求解即可求得答案.【解答】解:画树状图:可能出现的等可能性结果有6种,分别是(A,B),(A,C),(B,A),(B,C),(C,A),(C,B),只有1种情况(有先后顺序)恰好打开这两把锁P(恰好打开这两把锁)=.【点评】此题主要考查了利用树状图法求概率,利用如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=是解题关键.24.如图,△ABC中,⊙O经过A、B两点,且交AC于点D,连接BD,∠DBC=∠BAC.(1)证明BC与⊙O相切;(2)若⊙O的半径为6,∠BAC=30°,求图中阴影部分的面积.【分析】(1)连接BO并延长交⊙O于点E,连接DE.由圆周角定理得出∠BDE=90°,再求出∠EBD+∠DBC=90°,根据切线的判定定理即可得出BC是⊙O的切线;(2)分别求出等边三角形DOB的面积和扇形DOB的面积,即可求出答案.【解答】证明:(1)连接BO并延长交⊙O于点E,连接DE.∵BE是⊙O的直径,∴∠BDE=90°,∴∠EBD+∠E=90°,∵∠DBC=∠DAB,∠DAB=∠E,∴∠EBD+∠DBC=90°,即OB⊥BC,又∵点B在⊙O上,∴BC是⊙O的切线;(2)连接OD,∵∠BOD=2∠A=60°,OB=OD,∴△BOD是边长为6的等边三角形,∴S△BOD=×62=9,∵S扇形DOB==6π,∴S阴影=S扇形DOB﹣S△BOD=6π﹣9.【点评】本题考查了切线的判定,圆周角定理,扇形面积,等边三角形的性质和判定的应用,关键是求出∠EBD+∠DBC=90°和分别求出扇形DOB和三角形DOB的面积.25.某水果商店以12.5元/千克的价格购进一批水果进行销售,运输过程中质量损耗5%,运输费用是0.8元/千克(运输费用按照进货质量计算),假设不计其他费用.(1)商店要把水果售完至少定价为多少元才不会亏本?(2)在销售过程中,商店发现每天水果的销售量y(千克)与销售单价x(元/千克)之间的函数关系如图所示,那么当销售单价定为多少时,每天获得的利润w最大?最大利润是多少?(3)该商店决定每销售1千克水果就捐赠p元利润(p≥1)给希望工程,通过销售记录发现,销售价格大于每千克22元时,扣除捐赠后每天的利润随x增大而减小,直接写出p的取值范围.【分析】本题是通过构建函数模型解答销售利润的问题.(1)设购进水果a千克,水果售价定为m元/千克,水果商才不会亏本,则有a•m(1﹣5%)≥(12.5+0.8)a,解得m即可(2)可先求出y与销售单价x之间的函数关系为:y=﹣5x+130,再根据销售利润=销售量×(售价﹣进价),列出销售利润w与销售价x之间的函数关系式,即可求最大利润(3)设扣除捐赠后利润为s,则s=﹣5x2+(5p+200)x﹣130(p+14),再根据对称轴的位置及增减性进行判断即可.【解答】解:(1)设购进水果a千克,水果售价定为m元/千克,水果商才不会亏本,则有a•m(1﹣5%)≥(12.5+0.8)a则a>0可解得:m≥14∴水果商要把水果售价至少定为14元/千克才不会亏本(2)由(1)可知,每千克水果的平均成本为14元得y与销售单价x之间的函数关系为:y=﹣5x+130由题意得:w=(x﹣14)y=(x﹣14)(﹣5x+130)=﹣5x2+200x﹣1820整理得w=﹣5(x﹣20)2+180∴当x=20时,w有最大值∴当销售单价定为20元时,每天获得的利润w最大,最大利润是180元.(3)设扣除捐赠后利润为s则s=(x﹣14﹣p)(﹣5x+130)=﹣5x2+(5p+200)x﹣130(p+14)∵抛物线的开口向下∴对称轴为直线x==∵销售价格大于每千克22元时,扣除捐赠后每天的利润s随x的增大而减小∴≤22解得p≤4故1≤p≤4【点评】本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.根据每天的利润=一件的利润×销售件数,建立函数关系式,此题为数学建模题,借助二次函数解决实际问题.26.如图,线段OB放置在正方形网格中,现请你分别在图1、图2、图3添画(工具只能用直尺)射线OA,使tan∠AOB的值分别为1、2、3.【分析】根据勾股定理以及正切值对应边关系得出答案即可.【解答】解:如图1所示:tan∠AOB===1,如图2所示:tan∠AOB===2,如图3所示:tan∠AOB===3,故tan∠AOB的值分别为1、2、3..【点评】此题主要考查了应用与设计作图以及锐角三角函数关系、勾股定理等知识,正确构造直角三角形是解题关键.27.已知,如图,二次函数y=ax2+2ax﹣3a(a>0)图象的顶点为C与x轴交于A、B两点(点A在点B左侧),点C、B关于过点A的直线l:y=kx﹣对称.(1)求A、B两点坐标及直线l的解析式;(2)求二次函数解析式;(3)如图2,过点B作直线BD∥AC交直线l于D点,M、N分别为直线AC和直线l上的两动点,连接CN,NM、MD,求D的坐标并直接写出CN+NM+MD的最小值.【分析】(1)令二次函数解析式y=0,解方程即求得点A、B坐标;把点A坐标代入直线l解析式即求得直线l.(2)把二次函数解析式配方得顶点C(﹣1,﹣4a),由B、C关于直线l对称可知AB=AC,用a表示AC的长即能列得关于的方程.求得a有两个互为相反数的解,由二次函数图象开口向上可知a>0,舍去负值.(3)①用待定系数法求直线AC解析式,由BD∥AC可知直线BD解析式的k与AC的k相同,再代入点B坐标即求得直线BD解析式.把直线l与直线BD解析式联立方程组,求得的解即为点D坐标.②由点B、C关于直线l对称,连接BN即有B、N、M在同一直线上时,CN+MN=BN+MN=BM最小;作点D关于直线AC的对称点Q,连接DQ交直线AC于点E,可证B、M、Q在同一直线上时,BM+MD=BM+MQ=BQ最小,CN+NM+MD最小值=BM+MD最小值=BQ.由直线AC垂直平分DQ且AC∥BD可得BD⊥DQ,即∠BDQ=90°.由B、D坐标易求BD的长;由B、C关于直线l 对称可得l平分∠BAC,作DF⊥x轴于F则有DF=DE,所以DQ=2DE=2DF=4;利用勾股定理即求得BQ的长.【解答】解:(1)当y=0时,ax2+2ax﹣3a=0解得:x1=﹣3,x2=1∴点A坐标为(﹣3,0),点B坐标为(1,0)∵直线l:y=kx﹣经过点A∴﹣3k﹣=0 解得:k=﹣∴直线l的解析式为y=﹣x﹣(2)∵y=ax2+2ax﹣3a=a(x+1)2﹣4a∴点C坐标为(﹣1,﹣4a)∵C、B关于直线l对称,A在直线l上∴AC=AB,即AC2=AB2∴(﹣1+3)2+(﹣4a)2=(1+3)2解得:a=±(舍去负值),即a=∴二次函数解析式为:y=x2+x﹣(3)∵A(﹣3,0),C(﹣1,﹣2),设直线AC解析式为y=kx+b∴解得:∴直线AC解析式为y=﹣x﹣3∵BD∥AC∴设直线BD解析式为y=﹣x+c把点B(1,0)代入得:﹣+c=0 解得:c=∴直线BD解析式为y=﹣x+∵解得:∴点D坐标为(3,﹣2)如图,连接BN,过点D作DF⊥x轴于点F,作D关于直线AC的对称点点Q,连接DQ交AC于点E,连接BQ,MQ.∵点B、C关于直线l对称,点N在直线l上∴BN=CN∴当B、N、M在同一直线上时,CN+MN=BN+MN=BM,即CN+MN的最小值为BM∵点D、Q关于直线AC对称,点M在直线AC上∴MQ=MD,DQ⊥AC,DE=QE∴当B、M、Q在同一直线上时,BM+MD=BM+MQ=BQ,即BM+MD的最小值为BQ∴此时,CN+NM+MD=BM+MD=BQ,即CN+NM+MD的最小值为BQ∵点B、C关于直线l对称∴AD平分∠BAC∵DF⊥AB,DE⊥AC∴DE=DF=|y D|=2∴DQ=2DE=4∵B(1,0),D(3,﹣2)∴BD2=(3﹣1)2+(﹣2)2=16∵BD∥AC∴∠BDQ=∠AEQ=90°∴BQ=∴CN+NM+MD的最小值为8.28.如图,矩形ABCD,AB=2,BC=10,点E为AD上一点,且AE=AB,点F从点E出发,向终点D 运动,速度为1cm/s,以BF为斜边在BF上方作等腰直角△BFG,以BG,BF为邻边作▱BFHG,连接AG.设点F的运动时间为t秒.(1)试说明:△ABG∽△EBF;(2)当点H落在直线CD上时,求t的值;(3)点F从E运动到D的过程中,直接写出HC的最小值.【分析】(1)根据两边成比例夹角相等即可证明两三角形相似;(2)如图构建如图平面直角坐标系,作HM⊥AD于M,GN⊥AD于N.设AM交BG于K.首先证明△GFN≌△FHM,想办法求出点H的坐标,构建方程即可解决问题;(3)由(2)可知H(2+t,4+t),令x=2+t,y=4+t,消去t得到y=x+.推出点H 在直线y=x+上运动,根据垂线段最短即可解决问题;【解答】(1)证明:如图1中,∵△ABE,△BGF都是等腰直角三角形,∴==,∵∠ABE=∠GBF=45°,∴∠ABG=∠EBF,∴△ABG∽△EBF.(2)解:如图构建如图平面直角坐标系,作HM⊥AD于M,GN⊥AD于N.设AM交BG于K.∵△GFH是等腰直角三角形,∴FG=FH,∠GNF=∠GFH=∠HMF=90°,∴∠GFN+∠HFM=90°,∠HFM+∠FHM=90°,∴∠GFN=∠FHM,∴△GFN≌△FHM,∴GN=FM,FN=HM,∵△ABG∽△EBF,∴==,∠AGB=∠EFB,∵∠AKG=∠BKF,∴∠GAN=∠KBF=45°,∵EF=t,∴AG=t,∴AN=GN=FM=t,∴AM=2+t,HM=FN=2+t,∴H(2+t,4+t),当点H在直线CD上时,2+t=10,解得t=.(3)由(2)可知H(2+t,4+t),令x=2+t,y=4+t,消去t得到y=x+.∴点H在直线y=x+上运动,如图,作CH垂直直线y=x+垂足为H.根据垂线段最短可知,此时CH的长最小,易知直线CH的解析式为y=﹣3x+30,由,解得,∴H(8,6),∵C(10,0),∴CH==2,∴HC最小值是2.。
2020届上海市普陀区中考数学一模试卷(有答案)

上海市普陀区中考数学一模试卷一、选择题:(本大题共6题,每题4分,满分24分)1.如图,BD、CE相交于点A,下列条件中,能推得DE∥BC的条件是()A.AE:EC=AD:DB B.AD:AB=DE:BC C.AD:DE=AB:BC D.BD:AB=AC:EC2.如图,在△ABC中,D是AB的中点,DE∥BC,若△ADE的面积为3,则△ABC的面积为()A.3 B.6 C.9 D.123.如图,在Rt△ABC中,∠C=90°,CD是斜边AB上的高,下列线段的比值不等于cosA的值的是()A.B.C.D.4.如果a、b同号,那么二次函数y=ax2+bx+1的大致图象是()A.B.C.D.5.下列命题中,正确的是()A.圆心角相等,所对的弦的弦心距相等B.三点确定一个圆C.平分弦的直径垂直于弦,并且平分弦所对的弧D.弦的垂直平分线必经过圆心6.已知在平行四边形ABCD中,点M、N分别是边BC、CD的中点,如果=,=,那么向量关于、的分解式是()A.﹣B.﹣+C.+D.﹣﹣二、填空题:(本大题共12题,每题4分,满分48分)7.如果,那么=.8.计算:2(+)+(﹣)=.9.计算:sin245°+cot30°•tan60°=.10.已知点P把线段分割成AP和PB两段(AP>PB),如果AP是AB和PB的比例中项,那么AP:AB 的值等于.11.在函数①y=ax2+bx+c,②y=(x﹣1)2﹣x2,③y=5x2﹣,④y=﹣x2+2中,y关于x的二次函数是.(填写序号)12.二次函数y=x2+2x﹣3的图象有最点.(填:“高”或“低”)13.如果抛物线y=2x2+mx+n的顶点坐标为(1,3),那么m+n的值等于.14.如图,点G为△ABC的重心,DE经过点G,DE∥AC,EF∥AB,如果DE的长是4,那么CF的长是.15.半圆形纸片的半径为1cm,用如图所示的方法将纸片对折,使对折后半圆弧的中点M与圆心O重合,则折痕CD的长为cm.16.已知在Rt△ABC中,∠C=90°,点P、Q分别在边AB、AC上,AC=4,BC=AQ=3,如果△APQ与△ABC 相似,那么AP的长等于.17.某货站用传送带传送货物,为了提高传送过程的安全性,工人师傅将原坡角为45°的传送带AB,调整为坡度i=1:的新传送带AC(如图所示).已知原传送带AB的长是4米.那么新传送带AC的长是米.18.已知A(3,2)是平面直角坐标中的一点,点B是x轴负半轴上一动点,联结AB,并以AB为边在x 轴上方作矩形ABCD,且满足BC:AB=1:2,设点C的横坐标是a,如果用含a的代数式表示D点的坐标,那么D点的坐标是.三、解答题:(本大题共7题,满分78分)19.已知:如图,在梯形ABCD中,AD∥BC,AD=,点M是边BC的中点=,=(1)填空:=,=(结果用、表示)(2)直接在图中画出向量2+.(不要求写作法,但要指出图中表示结论的向量)20.将抛物线y=先向上平移2个单位,再向左平移m(m>0)个单位,所得新抛物线经过点(﹣1,4),求新抛物线的表达式及新抛物线与y轴交点的坐标.21.如图,已知AD是⊙O的直径,AB、BC是⊙O的弦,AD⊥BC,垂足是点E,BC=8,DE=2,求⊙O 的半径长和sin∠BAD的值.22.已知:如图,有一块面积等于1200cm2的三角形纸片ABC,已知底边与底边BC上的高的和为100cm (底边BC大于底边上的高),要把它加工成一个正方形纸片,使正方形的一边EF在边BC上,顶点D、G分别在边AB、AC上,求加工成的正方形铁片DEFG的边长.23.已知,如图,在四边形ABCD中,∠ADB=∠ACB,延长AD、BC相交于点E.求证:(1)△ACE∽△BDE;(2)BE•DC=AB•DE.24.已知,如图,在平面直角坐标系xOy中,二次函数y=ax2﹣的图象经过点、A(0,8)、B(6,2)、C(9,m),延长AC交x轴于点D.(1)求这个二次函数的解析式及的m值;(2)求∠ADO的余切值;(3)过点B的直线分别与y轴的正半轴、x轴、线段AD交于点P(点A的上方)、M、Q,使以点P、A、Q为顶点的三角形与△MDQ相似,求此时点P的坐标.25.如图,已知锐角∠MBN的正切值等于3,△PBD中,∠BDP=90°,点D在∠MBN的边BN上,点P在∠MBN内,PD=3,BD=9,直线l经过点P,并绕点P旋转,交射线BM于点A,交射线DN于点C,设=x(1)求x=2时,点A到BN的距离;(2)设△ABC的面积为y,求y关于x的函数解析式,并写出函数的定义域;(3)当△ABC因l的旋转成为等腰三角形时,求x的值.上海市普陀区中考数学一模试卷参考答案与试题解析一、选择题:(本大题共6题,每题4分,满分24分)1.如图,BD、CE相交于点A,下列条件中,能推得DE∥BC的条件是()A.AE:EC=AD:DB B.AD:AB=DE:BC C.AD:DE=AB:BC D.BD:AB=AC:EC【考点】平行线分线段成比例.【分析】根据比例式看看能不能推出△ABC∽△ADE即可.【解答】解:A、∵AE:EC=AD:DB,∴=,∴都减去1得:=,∵∠BAC=∠EAD,∴△ABC∽△ADE,∴∠D=∠B,∴DE∥BC,故本选项正确;B、根据AD:AB=DE:BC不能推出△ABC∽△ADE,即不能得出内错角相等,不能推出DE∥BC,故本选项错误;C、根据AD:DE=AB:BC不能推出△ABC∽△ADE,即不能得出内错角相等,不能推出DE∥BC,故本选项错误;D、根据BD:AB=AC:EC不能推出△ABC∽△ADE,即不能得出内错角相等,不能推出DE∥BC,故本选项错误;故选A.【点评】本题考查了平行线分线段成比例定理的应用,能理解平行线分线段成比例定理的内容是解此题的关键.2.如图,在△ABC中,D是AB的中点,DE∥BC,若△ADE的面积为3,则△ABC的面积为()A.3 B.6 C.9 D.12【考点】相似三角形的判定与性质;三角形中位线定理.【分析】由平行可知△ADE∽△ABC,且=,再利用三角形的面积比等于相似比的平方可求得△ABC的面积.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∵D是AB的中点,∴=,∴=()2=,且S△ADE=3,∴=,∴S△ABC=12,故选D.【点评】本题主要考查相似三角形的判定和性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.3.如图,在Rt△ABC中,∠C=90°,CD是斜边AB上的高,下列线段的比值不等于cosA的值的是()A.B.C.D.【考点】锐角三角函数的定义.【分析】根据余角的性质,可得∠=∠BCD,根据余弦等于邻边比斜边,可得答案.【解答】解:A、在Rt△ABD中,cosA=,故A正确;B、在Rt△ABC中,cosA=,故B正确C、在Rt△BCD中,cosA=cos∠BCD=,故C错误;D、在Rt△BCD中,cosA=cos∠BCD=,故D正确;故选:C.【点评】本题考查了锐角三角函数的定义,在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.4.如果a、b同号,那么二次函数y=ax2+bx+1的大致图象是()A.B.C.D.【考点】二次函数的图象.【分析】分a>0和a<0两种情况根据二次函数图象的开口方向、对称轴、与y轴的交点情况分析判断即可得解.【解答】解:a>0,b>0时,抛物线开口向上,对称轴x=﹣<0,在y轴左边,与y轴正半轴相交,a<0,b<0时,抛物线开口向下,对称轴x=﹣<0,在y轴左边,与y轴正半轴坐标轴相交,D选项符合.故选D.【点评】本题考查了二次函数图象,熟练掌握函数图象与系数的关系是解题的关键,注意分情况讨论.5.下列命题中,正确的是()A.圆心角相等,所对的弦的弦心距相等B.三点确定一个圆C.平分弦的直径垂直于弦,并且平分弦所对的弧D.弦的垂直平分线必经过圆心【考点】命题与定理.【分析】根据有关性质和定理分别对每一项进行判断即可.【解答】解:A、在同圆或等圆中,相等的圆心角所对的弦相等,故本选项错误;B、不在一条直线上的三点确定一个圆,错误;C、平分弦的直径不一定垂直于弦,错误;D、弦的垂直平分线必经过圆心,正确;故选D【点评】此题考查了命题与定理,关键是熟练掌握有关性质和定理,能对命题的真假进行判断.6.已知在平行四边形ABCD中,点M、N分别是边BC、CD的中点,如果=,=,那么向量关于、的分解式是()A.﹣B.﹣+C.+D.﹣﹣【考点】*平面向量.【分析】首先根据题意画出图形,然后连接BD,由三角形法则,求得,又由点M、N分别是边BC、CD 的中点,根据三角形中位线的性质,即可求得答案.【解答】解:如图,连接BD,∵在平行四边形ABCD中,=,=,∴=﹣=﹣,∵点M、N分别是边BC、CD的中点,∴MN∥BD,MN=BD,∴==(﹣)=﹣+.故选B.【点评】此题考查了平面向量的知识以及三角形的中位线的性质.注意结合题意画出图形,利用图形求解是关键.二、填空题:(本大题共12题,每题4分,满分48分)7.如果,那么=.【考点】比例的性质.【分析】根据比例设x=2k,y=5k,然后代入比例式进行计算即可得解.【解答】解:∵=,∴设x=2k,y=5k,则===.故答案为:.【点评】本题考查了比例的性质,利用“设k法”表示出x、y可以使计算更加简便.8.计算:2(+)+(﹣)=3+.【考点】*平面向量.【分析】直接利用平面向量的加减运算法则求解即可求得答案.【解答】解:2(+)+(﹣)=2+2+﹣=3+.故答案为:3+.【点评】此题考查了平面向量的知识.注意掌握去括号法则.9.计算:sin245°+cot30°•tan60°=.【考点】特殊角的三角函数值.【分析】直接利用特殊角的三角函数值代入求出答案.【解答】解:原式=sin245°+cot30°•tan60°=()2+×=.故答案为:.【点评】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.10.已知点P把线段分割成AP和PB两段(AP>PB),如果AP是AB和PB的比例中项,那么AP:AB 的值等于.【考点】黄金分割.【分析】根据黄金分割的概念和黄金比是解答即可.【解答】解:∵点P把线段分割成AP和PB两段(AP>PB),AP是AB和PB的比例中项,∴点P是线段AB的黄金分割点,∴AP:AB=,故答案为:.【点评】本题考查的是黄金分割的概念,把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,他们的比值叫做黄金比.11.在函数①y=ax2+bx+c,②y=(x﹣1)2﹣x2,③y=5x2﹣,④y=﹣x2+2中,y关于x的二次函数是④.(填写序号)【考点】二次函数的定义.【分析】根据形如y=ax2+bx+c(a≠0)是二次函数,可得答案.【解答】解:①a=0时y=ax2+bx+c是一次函数,②y=(x﹣1)2﹣x2是一次函数;③y=5x2﹣不是整式,不是二次函数;④y=﹣x2+2是二次函数,故答案为:④.【点评】本题考查了二次函数,形如y=ax2+bx+c(a≠0)是二次函数,注意二次项的系数不能为零.12.二次函数y=x2+2x﹣3的图象有最低点.(填:“高”或“低”)【考点】二次函数的最值.【分析】直接利用二次函数的性质结合其开口方向得出答案.【解答】解:∵y=x2+2x﹣3,a=1>0,∴二次函数y=x2+2x﹣3的图象有最低点.故答案为:低.【点评】此题主要考查了二次函数的性质,得出二次函数的开口方向是解题关键.13.如果抛物线y=2x2+mx+n的顶点坐标为(1,3),那么m+n的值等于1.【考点】二次函数的性质.【专题】推理填空题.【分析】根据抛物线y=2x2+mx+n的顶点坐标为(1,3),可知,从而可以得到m、n的值,进而可以得到m+n的值.【解答】解:∵抛物线y=2x2+mx+n的顶点坐标为(1,3),∴,解得m=﹣4,n=5,∴m+n=﹣4+5=1.故答案为:1.【点评】本题考查二次函数的性质,解题的关键是明确二次函数的顶点坐标公式.14.如图,点G为△ABC的重心,DE经过点G,DE∥AC,EF∥AB,如果DE的长是4,那么CF的长是2.【考点】三角形的重心.【分析】连接BD并延长交AC于H,根据重心的性质得到=,根据相似三角形的性质求出AC,根据平行四边形的判定和性质求出AF,计算即可.【解答】解:连接BD并延长交AC于H,∵点G为△ABC的重心,∴=,∵DE∥AC,∴△BDE∽△BAC,∴==,又DE=4,∴AC=6,∵DE∥AC,EF∥AB,∴四边形ADEF是平行四边形,∴AF=DE=4,∴CF=AC﹣AF=2,故答案为:2.【点评】此题考查了重心的概念和性质:三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍.15.半圆形纸片的半径为1cm,用如图所示的方法将纸片对折,使对折后半圆弧的中点M与圆心O重合,则折痕CD的长为cm.【考点】垂径定理;勾股定理.【分析】作MO交CD于E,则MO⊥CD.连接CO.根据勾股定理和垂径定理求解.【解答】解:作MO交CD于E,则MO⊥CD,连接CO,对折后半圆弧的中点M与圆心O重合,则ME=OE=OC,在直角三角形COE中,CE==,折痕CD的长为2×=(cm).【点评】作出辅助线,构造直角三角形,根据对称性,利用勾股定理解答.16.已知在Rt△ABC中,∠C=90°,点P、Q分别在边AB、AC上,AC=4,BC=AQ=3,如果△APQ与△ABC 相似,那么AP的长等于或.【考点】相似三角形的性质.【分析】根据勾股定理求出AB的长,根据相似三角形的性质列出比例式解答即可.【解答】解:∵AC=4,BC=3,∠C=90°,∴AB==5,当△APQ∽△ABC时,=,即=,解得,AP=;当△APQ∽△ACB时,=,即,解得,AP=,故答案为:或.【点评】本题考查的是相似三角形的性质,掌握相似三角形的对应边的比相等、正确运用分情况讨论思想是解题的关键.17.某货站用传送带传送货物,为了提高传送过程的安全性,工人师傅将原坡角为45°的传送带AB,调整为坡度i=1:的新传送带AC(如图所示).已知原传送带AB的长是4米.那么新传送带AC的长是8米.【考点】解直角三角形的应用-坡度坡角问题.【分析】根据题意首先得出AD,BD的长,再利用坡角的定义得出DC的长,再结合勾股定理得出答案.【解答】解:过点A作AD⊥CB延长线于点D,∵∠ABD=45°,∴AD=BD,∵AB=4,∴AD=BD=ABsin45°=4×=4,∵坡度i=1:,∴==,则DC=4,故AC==8(m).故答案为:8.【点评】此题主要考查了勾股定理以及解直角三角形的应用等知识,正确得出DC,AD的长是解题关键.18.已知A(3,2)是平面直角坐标中的一点,点B是x轴负半轴上一动点,联结AB,并以AB为边在x 轴上方作矩形ABCD,且满足BC:AB=1:2,设点C的横坐标是a,如果用含a的代数式表示D点的坐标,那么D点的坐标是(2,).【考点】相似三角形的判定与性质;坐标与图形性质.【分析】如图,过C作CH⊥x轴于H,过A作AF⊥x轴于F,AG⊥y轴于G,过D作DE⊥AG于E,于是得到∠CHB=∠AFO=∠AED=90°,根据余角的性质得到∠DAE=∠FAB,推出△BCH∽△ABF,根据相似三角形的性质得到,求得BH=AF=1,CH=BF=,通过△BCH≌△ADE,得到AE=BH=1,DE=CH=,求得EG=3﹣1=2,于是得到结论.【解答】解:如图,过C作CH⊥x轴于H,过A作AF⊥x轴于F,AG⊥y轴于G,过D作DE⊥AG于E,∴∠CHB=∠AFO=∠AED=90°,∴∠GAF=90°,∴∠DAE=∠FAB,∵四边形ABCD是矩形,∴∠ABC=90°,∴∠BCH=∠ABF,∴△BCH∽△ABF,∴,∵A(3,2),∴AF=2,AG=3,∵点C的横坐标是a,∴OH=﹣a,∵BC:AB=1:2,∴BH=AF=1,CH=BF=,∵△BCH∽△ABF,∴∠HBC=∠DAE,在△BCH与△ADE中,,∴△BCH≌△ADE,∴AE=BH=1,DE=CH=,∴EG=3﹣1=2,∴D(2,).故答案为:(2,).【点评】本题考查了相似三角形的判定和性质,坐标与图形的性质,全等三角形的判定和性质,矩形的性质,正确的画出图形是解题的关键.三、解答题:(本大题共7题,满分78分)19.已知:如图,在梯形ABCD中,AD∥BC,AD=,点M是边BC的中点=,=(1)填空:=,=﹣﹣(结果用、表示)(2)直接在图中画出向量2+.(不要求写作法,但要指出图中表示结论的向量)【考点】*平面向量.【分析】(1)由在梯形ABCD中,AD∥BC,AD=,可求得,然后由点M是边BC的中点,求得,再利用三角形法则求解即可求得;(2)首先过点A作AE∥CD,交BC于点E,易得四边形AECD是平行四边形,即可求得=2,即可知=2+.【解答】解:(1)∵在梯形ABCD中,AD∥BC,AD=,=,∴=3=3,∵点M是边BC的中点,∴==;∴=﹣=﹣(+)=﹣﹣;故答案为:,﹣﹣;(2)过点A作AE∥CD,交BC于点E,∵AD∥BC,∴四边形AECD是平行四边形,∴==,∴=﹣=2,∴=+=2+.【点评】此题考查了平面向量的知识以及平行四边形的性质.注意掌握平行四边形法则与三角形法则的应用是解此题的关键.20.将抛物线y=先向上平移2个单位,再向左平移m(m>0)个单位,所得新抛物线经过点(﹣1,4),求新抛物线的表达式及新抛物线与y轴交点的坐标.【考点】二次函数图象与几何变换.【分析】利用二次函数平移的性质得出平移后解析式,进而利用x=0时求出新抛物线与y轴交点的坐标.【解答】解:由题意可得:y=(x+m)2+2,代入(﹣1,4),解得:m1=3,m2=﹣1(舍去),故新抛物线的解析式为:y=(x+3)2+2,当x=0时,y=,即与y轴交点坐标为:(0,).【点评】此题主要考查了二次函数图象与几何变换,正确利用二次函数平移的性质得出解析式是解题关键.21.如图,已知AD是⊙O的直径,AB、BC是⊙O的弦,AD⊥BC,垂足是点E,BC=8,DE=2,求⊙O 的半径长和sin∠BAD的值.【考点】垂径定理;解直角三角形.【分析】设⊙O的半径为r,根据垂径定理求出BE=CE=BC=4,∠AEB=90°,在Rt△OEB中,由勾股定理得出r2=42+(r﹣2)2,求出r.求出AE,在Rt△AEB中,由勾股定理求出AB,解直角三角形求出即可.【解答】解:设⊙O的半径为r,∵直径AD⊥BC,∴BE=CE=BC==4,∠AEB=90°,在Rt△OEB中,由勾股定理得:OB2=0E2+BE2,即r2=42+(r﹣2)2,解得:r=5,即⊙O的半径长为5,∴AE=5+3=8,∵在Rt△AEB中,由勾股定理得:AB==4,∴sin∠BAD===.【点评】本题考查了垂径定理,勾股定理,解直角三角形的应用,能根据垂径定理求出BE是解此题的关键.22.已知:如图,有一块面积等于1200cm2的三角形纸片ABC,已知底边与底边BC上的高的和为100cm (底边BC大于底边上的高),要把它加工成一个正方形纸片,使正方形的一边EF在边BC上,顶点D、G分别在边AB、AC上,求加工成的正方形铁片DEFG的边长.【考点】相似三角形的应用.【分析】作AM⊥BC于M,交DG于N,设BC=acm,BC边上的高为hcm,DG=DE=xcm,根据题意得出方程组求出BC和AM,再由平行线得出△ADG∽△ABC,由相似三角形对应高的比等于相似比得出比例式,即可得出结果.【解答】解:作AM⊥BC于M,交DG于N,如图所示:设BC=acm,BC边上的高为hcm,DG=DE=xcm,根据题意得:,解得:,或(不合题意,舍去),∴BC=60cm,AM=h=40cm,∵DG∥BC,∴△ADG∽△ABC,∴,即,解得:x=24,即加工成的正方形铁片DEFG的边长为24cm.【点评】本题考查了方程组的解法、相似三角形的运用;熟练掌握方程组的解法,证明三角形相似得出比例式是解决问题的关键.23.已知,如图,在四边形ABCD中,∠ADB=∠ACB,延长AD、BC相交于点E.求证:(1)△ACE∽△BDE;(2)BE•DC=AB•DE.【考点】相似三角形的判定与性质.【专题】证明题.【分析】(1)根据邻补角的定义得到∠BDE=∠ACE,即可得到结论;(2)根据相似三角形的性质得到,由于∠E=∠E,得到△ECD∽△EAB,由相似三角形的性质得到,等量代换得到,即可得到结论.【解答】证明:(1)∵∠ADB=∠ACB,∴∠BDE=∠ACE,∴△ACE∽△BDE;(2)∵△ACE∽△BDE,∴,∵∠E=∠E,∴△ECD∽△EAB,∴,∴,∴BE•DC=AB•DE.【点评】本题考查了相似三角形的判定和性质,邻补角的定义,熟练掌握相似三角形的判定和性质是解题的关键.24.已知,如图,在平面直角坐标系xOy中,二次函数y=ax2﹣的图象经过点、A(0,8)、B(6,2)、C(9,m),延长AC交x轴于点D.(1)求这个二次函数的解析式及的m值;(2)求∠ADO的余切值;(3)过点B的直线分别与y轴的正半轴、x轴、线段AD交于点P(点A的上方)、M、Q,使以点P、A、Q为顶点的三角形与△MDQ相似,求此时点P的坐标.【考点】二次函数综合题.【分析】(1)把点A、B的坐标代入函数解析式求得系数a、c的值,从而得到函数解析式,然后把点C的坐标代入来求m的值;(2)由点A、C的坐标求得直线AC的解析式,然后根据直线与坐标轴的交点的求法得到点D的坐标,所以结合锐角三角函数的定义解答即可;(3)根据相似三角形的对应角相等进行解答.【解答】解:(1)把A(0,8)、B(6,2)代入y=ax2﹣,得,解得,故该二次函数解析式为:y=x2﹣x+8.把C(9,m),代入y=x2﹣x+8得到:m=y=×92﹣×9+8=5,即m=5.综上所述,该二次函数解析式为y=x2﹣x+8,m的值是5;(2)由(1)知,点C的坐标为:(9,5),又由点A的坐标为(0,8),所以直线AC的解析式为:y=﹣x+8,令y=0,则0=﹣x+8,解得x=24,即OD=24,所以cot∠ADO===3,即cot∠ADO=3;(3)在△APQ与△MDQ中,∠AQP=∠MQD.要使△APQ与△MDQ相似,则∠APQ=∠MDQ或∠APQ=∠DMQ(根据题意,这种情况不可能),∴cot∠APQ=cot∠MDQ=3.作BH⊥y轴于点H,在直角△PBH中,cot∠P==3,∴PH=18,OP=20,∴点P的坐标是(0,20).【点评】本题是二次函数的综合题型,其中涉及到的知识点有待定系数法求二次函数、一次函数解析式,相似三角形的判定与性质,锐角三角函数的定义.在求有关动点问题时要注意分析题意分情况讨论结果.25.如图,已知锐角∠MBN的正切值等于3,△PBD中,∠BDP=90°,点D在∠MBN的边BN上,点P 在∠MBN内,PD=3,BD=9,直线l经过点P,并绕点P旋转,交射线BM于点A,交射线DN于点C,设=x(1)求x=2时,点A到BN的距离;(2)设△ABC的面积为y,求y关于x的函数解析式,并写出函数的定义域;(3)当△ABC因l的旋转成为等腰三角形时,求x的值.【考点】几何变换综合题.【分析】(1)由PD∥AH得到=2,即可;(2)由PD∥AH得到,再由tan∠MBN=3,比例式表示出BC,CD,即可;(3)△ABC为等腰三角形时,分三种情况①AB=AC,②CB=CA,③BC=BA利用tan∠MBN=3,建立方程即可.【解答】解:(1)如图1,过点A作AH⊥BC,∵PD⊥BC,∴PD∥AH,∴=2,∴AH=2PD=6,(2)∵PD∥AH,∴=x,∴AH=PD×x=3x,∵tan∠MBN=3,∴BH=3,∵,∴,∴CD=,∴BC=BD+CD=9+=,∴S△ABC=AH×BC=×3x×=,∴y=(1<x≤9),(3)①当AB=AC时,∵tan∠PCB=tan∠MBC=3,∴=3,∴CD=1,∴BC=BD+CD=10,∴=10,∴x=5,②当CB=CA时,如图2,过点C作CE⊥AB,BE=AB=x,∵tan∠MBN=3,∴cos∠MBN=,∴=,∴,∴x=;③当BA=BC时,x=,∴x=1+,∴△ABC为等腰三角形时,x=5或或1+.【点评】此题是几何变换的综合题,主要考查平行线分线段成比例定理和锐角三角函数,由平行线分线段成比例定理建立方程是解本题的关键.。
2020年陕西省宝鸡市岐山县中考数学一模试卷 (解析版)

2020年陕西省宝鸡市岐山县中考数学一模试卷一、选择题1.﹣7的绝对值是()A.7B.﹣7C.D.﹣2.把如图所示的几何体组合中的A正方体放到B正方体的上面,则下列说法正确的是()A.主视图不变B.俯视图不变C.左视图不变D.三种视图都不变3.如图,DE与△ABC的底边AB平行,OF是∠COE的角平分线,若∠B=62°,则∠1的度数为()A.54°B.59°C.62°D.64°4.已知函数y=kx(k≠0)的图象经过A(2,﹣3),则k=()A.B.C.D.5.下列运算正确的是()A.a4•a2=a8B.﹣a2=C.﹣a2+2a2=a2D.(x2)3=x5 6.如图,在△ABC中,DE∥BC,AF⊥BC,∠ADE=30°,2DE=BC,BF=3,则DF的长为()A.4B.2C.3D.37.在平面直角坐标系中,函数y=2kx(k≠0)的图象如图所示,则函数y=2kx﹣3+2k的图象大致是()A.B.C.D.8.如图,AB,BC为⊙O中异于直径的两条弦,OA交BC于点D,若∠AOC=50°,∠C =35°,则∠A的度数为()A.35°B.50°C.60°D.70°9.如图,E是矩形ABCD中AD边的中点,BE交AC于点F,△ABF的面积为2,则四边CDEF的面积为()A.4B.5C.6D.710.已知抛物线y=ax2﹣2ax+a2+1(a≠0).当x≥3时,y随x的增大而增大;当﹣2≤x ≤0时,y的最大值为10.那么与抛物线y=ax2﹣2ax+a2+1关于y轴对称的抛物线在﹣2≤x≤3内的函数最大值为()A.10B.17C.5D.2二、填空题(共4小题,每小题3分,计12分)11.最接近的整数是.12.如图,在正六边形ABCDEF中,∠CAD的度数为.13.如图,在同一平面直角坐标系中,若一个反比例函数的图象与正方形ABEC交于E,F 两点,且A,C两点在x轴上,点E的坐标为(2,4),则点F的坐标为.14.如图,在平行四边形ABCD中,AB=10,AD=16,∠A=60°,P为AD的中点,F 是边AB上不与点A,B重合的一个动点,将△APF沿PF折叠,得到△A'PF,连接BA',则△BA'F周长的最小值为.三、解答题(共11小题,计78分.解答应写出文字说明、证明过程或演算步骤)15.计算:()﹣1﹣×+(π﹣3.14)0+cos60°.16.化简:(1﹣)÷.17.如图,在△ABC中,∠BAC=90°,请用尺规作图法,作△ABC绕点A逆时针旋转45°后的△AB1C1.(不写作法,保留作图痕迹)18.如图,在△ABC中,F为BC边上一点,过点F作FD∥AC,且FD=AC,延长BC 至点E,使BF=CE,连接DE.求证:AB∥DE.19.某校为了解该校初三学生居家学习期间参加“网络自习室”自主学习的情况,随机抽查了部分学生在两周内参加“网络自习室”自主学习的天数,并用得到的数据绘制了如图两幅不完整的统计图.请根据图中提供的信息,回答下列问题.(1)补全条形统计图.(2)部分学生在两周内参加“网络自习室”自主学习天数的众数为,中位数为.(3)如果该校初三年级约有1500名学生,请你估计在这两周内全校初三年级可能有多少名学生参加“网络自习室”自主学习的天数不少于7天.20.如图1所示的是宝鸡市文化景观标志“天下第一灯”,它由国际2.0不锈钢板整体锻造,表面涂有仿古金色漆,以仿青铜纹饰雕刻的柱体四盏灯分4层布置.一天上午,数学兴趣小组的同学们带着测量工具来测量“天下第一灯”的高度,由于有围栏保护,他们无法到达灯的底部O,他们制定了一种测量方案,图2所示的是他们测量方案的示意图,先在周围的广场上选择一点A,并在点A处安装了测量器AB,在点B处测得该灯的顶点P的仰角为60°;再在OA的延长线上确定一点C,使AC=15米,在点D处测得该灯的顶点P的仰角为45°.若测量过程中测量器的高度始终为1.6米,求“天下第一灯”的高度.(≈1.414,≈1.732,最后结果取整数)21.陕西省相关文件规定,西安市实行居民阶梯水价制度,对居民用水的基本水价实行1:1.5:3三级价差,各阶梯水价均为用户终端水价,具体如下:第一阶梯:年用水量162m3及以下,终端水价为3.80元/m3.第二阶梯:年用水量162m3一275m3(含),终端水价为4.65元/m3.第三阶梯:年用水量275m3以上,终端水价为7.18元/m3.城区居民阶梯水价计量结算周期以年为单位,年用水量累计达到各阶梯水量上限后,超出部分执行下一阶梯水价;年度周期之间水量不结转,不累计.设某户居民2019年的年用水量为x(m3),应缴水费为y(元).(1)写出该户居民2019年的年用水量为162m3一275m3(含)的y与x之间的函数表达式.(2)若该户居民2019年的应缴水费为1320.55元,则该户居民2019年的年用水量为多少.22.现有四个外观与质地完全相同的小球,小球上分别标有数字3,4,5,6.将四个小球放置于不透明的盒子中,摇匀后,甲从中随机抽取一个小球,记录数字后放回摇匀,乙再随机抽取一个.(1)请用列表法或画树状图的方法,求两人抽取相同数字的概率.(2)若两人抽取的数字和为3的倍数,则甲获胜;若抽取的数字和为5的倍数,则乙获胜,否则为平局.这个游戏公平吗?请用所学的概率的知识加以解释.23.如图,⊙O与Rt△ABF的边BF,AF分别交于点C,D,连接AC,CD,∠BAF=90°,点E在CF上,且∠DEC=∠BAC.(1)试判断DE与⊙O的位置关系,并说明理由.(2)若AB=AC,CE=4,EF=6,求⊙O的直径.24.如图,抛物线y=﹣x2+bx+c与x轴交于点A和点B(3,0),与y轴交于点C(0,3),点D是抛物线的顶点,过点D作x轴的垂线,垂足为E,连接DB.(1)求此拋物线的解析式.(2)点M是抛物线上的动点,设点M的横坐标为m.当∠MBA=∠BDE时,求点M 的坐标.25.【问题发现】如图1,半圆O的直径AB=10,P是半圆O上的一个动点,则△PAB面积的最大值是.【问题解决】如图2所示的是某街心花园的一角.在扇形OAB中,∠AOB=90°,OA =12米,在围墙OA和OB上分别有两个入口C和D,且AC=4米,D是OB的中点,出口E在上.现准备沿CE,DE从入口到出口铺设两条景观小路,在四边形CODE 内种花,在剩余区域种草.①出口E设在距直线OB多远处可以使四边形CODE的面积最大?最大面积是多少?(小路宽度不计)②已知铺设小路CE所用的普通石材每米的造价是200元,铺设小路DE所用的景观石材每米的造价是400元.问:在上是否存在点E,使铺设小路CE和DE的总造价最低?若存在,请求出最低总造价和出口E距直线OB的距离;若不存在,请说明理由.参考答案一、选择题(共10小题,每小题3分,计30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.﹣7的绝对值是()A.7B.﹣7C.D.﹣【分析】根据绝对值的性质解答,当a是负有理数时,a的绝对值是它的相反数﹣a.解:|﹣7|=7.故选:A.2.把如图所示的几何体组合中的A正方体放到B正方体的上面,则下列说法正确的是()A.主视图不变B.俯视图不变C.左视图不变D.三种视图都不变【分析】根据三视图的定义,可得答案.解:主视图由原来的三列变成两列,故选项A错误;俯视图由原来的三列变成两列,故选项B错误;左视图没有变化,依然是两列,左边的一列有3个小正方形,右边的一列有一个小正方形,故选项C正确.故选:C.3.如图,DE与△ABC的底边AB平行,OF是∠COE的角平分线,若∠B=62°,则∠1的度数为()A.54°B.59°C.62°D.64°【分析】根据两直线平行,同位角相等可得∠B=∠COD=62°,再利用角平分线的定义可得∠1=∠COE,即可得解.解:∵DE与△ABC的底边AB平行,∴∠B=∠COD=62°,∴∠COE=180°﹣∠COD=118°,∵OF是∠COE的角平分线,∴∠1=∠COE=59°;故选:B.4.已知函数y=kx(k≠0)的图象经过A(2,﹣3),则k=()A.B.C.D.【分析】因为正比例函数y=kx的图象经过点(2,﹣3),所以2k=﹣3,解之即可解决问题.解:∵正比例函数y=kx的图象经过点(2,﹣3),∴k=﹣,∴该正比例函数的解析式为:y=﹣x.故选:C.5.下列运算正确的是()A.a4•a2=a8B.﹣a2=C.﹣a2+2a2=a2D.(x2)3=x5【分析】分别根据同底数幂的乘法法则,幂的乘方的定义,合并同类项法则以及幂的乘方的运算法则逐一判断即可.解:A.a4•a2=a6,故本选项不合题意;B.﹣a2=,运算错误,故本选项不合题意;C.﹣a2+2a2=a2,运算正确;D.(x2)3=x6,故本选项不合题意;故选:C.6.如图,在△ABC中,DE∥BC,AF⊥BC,∠ADE=30°,2DE=BC,BF=3,则DF的长为()A.4B.2C.3D.3【分析】根据平行线的性质求出∠B,根据余弦的定义求出AB,根据相似三角形的性质得到点D是AB的中点,根据直角三角形的性质解答即可.解:∵DE∥BC,∴∠B=∠ADE=30°,∵AF⊥BC,∴∠AFB=90°,∴AB==6,∵DE∥BC,∴△ADE∽△ABC,∴==,∴点D是AB的中点,在Rt△AFB中,点D是AB的中点,∴DF=AB=3,故选:D.7.在平面直角坐标系中,函数y=2kx(k≠0)的图象如图所示,则函数y=2kx﹣3+2k的图象大致是()A.B.C.D.【分析】根据正比例函数图象可得2k<0,然后再判断出﹣3+2k<0,然后可得一次函数图象经过的象限,从而可得答案.解:根据图象可得:2k<0,∴﹣3+2k<0,∴函数y=2kx﹣3+2k的图象是经过第二、三、四象限的直线,故选:C.8.如图,AB,BC为⊙O中异于直径的两条弦,OA交BC于点D,若∠AOC=50°,∠C =35°,则∠A的度数为()A.35°B.50°C.60°D.70°【分析】先根据三角形外角性质得出∠ADC度数,再由同弧所对圆周角等于圆心角的一半得出∠B度数,继而再次利用三角形外角的性质可得答案.解:∵∠C=35°,∠AOC=50°,∴∠ADC=85°,∠B=∠AOC=25°,∴∠A=∠ADC﹣∠B=85°﹣25°=60°,故选:C.9.如图,E是矩形ABCD中AD边的中点,BE交AC于点F,△ABF的面积为2,则四边CDEF的面积为()A.4B.5C.6D.7【分析】利用矩形的性质得到AD∥BC,BC=AD,再证明△AEF∽△CBF得到===,则利用三角形面积公式得到S△BCF=2S△ABF=4,S△AEF=S△ABF=1,然后利用△ADC的面积减去△AEF的面积得到四边CDEF的面积.解:∵四边形ABCD为矩形,∴AD∥BC,BC=AD,∵E是矩形ABCD中AD边的中点,∴BC=AD=2AE,∵AE∥BC,∴△AEF∽△CBF,∴===,∴S△BCF=2S△ABF=2×2=4,S△AEF=S△ABF=×2=1,∴四边CDEF的面积=2+4﹣1=5.故选:B.10.已知抛物线y=ax2﹣2ax+a2+1(a≠0).当x≥3时,y随x的增大而增大;当﹣2≤x ≤0时,y的最大值为10.那么与抛物线y=ax2﹣2ax+a2+1关于y轴对称的抛物线在﹣2≤x≤3内的函数最大值为()A.10B.17C.5D.2【分析】根据题意得出a>0,且x≤1时,y随x的增大而减小,当﹣2≤x≤0时,y的最大值为10.即当x=﹣2时,y=a2+8a+1=10,求得a=1,得到抛物线解析式为y=x2﹣2x+2,根据关于y轴对称的特征得到关于y轴对称的抛物线为y=(x+1)2+1,即可得到在﹣2≤x≤3内,当x=3时取最大值,从而求得函数在此范围内的最大值为17.解:∵抛物线y=ax2﹣2ax+a2+1(a≠0),∴对称轴为直线x=﹣=1,∵当x≥3时,y随x的增大而增大,∴a>0,且x≤1时,y随x的增大而减小,∵当﹣2≤x≤0时,y的最大值为10.,∴当x=﹣2时,y=a2+8a+1=10,∴a=1或a=﹣9(舍去),∴抛物线为y=x2﹣2x+2,∵y=x2﹣2x+2=(x﹣1)2+1,∴此抛物线关于y轴的对称的抛物线为y=(x+1)2+1,∴函数y=(x+1)2+1,∴抛物线y=(x+1)2+1在﹣2≤x≤3内,当x=3时取最大值,即y=17,故选:B.二、填空题(共4小题,每小题3分,计12分)11.最接近的整数是2.【分析】通过估算得出所求即可.解:∵4<5<9,∴2<<3,则最接近是2,故答案为:2.12.如图,在正六边形ABCDEF中,∠CAD的度数为30°.【分析】根据多边形的内角和公式即可求出每个内角的度数,进而得出∠BAD的度数;再根据等腰三角形的性质即可得出∠BAC的度数,再根据角的和差关系计算即可.解:正六边形的每个内角为:,∴,∵六边形是轴对称图形,∴,∴∠CAD=∠BAD﹣∠BAC=30°.故答案为:30°.13.如图,在同一平面直角坐标系中,若一个反比例函数的图象与正方形ABEC交于E,F 两点,且A,C两点在x轴上,点E的坐标为(2,4),则点F的坐标为(6,).【分析】根据待定系数法即可求得反比例函数的解析式,结合正方形的性质,再利用反比例函数图象上点的坐标特征可求出点F的坐标.解:设反比例函数的解析式为y=,∵反比例函数的图象经过点E(2,4),∴k=2×4=8,∵正方形ABEC中,AC=EC,∴A(6,0),∴F点的横坐标为6,把x=6代入y=得y=,∴F(6,),故答案为(6,).14.如图,在平行四边形ABCD中,AB=10,AD=16,∠A=60°,P为AD的中点,F 是边AB上不与点A,B重合的一个动点,将△APF沿PF折叠,得到△A'PF,连接BA',则△BA'F周长的最小值为2+2.【分析】△BFA′的周长=FA′+BF+BA′=AF+BF+BA′=AB+BA′=10+BA′,推出当BA′的周长最小时,△BFA′的周长最小,由此即可解决问题.解:如图,作BH⊥AD于H,连接BP.∵PA=8,AH=5,∴PH=8﹣5=3,∵BH=5,∴PB===2,由翻折可知:PA=PA′=8,FA=FA′,∴△BFA′的周长=FA′+BF+BA′=AF+BF+BA′=AB+BA′=10+BA′,∴当BA′的周长最小时,△BFA′的周长最小,∵BA′≥PB﹣PA′,∴BA′≥2﹣8,∴BA′的最小值为2﹣8,∴△BFA′的周长的最小值为10+2﹣8=2+2.故答案为:2+2.三、解答题(共11小题,计78分.解答应写出文字说明、证明过程或演算步骤)15.计算:()﹣1﹣×+(π﹣3.14)0+cos60°.【分析】直接利用负整数指数幂的性质以及二次根式的性质和零指数幂的性质、特殊角的三角函数值分别化简得出答案.解:原式=2﹣2×+1+=2﹣4+1+=﹣.16.化简:(1﹣)÷.【分析】根据分式的减法和除法可以解答本题.解:(1﹣)÷===a.17.如图,在△ABC中,∠BAC=90°,请用尺规作图法,作△ABC绕点A逆时针旋转45°后的△AB1C1.(不写作法,保留作图痕迹)【分析】先作∠BAC的平分线,在平分线上截取AB1=AB,分别以A,B1为圆心,AC,BC的长为半径画弧,两弧交于点C1,连接AC1,B1C1,则△AB1C1即为△ABC绕点A 逆时针旋转45°后的图形.解:如图,△AB1C1即为所求.18.如图,在△ABC中,F为BC边上一点,过点F作FD∥AC,且FD=AC,延长BC 至点E,使BF=CE,连接DE.求证:AB∥DE.【分析】根据全等三角形的判定定理SAS证得△ABC≌△DEF;然后由全等三角形的对应角相等证得该结论.【解答】证明:∵AC∥FD,∴∠ACB=∠DFE,又∵CE=FB,∴CE+EB=FB+EB,即CB=FE;∵AC=FD,∴△ABC≌△DEF(SAS),∴∠B=∠E,∴AB∥DE.19.某校为了解该校初三学生居家学习期间参加“网络自习室”自主学习的情况,随机抽查了部分学生在两周内参加“网络自习室”自主学习的天数,并用得到的数据绘制了如图两幅不完整的统计图.请根据图中提供的信息,回答下列问题.(1)补全条形统计图.(2)部分学生在两周内参加“网络自习室”自主学习天数的众数为5天,中位数为6天.(3)如果该校初三年级约有1500名学生,请你估计在这两周内全校初三年级可能有多少名学生参加“网络自习室”自主学习的天数不少于7天.【分析】(1)根据学习9天和9天以上的人数和所占的百分比可以求得本次抽查的人数,然后根据条形统计图中的数据,即可计算出学习8天的学生人数,从而可以将条形统计图补充完整;(2)根据条形统计图中的数据,可以得到众数和中位数;(3)根据统计图中的数据,可以计算出在这两周内全校初三年级可能有多少名学生参加“网络自习室”自主学习的天数不少于7天.解:(1)本次抽查的人数为:3÷5%=60,学习8天的学生有:60﹣24﹣12﹣15﹣3=6(人),补全的条形统计图,如右图所示;(2)由条形统计图可得,部分学生在两周内参加“网络自习室”自主学习天数的众数为5天,中位数为6天,故答案为:5天,6天;(3)1500×=600(名),答:在这两周内全校初三年级可能有600名学生参加“网络自习室”自主学习的天数不少于7天.20.如图1所示的是宝鸡市文化景观标志“天下第一灯”,它由国际2.0不锈钢板整体锻造,表面涂有仿古金色漆,以仿青铜纹饰雕刻的柱体四盏灯分4层布置.一天上午,数学兴趣小组的同学们带着测量工具来测量“天下第一灯”的高度,由于有围栏保护,他们无法到达灯的底部O,他们制定了一种测量方案,图2所示的是他们测量方案的示意图,先在周围的广场上选择一点A,并在点A处安装了测量器AB,在点B处测得该灯的顶点P的仰角为60°;再在OA的延长线上确定一点C,使AC=15米,在点D处测得该灯的顶点P的仰角为45°.若测量过程中测量器的高度始终为1.6米,求“天下第一灯”的高度.(≈1.414,≈1.732,最后结果取整数)【分析】此题求的是线段OP的长度,所以根据图示,需要先求得OO′、O′P的长度;通过解直角△PO′B得到O′B=O′P;通过解直角△PO′D得到O′D=O′P,所以BD=O′D﹣O′B=(1﹣)O′P=15米,由此求得线段O′P的长度.解:根据题意,得BD⊥OP于点O′,∠PBO′=60°,∠PDO′=45°,BD=AC=15米,OO′=AB=1.6米.在直角△PO′B中,∠PO′B=90°,∠PBO′=60°,∴O′B=O′P.在直角△PO′D中,∠PO′D=90°,∠PDO′=45°,∴O′D=O′P.∴BD=O′D﹣O′B=(1﹣)O′P=15米,∴O′P=≈35.49(米).∴OP=OO′+O′P=37.09米≈37米.答:“天下第一灯”的高度约为37米.21.陕西省相关文件规定,西安市实行居民阶梯水价制度,对居民用水的基本水价实行1:1.5:3三级价差,各阶梯水价均为用户终端水价,具体如下:第一阶梯:年用水量162m3及以下,终端水价为3.80元/m3.第二阶梯:年用水量162m3一275m3(含),终端水价为4.65元/m3.第三阶梯:年用水量275m3以上,终端水价为7.18元/m3.城区居民阶梯水价计量结算周期以年为单位,年用水量累计达到各阶梯水量上限后,超出部分执行下一阶梯水价;年度周期之间水量不结转,不累计.设某户居民2019年的年用水量为x(m3),应缴水费为y(元).(1)写出该户居民2019年的年用水量为162m3一275m3(含)的y与x之间的函数表达式.(2)若该户居民2019年的应缴水费为1320.55元,则该户居民2019年的年用水量为多少.【分析】(1)根据题意即可得出该户居民2019年的年用水量为162m3一275m3(含)的y与x之间的函数表达式;(2)根据(1)的结论,结合自变量的范围分情况讨论解答即可.解:(1)由题意得:y=3.80×162+4.65(x﹣162),即y=4.65x﹣137.7;(2)由(1)知,当162≤x≤275时,y=4.65x﹣137.7,∴当x=275时,y=1141.05,∵y=1141.05<1320.55,∴该户居民2019年的年用水量在275m3以上,终端水价为7.18元/m3.∵当x>275时,y=1141.05+7.18(x﹣275),即y=7.18x﹣833.45,∴7.18x﹣833.45=1320.55,解得x=300.答:该户居民2019年的年用水量为300m3.22.现有四个外观与质地完全相同的小球,小球上分别标有数字3,4,5,6.将四个小球放置于不透明的盒子中,摇匀后,甲从中随机抽取一个小球,记录数字后放回摇匀,乙再随机抽取一个.(1)请用列表法或画树状图的方法,求两人抽取相同数字的概率.(2)若两人抽取的数字和为3的倍数,则甲获胜;若抽取的数字和为5的倍数,则乙获胜,否则为平局.这个游戏公平吗?请用所学的概率的知识加以解释.【分析】(1)列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得;(2)先找到数字和为3的倍数和5的倍数的结果数,再根据概率公式计算,比较大小即可得出答案.解:(1)列表如下:3456 3(3,3)(4,3)(5,3)(6,3)4(3,4)(4,4)(5,4)(6,4)5(3,5)(4,5)(5,5)(6,5)6(3,6)(4,6)(5,6)(6,6)由表可知共有16种等可能结果,其中两人抽取相同数字的有4种结果,所以两人抽取相同数字的概率为=;(2)不公平,从上表中可以看出,两人抽取数字和为3的倍数的结果有6种,两人抽取数字和为5的倍数的结果有3种,所以甲获胜的概率为,乙获胜的概率为,∵>,∴甲获胜的概率大,游戏不公平.23.如图,⊙O与Rt△ABF的边BF,AF分别交于点C,D,连接AC,CD,∠BAF=90°,点E在CF上,且∠DEC=∠BAC.(1)试判断DE与⊙O的位置关系,并说明理由.(2)若AB=AC,CE=4,EF=6,求⊙O的直径.【分析】(1)先判断出BD是圆O的直径,再判断出BD⊥DE,即可得出结论;(2)根据余角的性质和等腰三角形的性质得到∠F=∠EDF,根据等腰三角形的性质得到DE=EF=3,根据勾股定理得到CD,根据相似三角形的性质即可得到结论.解:(1)如图,连接BD,∵∠BAD=90°,∴点O必在BD上,即:BD是直径,∴∠BCD=90°,∴∠DEC+∠CDE=90°,∵∠DEC=∠BAC,∴∠BAC+∠CDE=90°,∵∠BAC=∠BDC,∴∠BDC+∠CDE=90°,∴∠BDE=90°,即:BD⊥DE,∵点D在⊙O上,∴DE是⊙O的切线;(2)∵∠BAF=∠BDE=90°,∴∠F+∠ABC=∠FDE+∠ADB=90°,∵AB=AC,∴∠ABC=∠ACB,∵∠ADB=∠ACB,∴∠F=∠EDF,∴DE=EF=6,∵CE=4,∠BCD=90°,∴∠DCE=90°,∴CD==2,∵∠BDE=90°,CD⊥BE,∴△CDE∽△CBD,∴=,∴BD==3,∴⊙O的直径=3.24.如图,抛物线y=﹣x2+bx+c与x轴交于点A和点B(3,0),与y轴交于点C(0,3),点D是抛物线的顶点,过点D作x轴的垂线,垂足为E,连接DB.(1)求此拋物线的解析式.(2)点M是抛物线上的动点,设点M的横坐标为m.当∠MBA=∠BDE时,求点M 的坐标.【分析】(1)利用待定系数法即可解决问题;(2)根据tan∠MBA==,tan∠BDE=,由∠MBA=∠BDE,构建方程即可解决问题.解:(1)把点B(3,0),C(0,3)代入y=﹣x2+bx+c,得到,解得,∴抛物线的解析式为y=﹣x2+2x+3.∵y=﹣x2+2x﹣1+1+3=﹣(x﹣1)2+4,∴顶点D坐标(1,4).(2)作MG⊥x轴于G,连接BM.则∠MGB=90°,设M(m,﹣m2+2m+3),∴MG=|﹣m2+2m+3|,BG=3﹣m,∴tan∠MBA==,∵DE⊥x轴,D(1,4),∴∠DEB=90°,DE=4,OE=1,∵B(3,0),∴BE=2,∴tan∠BDE=,∵∠MBA=∠BDE,∴,当点M在x轴上方时,,解得m=﹣或3(舍去),∴M(﹣,),当点M在x轴下方时,,解得m=﹣或m=3(舍去),∴点M(﹣,﹣),综上所述,满足条件的点M坐标(﹣,)或(﹣,﹣).25.【问题发现】如图1,半圆O的直径AB=10,P是半圆O上的一个动点,则△PAB面积的最大值是25.【问题解决】如图2所示的是某街心花园的一角.在扇形OAB中,∠AOB=90°,OA =12米,在围墙OA和OB上分别有两个入口C和D,且AC=4米,D是OB的中点,出口E在上.现准备沿CE,DE从入口到出口铺设两条景观小路,在四边形CODE 内种花,在剩余区域种草.①出口E设在距直线OB多远处可以使四边形CODE的面积最大?最大面积是多少?(小路宽度不计)②已知铺设小路CE所用的普通石材每米的造价是200元,铺设小路DE所用的景观石材每米的造价是400元.问:在上是否存在点E,使铺设小路CE和DE的总造价最低?若存在,请求出最低总造价和出口E距直线OB的距离;若不存在,请说明理由.【分析】【问题发现】如图1,点P运动至半圆O的中点时,底边AB上的高最大,即P'O=r=5,求出此时△P'AB的面积即可;【问题解决】①作OG⊥CD,垂足为G,延长OG交弧AB于点E′,则此时△CDE的面积最大,可求出其值;作E′H⊥OB,垂足为H,证△COD∽△OHE',即可求出E′H的长,即可写出结论;②铺设小路CE和DE的总造价为200CE+400DE=200(CE+2DE),连接OE,延长OB到点Q,使BQ=OB=12,连接EQ,推出QE=2DE,所以CE+2DE=CE+QE,问题转化为求CE+QE的最小值,连接CQ,交弧AB于点E′,此时CE+QE取得最小值为CQ,可求出CQ的长度及总造价最小值;作E′H⊥OB,垂足为H,连接OE′,设E′H=x,则QH=3x,由勾股定理可求出x的值,即出口E距直线OB的距离.解:【问题发现】如图1,点P运动至半圆O的中点时,底边AB上的高最大,即P'O =r=5,此时△PAB的面积最大值∴S△P'AB=×10×5=25,故答案为:25;【问题解决】①如图2﹣1,作OG⊥CD,垂足为G,延长OG交弧AB于点E′,则此时△CDE的面积最大.∵OA=OB=12,AC=4,点D为OB的中点,∴OC=8,OD=6,在Rt△COD中,CD=10,OG=4.8,∴GE′=12﹣4.8=7.2,∴四边形CODE面积的最大值为S△CDO+S△CDE′=×6×8+×10×7.2=60;作E′H⊥OB,垂足为H,∵∠E'OH+∠OE'H=90°,∠E'OH+∠ODC=90°,∴∠OE'H=∠ODC,又∵∠COD=∠E'HO=90°,∴△COD∽△OHE',∴,∴,∴E′H=7.2;∴出口E设在距直线OB的7.2米处可以使四边形CODE的面积最大为60平方米;②铺设小路CE和DE的总造价为200CE+400DE=200(CE+2DE),如图2﹣2,连接OE,延长OB到点Q,使BQ=OB=12,连接EQ,在△EOD与△QOE中,∠EOD=∠QOE,∴,∴△EOD∽△QOE,故QE=2DE,∴CE+2DE=CE+QE,问题转化为求CE+QE的最小值,连接CQ,交弧AB于点E′,此时CE+QE取得最小值为CQ,在Rt△COQ中,CO=8,OQ=24,∴CQ=8,故总造价的最小值为1600,作E′H⊥OB,垂足为H,连接OE′,设E′H=x,则QH=3x,∵在Rt△E′OH中,OH2+HE'2=OE'2,∴(24﹣3x)2+x2=122,解得,x1=,x2=(舍去),∴总造价的最小值为1600元,出口E距直线OB的距离为.。
2020年浙江省杭州市中考数学一模试卷及答案解析

2020年浙江省杭州市中考数学一模试卷一、选择题:本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的. 1.(3分)﹣2的绝对值是( ) A .﹣2 B .2C .12D .−122.(3分)下列计算正确的是( )A .m 4+m 3=m 7B .(m 4) 3=m 7C .2m 5÷m 3=m 2D .m (m ﹣1)=m 2﹣m3.(3分)如图,P 为⊙O 外一点,PC 切⊙O 于C ,PB 与⊙O 交于A 、B 两点.若P A =1,PB =5,则PC =( )A .3B .√5C .4D .无法确定 4.(3分)为了解某班学生每天使用零花钱的情况,小敏随机调查了15名同学,结果如表:每天用零花钱(单位:元) 12345人数2 4 53 1则这15名同学每天使用零花钱的众数和中位数分别是( )A .3,3B .5,2C .3,2D .3,55.(3分)某工程甲单独完成要30天,乙单独完成要25天.若乙先单独干15天,剩下的由甲单独完成,设甲、乙一共用x 天完成,则可列方程为( )A .x+1525+1530=1 B .x+1530+1525=1 C .1530+x−1525=1D .x−1530+1525=16.(3分)如图,已知一组平行线a ∥b ∥c ,被直线m 、n 所截,交点分别为A 、B 、C 和D 、E 、F ,且AB =3,BC =4,EF =4.8,则DE =( )A .7.2B .6.4C .3.6D .2.47.(3分)如图,BD 是△ABC 的角平分线,AE ⊥BD ,垂足为F .若∠ABC =36°,∠C =44°,则∠EAC 的度数为( )A .18°B .28°C .36°D .38°8.(3分)直线l 1:y =kx +b 与直线l 2:y =bx +k 在同一坐标系中的大致位置是( )A .B .C .D .9.(3分)关于x 的二次函数y =x 2+2kx +k ﹣1,下列说法正确的是( ) A .对任意实数k ,函数图象与x 轴都没有交点B .对任意实数k ,函数图象没有唯一的定点C .对任意实数k ,函数图象的顶点在抛物线y =﹣x 2﹣x ﹣1上运动D .对任意实数k ,当x ≥﹣k ﹣1时,函数y 的值都随x 的增大而增大10.(3分)如图,在△ABC 中,∠C =90°,D 是BC 边上一点,∠ADC =3∠BAD ,BD =4,DC =3.则AB 的值为( )A .5+3√2B .2+2√15C .7√2D .√113二、填空题:本题有6个小题,每小题4分,共24分 11.(4分)分解因式:3x 2+6xy +3y 2= .12.(4分)一个袋子中有1个红球,2个黄球,每个球除颜色外都相同,从中摸出2个球,2个球颜色不同的概率为 . 13.(4分)分式方程2x−1=1x的解是 . 14.(4分)已知一个扇形的面积为12πcm 2,圆心角的度数为108°,则它的弧长为 .15.(4分)已知关于x 的不等式组{5x −a >3(x −1)2x −1≤7的所有整数解的和为7,则a 的取值范围是 .16.(4分)一张直角三角形纸片ABC ,∠ACB =90°,AB =13,AC =5,点D 为BC 边上的任一点,沿过点D 的直线折叠,使直角顶点C 落在斜边AB 上的点E 处,当△BDE 是直角三角形时,则CD 的长为 . 三、解答题:本大题有7个小题,共66分解答应写出文字说明、证明过程或演算步骤. 17.(6分)先化简再求值:(ab−b a)•aba+b,其中a =1,b =2. 18.(8分)光明中学欲举办“校园吉尼斯挑战赛”,为此学校随机抽取男女学生各50名进行一次“你喜欢的挑战项目”的问卷调查,每名学生都选了一项.根据收集到的数据,绘制成统计图(不完整).根据统计图表中的信息,解答下列问题:(1)在本次随机调查中,女生最喜欢“踢毽子”项目的有人,男生最喜欢“乒乓球“项目的有人.(2)请将条形统计图补充完整;(3)若该校有男生450人,女生400人,请估计该校喜欢“羽毛球”项目的学生总人数.19.(8分)如图,D、E是以AB为直径的⊙O上两点,且∠AED=45°.(1)过点D作DC∥AB,求证:直线CD与⊙O相切;(2)若⊙O的半径为12,sin∠ADE=3,求AE的长.420.(10分)如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC;(2)若AB=8,AD=6√2,AF=4√2,求AE的长.21.(10分)已知Rt△ABC的斜边AB在平面直角坐标系的x轴上,点C(2,6)在反比例函数y1=k x的图象上,且sin∠BAC= 35(1)求k的值和边AC的长;(2)求点B的坐标;交于M与N点,求出x为何值时,y2≥y1.(3)有一直线y2=kx+10与y1=kx22.(12分)已知一次函数y1=2x+b的图象与二次函数y2=a(x2+bx+1)(a≠0,a、b为常数)的图象交于A、B两点,且A 的坐标为(0,1).(1)求出a、b的值,并写出y1,y2的表达式;(2)验证点B的坐标为(1,3),并写出当y1≥y2时,x的取值范围;(3)设u=y1+y2,v=y1﹣y2,若m≤x≤n时,u随着x的增大而增大,且v也随着x的增大而增大,求m的最小值和n的最大值.23.(12分)在△ABC 和△DBE 中,CA =CB ,EB =ED ,点D 在AC 上.(1)如图1,若∠ABC =∠DBE =60°,求证:∠ECB =∠A ;(2)如图2,设BC 与DE 交于点F .当∠ABC =∠DBE =45°时,求证:CE ∥AB ; (3)在(2)的条件下,若tan ∠DEC =12时,求EFDF的值.2020年浙江省杭州市中考数学一模试卷参考答案与试题解析一、选择题:本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的. 1.(3分)﹣2的绝对值是( ) A .﹣2B .2C .12D .−12【分析】根据绝对值的定义,可直接得出﹣2的绝对值.【解答】解:|﹣2|=2, 故选:B .【点评】本题考查了绝对值的定义,是中考的常见题型,比较简单,熟记绝对值的定义是本题的关键. 2.(3分)下列计算正确的是( ) A .m 4+m 3=m 7 B .(m 4) 3=m 7 C .2m 5÷m 3=m 2D .m (m ﹣1)=m 2﹣m【分析】直接利用整式的混合运算法则分别计算判断即可. 【解答】解:A 、m 4与m 3,无法合并,故此选项错误; B 、(m 4) 3=m 12,故此选项错误; C 、2m 5÷m 3=2m 2,故此选项错误; D 、m (m ﹣1)=m 2﹣m ,正确. 故选:D .【点评】此题主要考查了整式的混合运算,正确掌握相关运算法则是解题关键.3.(3分)如图,P 为⊙O 外一点,PC 切⊙O 于C ,PB 与⊙O 交于A 、B 两点.若P A =1,PB =5,则PC =( )A .3B .√5C .4D .无法确定【分析】求出半径的长,求出PO 长,根据切线的性质求出∠PCO =90°,再根据勾股定理求出即可. 【解答】解:∵P A =1,PB =5, ∴AB =PB ﹣P A =4, ∴OC =OA =OB =2, ∴PO =1+2=3, ∵PC 切⊙O 于C , ∴∠PCO =90°,在Rt △PCO 中,由勾股定理得:PC =√PO 2−OC 2=√32−22=√5, 故选:B .【点评】本题考查了勾股定理和切线的性质,能熟记切线的性质的内容是解此题的关键,注意:圆的切线垂直于过切点的半径.4.(3分)为了解某班学生每天使用零花钱的情况,小敏随机调查了15名同学,结果如表:每天用零花钱(单位:元) 12345人数24531则这15名同学每天使用零花钱的众数和中位数分别是( )A .3,3B .5,2C .3,2D .3,5【分析】根据众数和中位数的定义分别进行解答即可.【解答】解:这15名同学每天使用零花钱的众数为3元,中位数为3元,故选:A.【点评】此题考查了众数和中位数,众数是一组数据中出现次数最多的数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.5.(3分)某工程甲单独完成要30天,乙单独完成要25天.若乙先单独干15天,剩下的由甲单独完成,设甲、乙一共用x 天完成,则可列方程为()A.x+1525+1530=1 B.x+1530+1525=1C.1530+x−1525=1 D.x−1530+1525=1【分析】根据题意列出方程求出答案.【解答】解:设甲、乙一共用x天完成,则可列方程为:x−15 30+1525=1.故选:D.【点评】本题考查由实际问题抽象出一元一次方程,解题的关键是找出等量关系,本题属于基础题型.6.(3分)如图,已知一组平行线a∥b∥c,被直线m、n所截,交点分别为A、B、C和D、E、F,且AB=3,BC=4,EF =4.8,则DE=()A.7.2 B.6.4 C.3.6 D.2.4【分析】根据平行线分线段成比例定理列出比例式,代入计算得到答案.【解答】解:∵a∥b∥c,∴DEEF=ABBC,即DE4.8=34,解得,DE=3.6,故选:C.【点评】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.7.(3分)如图,BD是△ABC的角平分线,AE⊥BD,垂足为F.若∠ABC=36°,∠C=44°,则∠EAC的度数为()A.18°B.28°C.36°D.38°【分析】根据∠EAC=∠BAC﹣∠BAF,求出∠BAC,∠BAF即可解决问题.【解答】解:∵∠ABC=36°,∠C=44°,∴∠BAC=180°﹣36°﹣44°=100°,∵BD平分∠ABC,∴∠ABD=12∠ABC=18°,∵AE⊥BD,∴∠BF A=90°,∴∠BAF=90°﹣18°=72°,∴∠EAC =∠BAC ﹣∠BAF =100°﹣72°=28°, 故选:B .【点评】本题考查三角形内角和定理,角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型. 8.(3分)直线l 1:y =kx +b 与直线l 2:y =bx +k 在同一坐标系中的大致位置是( )A .B .C .D .【分析】根据一次函数的系数与图象的关系依次分析选项,找k 、b 取值范围相同的即得答案. 【解答】解:根据一次函数的系数与图象的关系依次分析选项可得:A 、由图可得,y 1=kx +b 中,k <0,b <0,y 2=bx +k 中,b >0,k <0,b 、k 的取值矛盾,故本选项错误;B 、由图可得,y 1=kx +b 中,k >0,b <0,y 2=bx +k 中,b >0,k >0,b 的取值相矛盾,故本选项错误;C 、由图可得,y 1=kx +b 中,k >0,b <0,y 2=bx +k 中,b <0,k >0,k 的取值相一致,故本选项正确;D 、由图可得,y 1=kx +b 中,k >0,b <0,y 2=bx +k 中,b <0,k <0,k 的取值相矛盾,故本选项错误; 故选:C .【点评】本题主要考查了一次函数的图象性质,要掌握它们的性质才能灵活解题.解答本题注意理解:直线y =kx +b 所在的位置与k 、b 的符号有直接的关系.9.(3分)关于x 的二次函数y =x 2+2kx +k ﹣1,下列说法正确的是( ) A .对任意实数k ,函数图象与x 轴都没有交点B .对任意实数k ,函数图象没有唯一的定点C .对任意实数k ,函数图象的顶点在抛物线y =﹣x 2﹣x ﹣1上运动D .对任意实数k ,当x ≥﹣k ﹣1时,函数y 的值都随x 的增大而增大【分析】利用△=(2k ﹣1)2+3>0可对A 进行判断;利用点(−12,−34)满足抛物线解析式可对B 进行判断;先求出抛物线顶点坐标为(﹣k ,﹣k 2+k ﹣1),则根据二次函数图象上点的坐标特征可对C 进行判断;先表示出抛物线的对称轴方程,然后利用二次函数的性质可对D 进行判断.【解答】解:A 、△=4k 2﹣4(k ﹣1)=(2k ﹣1)2+3>0,抛物线与x 轴有两个交点,所以A 选项错误;B 、k (2x +1)=y +1﹣x 2,k 为任意实数,则2x +1=0,y +1﹣x 2=0,所以抛物线经过定点(−12,−34),所以B 选项错误; C 、y =(x +k )2﹣k 2+k ﹣1,抛物线的顶点坐标为(﹣k ,﹣k 2+k ﹣1),则抛物线的顶点在抛物线y =﹣x 2﹣x ﹣1上运动,所以C 选项正确;D 、抛物线的对称轴为直线x =−2k2=−k ,抛物线开口向上,则x >﹣k 时,函数y 的值都随x 的增大而增大,所以D 选项错误. 故选:C .【点评】本题考查了抛物线与x 轴的交点:把求二次函数y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.也考查了二次函数的性质.10.(3分)如图,在△ABC 中,∠C =90°,D 是BC 边上一点,∠ADC =3∠BAD ,BD =4,DC =3.则AB 的值为( )A.5+3√2B.2+2√15C.7√2D.√113【分析】延长CB到E,使得BE=BA.设BE=AB=a.利用相似三角形的性质,勾股定理构建方程即可解决问题.【解答】解:如图,延长CB到E,使得BE=BA.设BE=AB=a.∵BE=BA,∴∠E=∠BAE,∵∠ADC=∠ABD+∠BAD=2∠E+∠BAD=3∠BAD,∴∠BAD=∠E,∵∠ADB=∠EDA,∴△ADB∽△EDA,∴ADED=DBAD,∴AD2=4(4+a)=16+4a,∵AC2=AD2﹣CD2=AB2﹣BC2,∴16+4a﹣32=a2﹣72,解得a=2+2√15或2﹣2√15(舍弃).∴AB=2+2√15,故选:B.【点评】本题考查相似三角形的判定和性质,勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.二、填空题:本题有6个小题,每小题4分,共24分11.(4分)分解因式:3x2+6xy+3y2=3(x+y)2.【分析】先利用提取公因式法提取数字3,再利用完全平方公式继续进行分解.【解答】解:3x2+6xy+3y2,=3(x2+2xy+y2),=3(x+y)2【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.12.(4分)一个袋子中有1个红球,2个黄球,每个球除颜色外都相同,从中摸出2个球,2个球颜色不同的概率为23.【分析】画树状图列出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得.【解答】解:画树状图如下:由树状图知,共有6种等可能结果,其中2个球颜色不同的有4种结果, ∴2个球颜色不同的概率为46=23, 故答案为:23.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.13.(4分)分式方程2x−1=1x的解是 x =﹣1 . 【分析】观察分式方程得最简公分母为x (x ﹣1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解. 【解答】解:方程的两边同乘x (x ﹣1),得 2x =x ﹣1, 解得x =﹣1.检验:把x =﹣1代入x (x ﹣1)=2≠0. ∴原方程的解为:x =﹣1. 故答案为:x =﹣1.【点评】本题考查了解分式方程.(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.14.(4分)已知一个扇形的面积为12πcm 2,圆心角的度数为108°,则它的弧长为6√105πcm . 【分析】先根据扇形的面积公式求出扇形的半径,再根据弧长公式求出弧长即可.【解答】解:设扇形的半径为Rcm ,∵扇形的面积为12πcm 2,圆心角的度数为108°, ∴108π×R 2360=12π,解得:R =2√10,∴弧长为108π×2√10180=6√105π(cm ),故答案为:6√105πcm .【点评】本题考查了扇形面积的计算和弧长的计算,能熟记公式是解此题的关键.15.(4分)已知关于x 的不等式组{5x −a >3(x −1)2x −1≤7的所有整数解的和为7,则a 的取值范围是 7≤a <9或﹣3≤a <﹣1 .【分析】先求出求出不等式组的解集,再根据已知得出关于a 的不等式组,求出不等式组的解集即可.【解答】解:{5x −a >3(x −1)①2x −1≤7②,∵解不等式①得:x >a−32, 解不等式②得:x ≤4, ∴不等式组的解集为a−32<x ≤4, ∵关于x 的不等式组{5x −a >3(x −1)2x −1≤7的所有整数解的和为7,∴当a−32>0时,这两个整数解一定是3和4,∴2≤a−32<3, ∴7≤a <9,当a−32<0时,﹣3≤a−32<−2, ∴﹣3≤a <﹣1,∴a 的取值范围是7≤a <9或﹣3≤a <﹣1. 故答案为:7≤a <9或﹣3≤a <﹣1.【点评】本题考查了解一元一次不等式组和不等式组的整数解,能得出关于a 的不等式组是解此题的关键.16.(4分)一张直角三角形纸片ABC ,∠ACB =90°,AB =13,AC =5,点D 为BC 边上的任一点,沿过点D 的直线折叠,使直角顶点C 落在斜边AB 上的点E 处,当△BDE 是直角三角形时,则CD 的长为103或6017. 【分析】根据沿过点D 的直线折叠,使直角顶点C 落在斜边AB 上的点E 处,当△BDE 是直角三角形时,分两种情况讨论:∠DEB =90°或∠BDE =90°,分别依据勾股定理或者相似三角形的性质,即可得到CD 的长. 【解答】解:∵∠ACB =90°,AB =13,AC =5, ∴BC =√AB 2−AC 2=12, 根据题意,分两种情况: ①如图,若∠DEB =90°,则∠AED =90°=∠C , CD =ED ,连接AD ,则Rt △ACD ≌Rt △AED (HL ), ∴AE =AC =5,BE =AB ﹣AE =13﹣5=8, 设CD =DE =x ,则BD =BC ﹣CD =12﹣x , 在Rt △BDE 中,DE 2+BE 2=BD 2, ∴x 2+82=(12﹣x )2解得x =103, ∴CD =103;②如图,若∠EDB =90°,则∠CDE =∠DEF =∠C =90°,CD =DE , ∴四边形CDEF 是正方形, ∴∠AFE =∠EDB =90°, ∠AEF =∠B , ∴△AEF ∽△EBD , ∴AF ED =EF BD ,6017设CD =x ,则EF =CF =x ,AF =5﹣x ,BD =12﹣x ,∴5−x x =x 12−x , 解得x =6017. ∴CD =6017. 综上所述,CD 的长为103或6017. 【点评】本题考查了翻折变换,综合运用勾股定理、相似三角形的判定与性质、正方形的判定与性质解答,解题关键是根据题意分两种情况讨论.三、解答题:本大题有7个小题,共66分解答应写出文字说明、证明过程或演算步骤.17.(6分)先化简再求值:(a b −b a )•ab a+b ,其中a =1,b =2. 【分析】先把分式化简后,再把a 、b 的值代入求出分式的值. 【解答】解:原式=a 2−b 2ab •ab a+b =(a+b)(a−b)ab ⋅ab a+b=a ﹣b ,当a =1,b =2时,原式=1﹣2=﹣1.【点评】本题考查了分式的化简求值,熟练化简分式是解题的关键.18.(8分)光明中学欲举办“校园吉尼斯挑战赛”,为此学校随机抽取男女学生各50名进行一次“你喜欢的挑战项目”的问卷调查,每名学生都选了一项.根据收集到的数据,绘制成统计图(不完整).根据统计图表中的信息,解答下列问题:(1)在本次随机调查中,女生最喜欢“踢毽子”项目的有 10 人,男生最喜欢“乒乓球“项目的有 20 人.(2)请将条形统计图补充完整;(3)若该校有男生450人,女生400人,请估计该校喜欢“羽毛球”项目的学生总人数.【分析】(1)根据题目中的数据和条形统计图中的数据,可以计算出女生最喜欢“踢毽子”项目的人数,然后根据扇形统计图中的数据,可以计算出男生最喜欢“乒乓球“项目的人数;(2)根据(1)中的结果,可以得到女生最喜欢“踢毽子”项目的有10人,从而可以将条形统计图补充完整;(3)根据统计图中的数据和该校有男生450人,女生400人,可以计算出该校喜欢“羽毛球”项目的学生总人数.【解答】解:(1)在本次随机调查中,女生最喜欢“踢毽子”项目的有:50﹣15﹣9﹣9﹣7=10(人),男生最喜欢“乒乓球“项目的有:50×(1﹣8%﹣10%﹣14%﹣28%)=50×40%=20(人),故答案为:10,20;(2)由(1)知,女生最喜欢“踢毽子”项目的有10人,补全完整的条形统计图如右图所示;(3)450×28%+400×950=126+72198(人),答:该校喜欢“羽毛球”项目的学生一共有198人.【点评】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.19.(8分)如图,D、E是以AB为直径的⊙O上两点,且∠AED=45°.(1)过点D作DC∥AB,求证:直线CD与⊙O相切;,求AE的长.(2)若⊙O的半径为12,sin∠ADE=34【分析】(1)连接OD,根据圆周角定理求出∠AOD,根据平行线的性质求出∠ODC=90°,根据切线的判定得出即可;(2)连接BE,根据圆周角定理求出∠B=∠ADE,解直角三角形求出即可.【解答】(1)证明:连接OD,∵∠AED=45°,∴由圆周角定理得:∠AOD=2∠AED=90°,∵CD∥AB,∴∠CDO=∠AOD=90°,即OD⊥CD,∵OD过O,∴直线CD与⊙O相切;(2)解:连接BE,∵AB为⊙O的直径,∴∠AEB=90°,∵由圆周角定理得:∠B=∠ADE,sin∠ADE=3 4,∴sin∠ADE=sin B,∵sin B=AE AB ,∵⊙O的半径为12,∴AE24=34,解得:AE=18.【点评】本题考查了解直角三角形,圆周角定理,切线的判定,平行线的性质等知识点,能综合运用知识点进行推理是解此题的关键.20.(10分)如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC;(2)若AB=8,AD=6√2,AF=4√2,求AE的长.【分析】(1)由平行四边形的性质和平行线的性质得出∠ADF=∠CED,∠B+∠C=180°;由∠AFE+∠AFD=180°,∠AFE =∠B,得出∠AFD=∠C,即可得出结论;(2)根据平行四边形的性质可得出CD=AB=8,根据相似三角形的性质可得出ADDE =AFDC,求出DE=12.证出AE⊥AD,由勾股定理即可得出答案.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠ADF=∠CED,∠B+∠C=180°;∵∠AFE+∠AFD=180°,∠AFE=∠B,∴∠AFD=∠C,∴△ADF∽△DEC;(2)解:∵四边形ABCD是平行四边形,∴DC=AB=8.∵△ADF∽△DEC,∴ADDE=AFDC,即6√2DE=4√28,∴DE=12.∵AD∥BC,AE⊥BC,∴AE⊥AD.在Rt△ADE中,∠EAD=90°,DE=12,AD=6√2,∴AE =√DE 2−AD 2=√122−(6√2)2=6√2.【点评】此题主要考查的是平行四边形的性质、相似三角形的判定和性质以及勾股定理的运用,解题的关键判定三角形相似.21.(10分)已知Rt △ABC 的斜边AB 在平面直角坐标系的x 轴上,点C (2,6)在反比例函数y 1=k x的图象上,且sin ∠BAC =35 (1)求k 的值和边AC 的长;(2)求点B 的坐标;(3)有一直线y 2=kx +10与y 1=k x 交于M 与N 点,求出x 为何值时,y 2≥y 1.【分析】(1)本题需先根据C 点的坐标在反比例函数y 1=k x 的图象上,从而得出k 的值,再根据且sin ∠BAC =35,得出AC 的长;(2)本题需先根据已知条件,得出∠DAC =∠DCB ,从而得出CD 的长,根据点B 的位置即可求出正确答案;(3)解方程组即可得到结论.【解答】解:(1)∵点C (2,6)在反比例函数y =k x 的图象上,∴6=k 2,解得k =12,∵sin ∠BAC =35∴sin ∠BAC =6AC =35, ∴AC =10;∴k 的值和边AC 的长分别是:12,10;(2)①当点B 在点A 右边时,如图,作CD ⊥x 轴于D .∵△ABC 是直角三角形,∴∠DAC =∠DCB ,又∵sin ∠BAC =35,∴tan ∠DAC =34,∴BD CD =34, 又∵CD =6, ∴BD =92,∴OB =2+92=132, ∴B (132,0); ②当点B 在点A 左边时,如图,作CD ⊥x 轴于D .∵△ABC 是直角三角形, ∴∠B +∠A =90°,∠B +∠BCD =90°,∴∠DAC =∠DCB ,又∵sin ∠BAC =35,∴tan ∠DAC =34,∴BD CD =34, 又∵CD =6,∴BD =92,BO =BD ﹣2=52, ∴B (−52,0) ∴点B 的坐标是(−52,0),(132,0); (3)∵k =12,∴y 2=12x +10与y 1=12x , 解{y =12x +10y =12x得,{x =23y =18,{x =−32y =−8, ∴M (23,18),N 点(−32,﹣8),∴−32<x <0或x >23时,y 2≥y 1.【点评】本题考查了反比例函数与一次函数的交点问题,解直角三角形,正确的理解题意是解题的关键.22.(12分)已知一次函数y 1=2x +b 的图象与二次函数y 2=a (x 2+bx +1)(a ≠0,a 、b 为常数)的图象交于A 、B 两点,且A 的坐标为(0,1).(1)求出a 、b 的值,并写出y 1,y 2的表达式;(2)验证点B 的坐标为(1,3),并写出当y 1≥y 2时,x 的取值范围;(3)设u =y 1+y 2,v =y 1﹣y 2,若m ≤x ≤n 时,u 随着x 的增大而增大,且v 也随着x 的增大而增大,求m 的最小值和n 的最大值.【分析】(1)把A 点的坐标分别代入两个函数的解析式,便可求得a 与b 的值;(2)画出函数图象,根据函数图象作答;(3)求出出个函数的对称轴,根据函数的性质得出“u 随着x 的增大而增大,且v 也随着x 的增大而增大”时x 的取值范围,进而得m 的最小值和n 的最大值.【解答】解:(1)把A (0,1)代入y 1=2x +b 得b =1,把A (0,1)代入y 2=a (x 2+bx +1)得,a =1,∴y 1=2x +1,y 2=x 2+x +1;(2)作y 1=2x +1,y 2=x 2+x +1的图象如下:由函数图象可知,y 1=2x +1不在y 2=x 2+x +1下方时,0≤x ≤3,∴当y 1≥y 2时,x 的取值范围为0≤x ≤3;(3)∵u =y 1+y 2=2x +1+x 2+x +1=x 2+3x +2=(x +1.5)2﹣0.25,∴当x ≥﹣1.5时,u 随x 的增大而增大;v =y 1﹣y 2=(2x +1)﹣(x 2+x +1)=﹣x 2+x =﹣(x ﹣0.5)2+0.25,∴当x ≤0.5时,v 随x 的增大而增大,∴当﹣15≤x ≤0.5时,u 随着x 的增大而增大,且v 也随着x 的增大而增大,∵若m ≤x ≤n 时,u 随着x 的增大而增大,且v 也随着x 的增大而增大,∴m 的最小值为﹣1.5,n 的最大值为0.5.【点评】本题是二次函数的综合题,主要考查了函数的图象与性质,利用函数图象求不等式的解集,待定系数法,关键是熟练掌握二次函数的性质,灵活运用性质解题.23.(12分)在△ABC 和△DBE 中,CA =CB ,EB =ED ,点D 在AC 上.(1)如图1,若∠ABC =∠DBE =60°,求证:∠ECB =∠A ;(2)如图2,设BC 与DE 交于点F .当∠ABC =∠DBE =45°时,求证:CE ∥AB ;(3)在(2)的条件下,若tan ∠DEC =12时,求EF DF的值. 【分析】(1)根据SAS 可证明△ABD ≌△CBE .得出∠A =∠ECB ;(2)得出△ABC 和△DBE 都是等腰直角三角形,证明△ABD ∽△CBE ,则∠BAD =∠BCE =45°,可得出结论;(3)过点D 作DM ⊥CE 于点M ,过点D 作DN ∥AB 交CB 于点N ,设DM =MC =a ,得出DN =2a ,CE =a ,证明△CEF ∽△DNF ,可得出答案.【解答】(1)证明:∵CA =CB ,EB =ED ,∠ABC =∠DBE =60°,∴△ABC 和△DBE 都是等边三角形,∴AB =BC ,DB =BE ,∠A =60°.∵∠ABC =∠DBE =60°,∴∠ABD =∠CBE ,∴△ABD ≌△CBE (SAS ).∴∠A =∠ECB ;(2)证明:∵∠ABC=∠DBE=45°,CA=CB,EB=ED,∴△ABC和△DBE都是等腰直角三角形,∴∠CAB=45°,∴ABBC=√2,DB BE=√2,∴ABBC=DBBE,∵∠ABC=∠DBE,∴∠ABD=∠CBE,∴△ABD∽△CBE,∴∠BAD=∠BCE=45°,∵∠ABC=45°,∴∠ABC=∠BCE,∴CE∥AB;(3)解:过点D作DM⊥CE于点M,过点D作DN∥AB交CB于点N,∵∠ACB=90°,∠BCE=45°,∴∠DCM=45°,∴∠MDC=∠DCM=45°,∴DM=MC,设DM=MC=a,∴DC=√2a,∵DN∥AB,∴△DCN为等腰直角三角形,∴DN=√2DC=2a,∵tan∠DEC=DMME=12,∴ME=2DM,∴CE=a,∴CEDN=a2a=12,∵CE∥DN,∴△CEF∽△DNF,∴EFDF=CEDN=12.【点评】本题是三角形综合题,考查了等边三角形的判定与性质,等腰直角三角形的判定与性质,全等三角形的判定与性质,相似三角形的判定与性质,锐角三角函数等知识,正确作出辅助线,熟练掌握基本图形的性质是解题的关键.。
2020年江苏省南京市建邺区中考数学一模试卷含答案解析

2020年江苏省南京市建邺区中考数学一模试卷一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.下列计算结果为负数的是()A.﹣1+2B.|﹣1|C.D.﹣2﹣12.计算a5•(﹣)2的结果是()A.﹣a3B.a3C.a7D.a103.若a<2<b,其中a、b为两个连续的整数,则ab的值为()A.2B.5C.6D.124.如图是一几何体的三视图,这个几何体可能是()A.三棱柱B.三棱锥C.圆柱D.圆锥5.如图,已知a∥b,∠1=115°,则∠2的度数是()A.45°B.55°C.65°D.85°6.在学习“一次函数与二元一次方程”时,我们知道了两个一次函数图象的交点坐标与其相应的二元一次方程组的解之间的关系,请通过此经验推断:在同一平面直角坐标系中,函数y=5x2﹣3x+4与y=4x2﹣x+3的图象交点个数有()A.0个B.1个C.2个D.无数个二、填空题(本大题共10小题,每小题2分,共计20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.若式子在实数范围内有意义,则x的取值范围是.8.若a﹣b=3,a+b=﹣2,则a2﹣b2=.9.据统计,2020年春节“黄金周”(2月7日至13日)期间,南京共接待游客4 880000人.将4880000用科学记数法表示为.10.若△ABC∽△A′B′C′,相似比为1:3,则△ABC与△A′B′C′的面积之比为.11.已知圆锥的底面半径是1cm,母线长为3cm,则该圆锥的侧面积为cm2.12.已知方程x2+mx﹣3=0的一个根是1,则它的另一个根是.13.某校射击队从甲、乙、丙、丁四人中选拔一人参加市运会射击比赛.在选拔赛中,每人射击10次,他们10次成绩的平均数及方差如下表所示.甲乙丙丁平均数/环9.7 9.5 9.5 9.7方差/环2 5.1 4.7 4.5 4.5请你根据表中数据选一人参加比赛,最合适的人选是.14.在同一平面直角坐标系中,正比例函数y=k1x的图象与反比例函数y=的图象一个交点的坐标是(﹣2,3),则它们另一个交点的坐标是.15.如图,在正十边形A1A2A3A4A5A6A7A8A9A10中,连接A1A4、A1A7,则∠A4A1A7=°.16.如图①,在等边△ABC中,CD⊥AB,垂足为D,⊙O的圆心与点D重合,⊙O与线段CD交于点E,且CE=4cm.将⊙O沿DC方向向上平移1cm后,如图②,⊙O恰与△ABC 的边AC、BC相切,则等边△ABC的边长为cm.三、解答题(本大题共有11小题,共计88分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.先化简,再求值:(﹣)÷,其中a=+1,b=﹣1.18.解不等式组并写出不等式组的整数解.19.如图,在四边形ABCD中,AB∥CD,点E、F在对角线AC上,且∠ABF=∠CDE,AE=CF.(1)求证:△ABF≌△CDE;(2)当四边形ABCD满足什么条件时,四边形BFDE是菱形?为什么?20.“低碳环保,你我同行”.近两年,南京市区的公共自行车给市民出行带来了极大的方便.图①是公共自行车的实物图,图②是公共自行车的车架示意图,点A、D、C、E在同一条直线上,CD=30cm,DF=20cm,AF=25cm,FD⊥AE于点D,座杆CE=15cm,且∠EAB=75°.(1)求AD的长;(2)求点E到AB的距离.(参考数据:sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)21.甲、乙两名同学从《奔跑吧兄弟》、《极限挑战》、《最强大脑》三个综艺节目中随机选择一个观看.(1)甲同学观看《最强大脑》的概率是;(2)求甲、乙两名同学观看同一节目的概率.22.“世界那么大,我想去看看”一句话红遍网络,随着国际货币基金组织正式宣布人民币2020年10月1日加入SDR(特别提款权),以后出国看世界更加方便.为了解某区6000名初中生对“人民币加入SDR”知晓的情况,某校数学兴趣小组随机抽取区内部分初中生进行问卷调查,将问卷调查的结果划分为“非常了解”、“比较了解”、“基本了解”、“不了解”四个等级,并将调查结果整理分析,得到下列图表:某区抽取学生对“人民币加入SDR”知晓情况频数分布表(1)本次问卷调查抽取的学生共有人,其中“不了解”的学生有人;(2)在扇形统计图中,学生对“人民币加入SDR”基本了解的区域的圆心角为°;(3)根据抽样的结果,估计该区6000名初中生对“人民币加入SDR”了解的有多少人(了解是指“非常了解”、“比较了解”和“基本了解”)?23.某商场将进货价为每只30元的台灯以每只40元售出,平均每月能售出600只.调查表明,这种台灯的售价每上涨1元,其销售量将减少10只.当这种台灯的售价定为多少元时,每个月的利润恰为10 000元?24.货车和轿车分别从甲、乙两地同时出发,沿同一公路相向而行.轿车出发2.4h后休息,直至与货车相遇后,以原速度继续行驶.设货车出发xh后,货车、轿车分别到达离甲地y1km 和y2km的地方,图中的线段OA、折线BCDE分别表示y1、y2与x之间的函数关系.(1)求点D的坐标,并解释点D的实际意义;(2)求线段DE所在直线的函数表达式;(3)当货车出发h时,两车相距200km.25.数学活动课上,小君在平面直角坐标系中对二次函数图象的平移进行了研究.图①是二次函数y=(x﹣a)2+(a为常数)当a=﹣1、0、1、2时的图象.当a取不同值时,其图象构成一个“抛物线簇”.小君发现这些二次函数图象的顶点竟然在同一条直线上!(1)小君在图①中发现的“抛物线簇”的顶点所在直线的函数表达式为;(2)如图②,当a=0时,二次函数图象上有一点P(2,4).将此二次函数图象沿着(1)中发现的直线平移,记二次函数图象的顶点O与点P的对应点分别为O1、P1.若点P1到x 轴的距离为5,求平移后二次函数图象所对应的函数表达式.26.如图,直线AB交⊙O于C、D两点,CE是⊙O的直径,CF平分∠ACE交⊙O于点F,连接EF,过点F作FG∥ED交AB于点G.(1)求证:直线FG是⊙O的切线;(2)若FG=4,⊙O的半径为5,求四边形FGDE的面积.27.问题提出平面上,若点P与A、B、C三点中的任意两点均构成等腰三角形,则称点P是A、B、C 三点的巧妙点.若A、B、C三点构成三角形,也称点P是△ABC的巧妙点.初步思考(1)如图①,在等边△ABC的内部和外部各作一个△ABC的巧妙点.(尺规作图,不写作法,保留作图痕迹)(2)如图②,在△ABC中,AB=AC,∠BAC=36°,点D、E是△ABC的两个巧妙点,其中AD=AB,AE=AC,BD=BC=CE,连接DE,分别交AB、AC于点M、N.求证:DA2=DB•DE.深入研究(3)在△ABC中,AB=AC,若存在一点P,使PB=BA,PA=PC.点P可能为△ABC的巧妙点吗?若可能,请画出示意图,并直接写出∠BAC的度数;若不可能,请说明理由.2020年江苏省南京市建邺区中考数学一模试卷参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.下列计算结果为负数的是()A.﹣1+2B.|﹣1|C.D.﹣2﹣1【考点】算术平方根;绝对值;有理数的加法;负整数指数幂.【分析】先化简各项,再根据负数的定义,即可解答.【解答】解:A、﹣1+2=1,故错误;B、|﹣1|=1,故错误;C、=2,故错误;D、﹣2﹣1=﹣,正确;故选:D.2.计算a5•(﹣)2的结果是()A.﹣a3B.a3C.a7D.a10【考点】分式的乘除法.【分析】首先计算分式的乘方,然后再相乘即可.【解答】解:原式=a5•=a3,故选:B.3.若a<2<b,其中a、b为两个连续的整数,则ab的值为()A.2B.5C.6D.12【考点】估算无理数的大小.【分析】依据平方数越大对应的算术平方根越大可求得a、b的值,最后依据有理数的乘法法则求解即可.【解答】解:∵4<8<9,∴2<<3,即2<2<3.∴a=2,b=3.∴ab=6.故选:C.4.如图是一几何体的三视图,这个几何体可能是()A.三棱柱B.三棱锥C.圆柱D.圆锥【考点】由三视图判断几何体.【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.【解答】解:根据主视图和左视图为矩形判断出是柱体,根据俯视图是三角形可判断出这个几何体应该是三棱柱.故选A.5.如图,已知a∥b,∠1=115°,则∠2的度数是()A.45°B.55°C.65°D.85°【考点】平行线的性质.【分析】根据两直线平行,同旁内角互补求出∠3,再根据对顶角相等解答.【解答】解:如图,∵a∥b,∠1=115°,∴∠3=180°﹣∠1=180°﹣115°=65°,∴∠3=∠2=65°.故选C.6.在学习“一次函数与二元一次方程”时,我们知道了两个一次函数图象的交点坐标与其相应的二元一次方程组的解之间的关系,请通过此经验推断:在同一平面直角坐标系中,函数y=5x2﹣3x+4与y=4x2﹣x+3的图象交点个数有()A.0个B.1个C.2个D.无数个【考点】二次函数的性质;一次函数与二元一次方程(组).【分析】由题意知函数y=5x2﹣3x+4与y=4x2﹣x+3的图象交点个数即方程组的解的个数,即可判断.【解答】解:根据题意,函数y=5x2﹣3x+4与y=4x2﹣x+3的图象交点个数即方程组的解的个数,解方程组得:,所以函数y=5x2﹣3x+4与y=4x2﹣x+3的图象交点只有一个交点(1,6),故选:B.二、填空题(本大题共10小题,每小题2分,共计20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.若式子在实数范围内有意义,则x的取值范围是x≥2.【考点】二次根式有意义的条件.【分析】根据被开方数大于等于0列式进行计算即可得解.【解答】解:根据题意得,x﹣2≥0,解得x≥2.故答案为:x≥2.8.若a﹣b=3,a+b=﹣2,则a2﹣b2=﹣6.【考点】因式分解-运用公式法.【分析】直接利用平方差公式分解因式,进而将已知代入求出答案.【解答】解:∵a2﹣b2=(a+b)(a﹣b),∴把a﹣b=3,a+b=﹣2代入得:原式=3×(﹣2)=﹣6.故答案为:﹣6.9.据统计,2020年春节“黄金周”(2月7日至13日)期间,南京共接待游客4 880000人.将4880000用科学记数法表示为 4.88×106.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:4880000=4.88×106,故答案为:4.88×10610.若△ABC∽△A′B′C′,相似比为1:3,则△ABC与△A′B′C′的面积之比为1:9.【考点】相似三角形的性质.【分析】根据相似三角形面积的比等于相似比的平方解答.【解答】解:∵△ABC∽△A′B′C′,相似比为1:3,∴△ABC与△A′B′C′的面积之比为1:9.故答案为:1:9.11.已知圆锥的底面半径是1cm,母线长为3cm,则该圆锥的侧面积为3πcm2.【考点】圆锥的计算.【分析】圆锥的侧面积=底面周长×母线长÷2,把相应数值代入即可求解.【解答】解:圆锥的侧面积=2π×3×1÷2=3π.故答案为:3π.12.已知方程x2+mx﹣3=0的一个根是1,则它的另一个根是﹣3.【考点】根与系数的关系.【分析】由于该方程的一次项系数是未知数,所以求方程的另一解可以根据根与系数的关系进行计算.【解答】解:设方程的另一根为x1,根据根与系数的关系可得:x1•1=﹣3,解得x1=﹣3.故答案为:﹣3.13.某校射击队从甲、乙、丙、丁四人中选拔一人参加市运会射击比赛.在选拔赛中,每人射击10次,他们10次成绩的平均数及方差如下表所示.甲乙丙丁平均数/环9.7 9.5 9.5 9.7方差/环2 5.1 4.7 4.5 4.5请你根据表中数据选一人参加比赛,最合适的人选是丁.【考点】方差.【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【解答】解:∵S甲2=5.1,S乙2=4.7,S丙2=4.5,S丁2=4.5,∴S甲2>S乙2>S2丁=S2丙,∵丁的平均数大,∴最合适的人选是丁.故答案为:丁14.在同一平面直角坐标系中,正比例函数y=k1x的图象与反比例函数y=的图象一个交点的坐标是(﹣2,3),则它们另一个交点的坐标是(2,﹣3).【考点】反比例函数与一次函数的交点问题.【分析】反比例函数的图象是中心对称图形,则与经过原点的直线的两个交点一定关于原点对称.【解答】解:根据题意,直线y=k1x经过原点与双曲线y=相交于两点,又由于双曲线y=与直线y=k1x均关于原点对称.则两点关于原点对称,一个交点的坐标为(﹣2,3),则另一个交点的坐标为(2,﹣3).故答案为:(2,﹣3).15.如图,在正十边形A1A2A3A4A5A6A7A8A9A10中,连接A1A4、A1A7,则∠A4A1A7=54°.【考点】正多边形和圆.【分析】找出正十边形的圆心O,连接A7O,A4O,再由圆周角定理即可得出结论.【解答】解:如图,连接A7O,A4O,∵正十边形的各边都相等,∴∠A7OA4=×360°=108°,∴∠A4A1A7=×108°=54°.故答案为:54.16.如图①,在等边△ABC中,CD⊥AB,垂足为D,⊙O的圆心与点D重合,⊙O与线段CD交于点E,且CE=4cm.将⊙O沿DC方向向上平移1cm后,如图②,⊙O恰与△ABC的边AC、BC相切,则等边△ABC的边长为cm.【考点】切线的性质;等边三角形的性质;平移的性质.【分析】如图,设圆O与BC的切点为M,连接OM,根据切线的性质可以得到∠OMC=90°,而根据已知条件可以得到∠DCB=30°,设AB为2xcm,根据等边三角形得到CD=xcm,而CE=2cm,又将量角器沿DC方向平移1cm,由此得到半圆的半径为(x﹣4)cm,OC=(x﹣1)cm,然后在Rt△OCM中利用三角函数可以列出关于x的方程,解方程即可求解.【解答】解:如图,设图②中圆O与BC的切点为M,连接OM,则OM⊥MC,∴∠OMC=90°,依题意知道∠DCB=30°,设AB为2xcm,∵△ABC是等边三角形,∴CD=xcm,而CE=4cm,又将量角器沿DC方向平移1cm,∴半圆的半径为(x﹣4)cm,OC=(x﹣1)cm,∴sin∠DCB==,∴=,∴x=,∴等边△ABC的边长为=2x=2(cm),故答案为:.三、解答题(本大题共有11小题,共计88分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.先化简,再求值:(﹣)÷,其中a=+1,b=﹣1.【考点】分式的化简求值.【分析】先算括号里面的,再算除法,分式化为最简后把a、b的值代入进行计算即可.【解答】解:原式=()•=﹣.当a=+1,b=﹣1时,原式=﹣=﹣=﹣.18.解不等式组并写出不等式组的整数解.【考点】一元一次不等式组的整数解;解一元一次不等式组.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式,得x≥﹣1.解不等式2x﹣3<0,得x<.所以不等式组的解集是﹣1≤x<.故不等式组的整数解为﹣1、0、1.19.如图,在四边形ABCD中,AB∥CD,点E、F在对角线AC上,且∠ABF=∠CDE,AE=CF.(1)求证:△ABF≌△CDE;(2)当四边形ABCD满足什么条件时,四边形BFDE是菱形?为什么?【考点】菱形的判定;全等三角形的判定与性质.(1)由平行线的性质得出∠BAC=∠DCA.证出AF=CE.由AAS证明△ABF≌△CDE 【分析】即可;(2)先证明四边形ABCD是菱形,得出BD⊥AC,再证明四边形BFDE是平行四边形,即可得出结论.【解答】(1)证明:∵AB∥CD,∴∠BAC=∠DCA.∵AE=CF,∴AE+EF=CF+EF,即AF=CE.在△ABF和△CDE中,,又∵∠ABF=∠CDE,∴△ABF≌△CDE(AAS);(2)解:当四边形ABCD满足AB=AD时,四边形BEDF是菱形.理由如下:连接BD交AC于点O,如图所示:由(1)得:△ABF≌△CDE,∴AB=CD,BF=DE,∠AFB=∠CED,∴BF∥DE.∵AB∥CD,AB=CD,∴四边形ABCD是平行四边形.又∵AB=AD,∴平行四边形ABCD是菱形.∴BD⊥AC.∵BF=DE,BF∥DE,∴四边形BEDF是平行四边形,∴四边形BEDF是菱形.20.“低碳环保,你我同行”.近两年,南京市区的公共自行车给市民出行带来了极大的方便.图①是公共自行车的实物图,图②是公共自行车的车架示意图,点A、D、C、E在同一条直线上,CD=30cm,DF=20cm,AF=25cm,FD⊥AE于点D,座杆CE=15cm,且∠EAB=75°.(1)求AD的长;(2)求点E到AB的距离.(参考数据:sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)【考点】解直角三角形的应用.【分析】(1)根据勾股定理求出AD的长;(2)作EH⊥AB于H,求出AE的长,根据正弦的概念求出点E到车架AB的距离.【解答】解:(1)在Rt△ADF中,由勾股定理得,AD===15(cm;(2)AE=AD+CD+EC=15+30+15=60(cm),如图②,过点E作EH⊥AB于H,在Rt△AEH中,sin∠EAH=,则EH=AE•sin∠EAH=AB•sin75°≈60×0.97=58.2(cm).答:点E到AB的距离为58.2 cm.21.甲、乙两名同学从《奔跑吧兄弟》、《极限挑战》、《最强大脑》三个综艺节目中随机选择一个观看.(1)甲同学观看《最强大脑》的概率是;(2)求甲、乙两名同学观看同一节目的概率.【考点】列表法与树状图法.【分析】(1)由甲、乙两名同学从《奔跑吧兄弟》、《极限挑战》、《最强大脑》三个综艺节目中随机选择一个观看,直接利用概率公式求解即可求得答案;(2)首先根据题意列出表格,然后由表格即可求得所有等可能的结果与甲、乙两名同学观看同一节目的情况,再利用概率公式即可求得答案.【解答】解:(1)∵甲、乙两名同学从《奔跑吧兄弟》、《极限挑战》、《最强大脑》三个综艺节目中随机选择一个观看,∴甲同学观看《最强大脑》的概率是:.故答案为:;(2)分别用A,B,C表示《奔跑吧兄弟》、《极限挑战》、《最强大脑》三个综艺节目,用表格列出所有可能出现的结果:甲乙 A B CA (A,A)(B,A)(C,A)B (A,B)(B,B)(C,B)C (A,C)(B,C)(C,C)∵一共有9种可能的结果,它们是等可能的,其中符合要求的有3种.∴P (甲、乙两名同学观看同一节目)==.答:甲、乙两名同学观看同一节目的概率为:.22.“世界那么大,我想去看看”一句话红遍网络,随着国际货币基金组织正式宣布人民币2020年10月1日加入SDR(特别提款权),以后出国看世界更加方便.为了解某区6000名初中生对“人民币加入SDR”知晓的情况,某校数学兴趣小组随机抽取区内部分初中生进行问卷调查,将问卷调查的结果划分为“非常了解”、“比较了解”、“基本了解”、“不了解”四个等级,并将调查结果整理分析,得到下列图表:某区抽取学生对“人民币加入SDR”知晓情况频数分布表(1)本次问卷调查抽取的学生共有100人,其中“不了解”的学生有20人;(2)在扇形统计图中,学生对“人民币加入SDR”基本了解的区域的圆心角为72°;(3)根据抽样的结果,估计该区6000名初中生对“人民币加入SDR”了解的有多少人(了解是指“非常了解”、“比较了解”和“基本了解”)?【考点】扇形统计图;用样本估计总体;频数(率)分布表.【分析】(1)根据非常了解的有26人,所占的比例是26%,据此即可求得抽取的总人数,然后利用总人数减去其它组的人数即可求得“不了解”的学生数;(2)利用360°乘以对应的百分比即可求得;(3)利用总人数乘以对应的比例即可求得.【解答】解:(1)调查抽取的总人数是26÷26%=100(人),不了解的人数是100﹣26﹣34﹣20=20(人).故答案是:100,20;(2)基本了解的区域的圆心角是360°×=72°,故答案是:72;(3)该区6000名初中生对“人民币加入SDR”了解的有:6 000×80%=4 800(人).答:估计该校6 000名初中生中对“人民币加入SDR”了解的有4 800人.23.某商场将进货价为每只30元的台灯以每只40元售出,平均每月能售出600只.调查表明,这种台灯的售价每上涨1元,其销售量将减少10只.当这种台灯的售价定为多少元时,每个月的利润恰为10 000元?【考点】一元二次方程的应用.【分析】设这种台灯的售价为x元,根据一台的利润×总的台数=总的利润和这种台灯的售价每上涨1元,其销售量将减少10只,列出方程,再求解即可.【解答】解:设这种台灯的售价为x元,根据题意得:[600﹣10(x﹣40)](x﹣30)=10000,解得x1=50,x2=80,答:当这种台灯的售价定为50或80元时,每个月的利润恰为10000元.24.货车和轿车分别从甲、乙两地同时出发,沿同一公路相向而行.轿车出发2.4h后休息,直至与货车相遇后,以原速度继续行驶.设货车出发xh后,货车、轿车分别到达离甲地y1km 和y2km的地方,图中的线段OA、折线BCDE分别表示y1、y2与x之间的函数关系.(1)求点D的坐标,并解释点D的实际意义;(2)求线段DE所在直线的函数表达式;(3)当货车出发2或5h时,两车相距200km.【考点】一次函数的应用.【分析】(1)待定系数求出OA解析式,继而根据点D的纵坐标为300求得其横坐标,即可得答案;(2)根据休息前2.4小时行驶300km可得行驶后行驶300km也需要2.4h,即可得点E坐标,待定系数法即可求得DE所在直线解析式;(3)先求出BC所在直线解析式,再根据①轿车休息前与货车相距200km,②轿车休息后与货车相距200km,分别列出方程求解可得.【解答】解:(1)设OA所在直线解析式为y=mx,将x=8、y=600代入,求得m=75,∴OA所在直线解析式为y=75x,令y=300得:75x=300,解得:x=4,∴点D 坐标为(4,300 ),其实际意义为:点D是指货车出发4h后,与轿车在距离A地300 km处相遇.(2)由图象知,轿车在休息前2.4小时行驶300km,∴根据题意,行驶后300km需2.4h,故点E 坐标(6.4,0 ).设DE所在直线的函数表达式为y=kx+b,将点D (4,300 ),E ( 6.4,0)代入y=kx+b得:,解得,∴DE所在直线的函数表达式为y=﹣125x+800.(3)设BC段函数解析式为:y=px+q,将点B(0,600)、C(2.4,300)代入,得:,解得:y=﹣125x+600,①当轿车休息前与货车相距200km时,有:﹣125x+600﹣75x=200,解得:x=2;②当轿车休息后与货车相距200km时,有:75x﹣(﹣125x+800)=200,解得:x=5;故答案为:2或5.25.数学活动课上,小君在平面直角坐标系中对二次函数图象的平移进行了研究.图①是二次函数y=(x﹣a)2+(a为常数)当a=﹣1、0、1、2时的图象.当a取不同值时,其图象构成一个“抛物线簇”.小君发现这些二次函数图象的顶点竟然在同一条直线上!(1)小君在图①中发现的“抛物线簇”的顶点所在直线的函数表达式为y=x;(2)如图②,当a=0时,二次函数图象上有一点P(2,4).将此二次函数图象沿着(1)中发现的直线平移,记二次函数图象的顶点O与点P的对应点分别为O1、P1.若点P1到x 轴的距离为5,求平移后二次函数图象所对应的函数表达式.【考点】二次函数图象与几何变换.【分析】(1)根据题意得出抛物线的顶点坐标,根据待定系数法即可求得;(2)根据平移的规律得出点O1的坐标为(3,1)或(﹣27,﹣9),从而求得解析式.【解答】解:(1)∵当a=﹣1时,抛物线的顶点为(﹣1,﹣),当a=0时,抛物线的顶点为(0,0),∴设直线为y=kx,代入(﹣1,﹣)得,﹣=﹣k,解得k=,∴“抛物线簇”的顶点所在直线的函数表达式为y=x,故答案为y=x.(2)由题意得:点P1D的纵坐标为5或﹣5,∴抛物线沿着直线向上平移了1个单位或向下平移了9个单位,∴此时点O1的纵坐标为1或﹣9,代入直线y=x求得横坐标为3或﹣27,∴点O1的坐标为(3,1)或(﹣27,﹣9),∴平移后的二次函数的表达式为y=(x﹣3)2+1或y=(x+27)2﹣9.26.如图,直线AB交⊙O于C、D两点,CE是⊙O的直径,CF平分∠ACE交⊙O于点F,连接EF,过点F作FG∥ED交AB于点G.(1)求证:直线FG是⊙O的切线;(2)若FG=4,⊙O的半径为5,求四边形FGDE的面积.【考点】切线的判定.【分析】(1)利用角平分线的性质以及等腰三角形的性质得出∠OFC=∠FCG,进而得出∠GFC+∠OFC=90°,即可得出答案;(2)首先得出四边形FGDH是矩形,进而利用勾股定理得出HO的长,进而得出答案.【解答】(1)证明:连接FO,∵OF=OC,∴∠OFC=∠OCF.∵CF平分∠ACE,∴∠FCG=∠FCE.∴∠OFC=∠FCG.∵CE是⊙O的直径,∴∠EDG=90°,又∵FG∥ED,∴∠FGC=180°﹣∠EDG=90°,∴∠GFC+∠FCG=90°∴∠GFC+∠OFC=90°,即∠GFO=90°,∴OF⊥GF,又∵OF是⊙O半径,∴FG与⊙O相切.(2)解:延长FO,与ED交于点H,由(1)可知∠HFG=∠FGD=∠GDH=90°,∴四边形FGDH是矩形.∴FH⊥ED,∴HE=HD.又∵四边形FGDH是矩形,FG=HD,∴HE=FG=4.∴ED=8.∵在Rt△OHE中,∠OHE=90°,∴OH==3.∴FH=FO+OH=5+3=8.=(FG+ED)•FH=×(4+8)×8=48.S四边形FGDH27.问题提出平面上,若点P与A、B、C三点中的任意两点均构成等腰三角形,则称点P是A、B、C 三点的巧妙点.若A、B、C三点构成三角形,也称点P是△ABC的巧妙点.初步思考(1)如图①,在等边△ABC的内部和外部各作一个△ABC的巧妙点.(尺规作图,不写作法,保留作图痕迹)(2)如图②,在△ABC中,AB=AC,∠BAC=36°,点D、E是△ABC的两个巧妙点,其中AD=AB,AE=AC,BD=BC=CE,连接DE,分别交AB、AC于点M、N.求证:DA2=DB•DE.深入研究(3)在△ABC中,AB=AC,若存在一点P,使PB=BA,PA=PC.点P可能为△ABC的巧妙点吗?若可能,请画出示意图,并直接写出∠BAC的度数;若不可能,请说明理由.【考点】三角形综合题.【分析】(1)根据“巧妙点”的定义利用:点P在三角形的内部时,点P到△ABC的三个顶点的距离相等,所以点P是三角形的外心;点P在三角形的外部时,每条边的垂直平分线上的点只要能够使顶点这条边的两端点连接而成的三角形是等腰三角形即可;(2)先证明△ADB≌△ABC,△ACE≌△ABC,得到相等的角,再证明∠BMD=∠ABD,得到DB=DM.最后证明△DAM∽△DEA,得到=,即DA2=DM•DE,由DM=DB,所以DA2=DB•DE.(3)在△ABC中,AB=AC,若存在一点P,使PB=BA,PA=PC.点P能为△ABC的巧妙点,分别画出图形即可解答.【解答】解:(1)如图①;(2)∵AB=AC,∠BAC=36°,∴∠ABC=∠ACB=72°,在△ADB和△ABC中∴△ADB≌△ABC,同理:△ACE≌△ABC.∴∠BAD=∠BAC=∠CAE=36°,∠ADB=∠ABD=∠ABC=72°,∴∠DAE=∠BAD+∠BAC+∠CAE=108°,∵AD=AB=AC=AE,∴∠ADE=∠AED=36°=∠BAD,∴∠BDM=∠BDA﹣∠MDA=36°,∠BMD=∠ADM+∠DAM=72°=∠ABD,∴DB=DM.∵∠DBM=∠ABD,∠AED=∠BAD,∴△DAM∽△DEA,∴=,∴DA2=DM•DE,∵DM=DB,∴DA2=DB•DE.(3)第一种如图①或图②(只需画一个即可),∠BAC=60°.第二种如图③,∠BAC=36°;第三种如图④,∠BAC=108°;第四种如图⑤,∠BAC=120°.以上共四种:60°、36°、108°、120°.2020年7月21日。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年中考数学一模试题(及答案) 一、选择题1.如图所示,已知A(12,y1),B(2,y2)为反比例函数1yx图像上的两点,动点P(x,0)在x正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是()A.(12,0)B.(1,0)C.(32,0)D.(52,0)2.如图,下列四种标志中,既是轴对称图形又是中心对称图形的为()A.B.C.D.3.如图,在平面直角坐标中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为13,点A,B,E在x轴上,若正方形BEFG的边长为12,则C点坐标为()A.(6,4)B.(6,2)C.(4,4)D.(8,4)4.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于()A.108°B.90°C.72°D.60°5.-2的相反数是()A.2B.12C.-12D.不存在6.如图,直线l1∥l2,将一直角三角尺按如图所示放置,使得直角顶点在直线l1上,两直角边分别与直线l1、l2相交形成锐角∠1、∠2且∠1=25°,则∠2的度数为()A .25°B .75°C .65°D .55°7.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是( )A .B .C .D .8.下列计算正确的是( )A .a 2•a=a 2B .a 6÷a 2=a 3C .a 2b ﹣2ba 2=﹣a 2bD .(﹣32a )3=﹣398a9.如图,O 为坐标原点,菱形OABC 的顶点A 的坐标为(34)-,,顶点C 在x 轴的负半轴上,函数(0)k y x x=<的图象经过顶点B ,则k 的值为( )A .12-B .27-C .32-D .36-10.现定义一种变换:对于一个由有限个数组成的序列S 0,将其中的每个数换成该数在S 0中出现的次数,可得到一个新序列S 1,例如序列S 0:(4,2,3,4,2),通过变换可生成新序列S 1:(2,2,1,2,2),若S 0可以为任意序列,则下面的序列可作为S 1的是( )A .(1,2,1,2,2)B .(2,2,2,3,3)C .(1,1,2,2,3)D .(1,2,1,1,2)11.某公司计划新建一个容积V(m 3)一定的长方体污水处理池,池的底面积S(m 2)与其深度h (m )之间的函数关系式为()0S V h h=≠,这个函数的图象大致是( ) A . B .C .D .12.如图,已知⊙O的半径是2,点A、B、C在⊙O上,若四边形OABC为菱形,则图中阴影部分面积为()A.23π﹣23B.13π﹣3C.43π﹣23D.43π﹣3二、填空题13.关于x的一元二次方程2310ax x--=的两个不相等的实数根都在-1和0之间(不包括-1和0),则a的取值范围是___________14.如图,添加一个条件:,使△ADE∽△ACB,(写出一个即可)15.不等式组3241112x xxx≤-⎧⎪⎨--<+⎪⎩的整数解是x=.16.如图,是将菱形ABCD以点O为中心按顺时针方向分别旋转90°,180°,270°后形成的图形.若∠BAD=60°,AB=2,则图中阴影部分的面积为.17.如图,边长为2的正方形ABCD 的顶点A ,B 在x 轴正半轴上,反比例函数k y x =在第一象限的图象经过点D ,交BC 于E ,若点E 是BC 的中点,则OD 的长为_____.18.已知关于x 的一元二次方程2220ax x c ++-=有两个相等的实数根,则1c a+的值等于_______. 19.如图,反比例函数y=k x的图象经过▱ABCD 对角线的交点P ,已知点A ,C ,D 在坐标轴上,BD ⊥DC ,▱ABCD 的面积为6,则k=_____.20.对于有理数a 、b ,定义一种新运算,规定a ☆b =a 2﹣|b|,则2☆(﹣3)=_____.三、解答题21.荆门市是著名的“鱼米之乡”.某水产经销商在荆门市长湖养殖场批发购进草鱼和乌鱼(俗称黑鱼)共75千克,且乌鱼的进货量大于40千克.已知草鱼的批发单价为8元/千克,乌鱼的批发单价与进货量的函数关系如图所示.(1)请直接写出批发购进乌鱼所需总金额y (元)与进货量x (千克)之间的函数关系式;(2)若经销商将购进的这批鱼当日零售,草鱼和乌鱼分别可卖出89%、95%,要使总零售量不低于进货量的93%,问该经销商应怎样安排进货,才能使进货费用最低?最低费用是多少?22.“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?(2)将两幅不完整的图补充完整;(3)若居民区有8000人,请估计爱吃D粽的人数;(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.23.为培养学生良好学习习惯,某学校计划举行一次“整理错题集”的展示活动,对该校部分学生“整理错题集”的情况进行了一次抽样调查,根据收集的数据绘制了下面不完整的统计图表.整理情况频数频率非常好0.21较好700.35一般m不好36请根据图表中提供的信息,解答下列问题:(1)本次抽样共调查了名学生;(2)m=;(3)该校有1500名学生,估计该校学生整理错题集情况“非常好”和“较好”的学生一共约多少名?(4)某学习小组4名学生的错题集中,有2本“非常好”(记为A1、A2),1本“较好”(记为B),1本“一般”(记为C),这些错题集封面无姓名,而且形状、大小、颜色等外表特征完全相同,从中抽取一本,不放回,从余下的3本错题集中再抽取一本,请用“列表法”或“画树形图”的方法求出两次抽到的错题集都是“非常好”的概率.24.解不等式组3415122x xxx≥-⎧⎪⎨--⎪⎩>,并把它的解集在数轴上表示出来25.如图,一艘巡逻艇航行至海面B处时,得知正北方向上距B处20海里的C处有一渔船发生故障,就立即指挥港口A处的救援艇前往C处营救.已知C处位于A处的北偏东45°的方向上,港口A位于B的北偏西30°的方向上.求A、C之间的距离.(结果精确到0.1海里,参考数据2≈1.41,3≈1.73)【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】求出AB的坐标,设直线AB的解析式是y=kx+b,把A、B的坐标代入求出直线AB的解析式,根据三角形的三边关系定理得出在△ABP中,|AP-BP|<AB,延长AB交x轴于P′,当P在P′点时,PA-PB=AB,此时线段AP与线段BP之差达到最大,求出直线AB于x轴的交点坐标即可.【详解】∵把A(12,y1),B(2,y2)代入反比例函数y=1x得:y1=2,y2=12,∴A(12,2),B(2,12),∵在△ABP中,由三角形的三边关系定理得:|AP-BP|<AB,∴延长AB交x轴于P′,当P在P′点时,PA-PB=AB,即此时线段AP与线段BP之差达到最大,设直线AB的解析式是y=kx+b,把A、B的坐标代入得:2122k b ⎪⎪⎨⎪+⎪⎩=, 解得:k=-1,b=52, ∴直线AB 的解析式是y=-x+52, 当y=0时,x=52, 即P (52,0), 故选D .【点睛】本题考查了三角形的三边关系定理和用待定系数法求一次函数的解析式的应用,解此题的关键是确定P 点的位置,题目比较好,但有一定的难度.2.B解析:B【解析】解:A .不是轴对称图形,是中心对称图形,不符合题意;B .既是轴对称图形,也是中心对称图形,符合题意;C .不是轴对称图形,是中心对称图形,不符合题意;D .不是轴对称图形,也不是中心对称图形,不符合题意.故选B .3.A解析:A【解析】【分析】直接利用位似图形的性质结合相似比得出AD 的长,进而得出△OAD ∽△OBG ,进而得出AO 的长,即可得出答案.【详解】∵正方形ABCD 与正方形BEFG 是以原点O 为位似中心的位似图形,且相似比为13 , ∴13AD BG =, ∵BG =12,∴AD =BC =4,∵AD ∥BG ,∴△OAD ∽△OBG ,3 OB∴0A1 4OA3= +解得:OA=2,∴OB=6,∴C点坐标为:(6,4),故选A.【点睛】此题主要考查了位似变换以及相似三角形的判定与性质,正确得出AO的长是解题关键.4.C解析:C【解析】【分析】首先设此多边形为n边形,根据题意得:180(n-2)=540,即可求得n=5,再由多边形的外角和等于360°,即可求得答案.【详解】解:设此多边形为n边形,根据题意得:180(n-2)=540,解得:n=5,∴这个正多边形的每一个外角等于:3605︒=72°.故选C.【点睛】此题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:(n-2)•180°,外角和等于360°.5.A解析:A【解析】试题分析:根据只有符号不同的两数互为相反数,可知-2的相反数为2.故选:A.点睛:此题考查了相反数的意义,解题关键是明确相反数的概念,只有符号不同的两数互为相反数,可直接求解.6.C解析:C【解析】【分析】依据∠1=25°,∠BAC=90°,即可得到∠3=65°,再根据平行线的性质,即可得到∠2=∠3=65°.【详解】如图,∵∠1=25°,∠BAC=90°,∴∠3=180°-90°-25°=65°,∵l1∥l2,∴∠2=∠3=65°,故选C.【点睛】本题考查的是平行线的性质,运用两直线平行,同位角相等是解答此题的关键.7.B解析:B【解析】试题分析:从左面看易得第一层有2个正方形,第二层最左边有一个正方形.故选B.考点:简单组合体的三视图.8.C解析:C【解析】【分析】根据同底数幂的乘法运算可判断A;根据同底数幂的除法运算可判断B;根据合并同类项可判断选项C;根据分式的乘方可判断选项D.【详解】A、原式=a3,不符合题意;B、原式=a4,不符合题意;C、原式=-a2b,符合题意;D、原式=-278a,不符合题意,故选C.【点睛】此题考查了分式的乘除法,合并同类项,以及同底数幂的乘除法,熟练掌握运算法则是解本题的关键.9.C解析:C【解析】【分析】【详解】∵A (﹣3,4),∴,∵四边形OABC 是菱形,∴AO=CB=OC=AB=5,则点B 的横坐标为﹣3﹣5=﹣8,故B 的坐标为:(﹣8,4),将点B 的坐标代入k y x=得,4=8k -,解得:k=﹣32.故选C . 考点:菱形的性质;反比例函数图象上点的坐标特征. 10.D解析:D【解析】【分析】根据已知中有限个数组成的序列S0,将其中的每个数换成该数在S0中出现的次数,可得到一个新序列S1,可得S1中2的个数应为偶数个,由此可排除A ,B 答案,而3的个数应为3个,由此可排除C ,进而得到答案.【详解】解:由已知中序列S 0,将其中的每个数换成该数在S 0中出现的次数,可得到一个新序列S 1,A 、2有三个,即序列S 0:该位置的三个数相等,按照变换规则,应为三个3,故A 不满足条件;B 、2有三个,即序列S 0:该位置的三个数相等,按照变换规则,应为三个3,故B 不满足条件;C 、3有一个,即序列S 0:该位置的数出现了三次,按照变换规则,应为三个3,故C 不满足条件;D 、2有两个,即序列S 0:该位置的两个数相等,1有三个,即这三个位置的数互不相等,满足条件,故选D .【点睛】本题考查规律型:数字的变化类.11.C解析:C【解析】【分析】【详解】解:由题意可知:00v h >>, , ∴ (0)v s h h=≠中,当v 的值一定时,s 是h 的反比例函数, ∴函数 (0)v s h h =≠的图象当00v h >>,时是:“双曲线”在第一象限的分支.故选C.12.C解析:C【解析】分析:连接OB和AC交于点D,根据菱形及直角三角形的性质先求出AC的长及∠AOC 的度数,然后求出菱形ABCO及扇形AOC的面积,则由S菱形ABCO﹣S扇形AOC可得答案.详解:连接OB和AC交于点D,如图所示:∵圆的半径为2,∴OB=OA=OC=2,又四边形OABC是菱形,∴OB⊥AC,OD=12OB=1,在Rt△COD中利用勾股定理可知:22213-=,3∵sin∠COD=3 CDOC=∴∠COD=60°,∠AOC=2∠COD=120°,∴S菱形ABCO=12B×AC=12×2×33S扇形AOC=2120243603ππ⨯⨯=,则图中阴影部分面积为S菱形ABCO﹣S扇形AOC=423 3π-故选C.点睛:本题考查扇形面积的计算及菱形的性质,解题关键是熟练掌握菱形的面积=12 a•b(a、b是两条对角线的长度);扇形的面积=2360n rπ,有一定的难度.二、填空题13.<a<-2【解析】【分析】【详解】解:∵关于x的一元二次方程ax2-3x-1=0的两个不相等的实数根∴△=(-3)2-4×a×(-1)>0解得:a>−设f (x)=ax2-3x-1如图∵实数根都在-1解析:94-<a<-2【解析】【分析】【详解】解:∵关于x的一元二次方程ax2-3x-1=0的两个不相等的实数根∴△=(-3)2-4×a×(-1)>0,解得:a>−9 4设f(x)=ax2-3x-1,如图,∵实数根都在-1和0之间,∴-1<−32a-<0,∴a<−32,且有f(-1)<0,f(0)<0,即f(-1)=a×(-1)2-3×(-1)-1<0,f(0)=-1<0,解得:a<-2,∴−94<a<-2,故答案为−94<a<-2.14.∠ADE=∠ACB(答案不唯一)【解析】【分析】【详解】相似三角形的判定有三种方法:①三边法:三组对应边的比相等的两个三角形相似;②两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似;解析:∠ADE=∠ACB(答案不唯一)【解析】【分析】【详解】相似三角形的判定有三种方法:①三边法:三组对应边的比相等的两个三角形相似;②两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似;③两角法:有两组角对应相等的两个三角形相似.由此可得出可添加的条件:由题意得,∠A=∠A(公共角),则添加:∠ADE=∠ACB或∠AED=∠ABC,利用两角法可判定△ADE∽△ACB;添加:AD AEAC AB=,利用两边及其夹角法可判定△ADE∽△ACB.15.﹣4【解析】【分析】先求出不等式组的解集再得出不等式组的整数解即可【详解】解:∵解不等式①得:x≤﹣4解不等式②得:x>﹣5∴不等式组的解集为﹣5<x≤﹣4∴不等式组的整数解为x=﹣4故答案为﹣4【解析:﹣4.【解析】【分析】先求出不等式组的解集,再得出不等式组的整数解即可.【详解】解:3241112x xxx≤-⎧⎪⎨--<+⎪⎩①②,∵解不等式①得:x≤﹣4,解不等式②得:x>﹣5,∴不等式组的解集为﹣5<x≤﹣4,∴不等式组的整数解为x=﹣4,故答案为﹣4.【点睛】本题考查了解一元一次不等式组和不等式组的整数解,能根据不等式的性质求出不等式组的解集是解此题的关键.16.12﹣4【解析】【分析】【详解】试题分析:如图所示:连接ACBD交于点E连接DFFMMNDN∵将菱形ABCD以点O为中心按顺时针方向分别旋转90°180°270°后形成的图形∠BAD=60°AB=2解析:12﹣【解析】【分析】【详解】试题分析:如图所示:连接AC,BD交于点E,连接DF,FM,MN,DN,∵将菱形ABCD以点O为中心按顺时针方向分别旋转90°,180°,270°后形成的图形,∠BAD=60°,AB=2,∴AC⊥BD,四边形DNMF是正方形,∠AOC=90°,BD=2,∴∠AOE=45°,ED=1,∴﹣1,∴S正方形DNMF=21)×21)×12=8﹣,S△ADF=1 2×AD×AFsin30°=1,∴则图中阴影部分的面积为:4S△ADF+S正方形DNMF=4+8﹣43=12﹣43.故答案为12﹣43.考点:1、旋转的性质;2、菱形的性质.17.【解析】【分析】设D(x2)则E(x+21)由反比例函数经过点DE列出关于x的方程求得x的值即可得出答案【详解】解:设D(x2)则E(x+21)∵反比例函数在第一象限的图象经过点D点E∴2x=x+2解析:12xx【解析】【分析】设D(x,2)则E(x+2,1),由反比例函数经过点D、E列出关于x的方程,求得x的值即可得出答案.【详解】解:设D(x,2)则E(x+2,1),∵反比例函数kyx=在第一象限的图象经过点D、点E,∴2x=x+2,解得x=2,∴D(2,2),∴OA=AD=2,∴2222,OD OA OD=+=故答案为:2 2.【点睛】本题主要考查反比例函数图象上点的坐标特征,解题的关键是根据题意表示出点D、E的坐标及反比例函数图象上点的横纵坐标乘积都等于反比例系数k.18.【解析】【分析】根据关于x的一元二次方程ax2+2x+2﹣c=0有两个相等的实数根结合根的判别式公式得到关于a和c的等式整理后即可得到的答案【详解】解:根据题意得:△=4﹣4a(2﹣c)=0整理得:解析:【解析】【分析】根据“关于x的一元二次方程ax2+2x+2﹣c=0有两个相等的实数根”,结合根的判别式公式,得到关于a和c的等式,整理后即可得到的答案.【详解】解:根据题意得:△=4﹣4a(2﹣c)=0,整理得:4ac﹣8a=﹣4,4a(c﹣2)=﹣4,∵方程ax2+2x+2﹣c=0是一元二次方程,∴a≠0,等式两边同时除以4a得:12ca -=-,则12ca+=,故答案为:2.【点睛】本题考查了根的判别式,正确掌握根的判别式公式是解题的关键.19.-3【解析】分析:由平行四边形面积转化为矩形BDOA面积在得到矩形PDOE面积应用反比例函数比例系数k的意义即可详解:过点P做PE⊥y轴于点E∵四边形ABCD为平行四边形∴AB=CD又∵BD⊥x轴∴解析:-3【解析】分析:由平行四边形面积转化为矩形BDOA面积,在得到矩形PDOE面积,应用反比例函数比例系数k的意义即可.详解:过点P做PE⊥y轴于点E,∵四边形ABCD为平行四边形∴AB=CD又∵BD⊥x轴∴ABDO为矩形∴AB=DO∴S矩形ABDO=S▱ABCD=6∵P为对角线交点,PE⊥y轴∴四边形PDOE为矩形面积为3即DO•EO=3∴设P点坐标为(x,y)k=xy=﹣3故答案为:﹣3点睛:本题考查了反比例函数比例系数k的几何意义以及平行四边形的性质.20.1【解析】解:2☆(﹣3)=22﹣|﹣3|=4﹣3=1故答案为1点睛:此题考查有理数的混合运算掌握规定的运算方法是解决问题的关键解析:1【解析】解:2☆(﹣3)=22﹣|﹣3|=4﹣3=1.故答案为1.点睛:此题考查有理数的混合运算,掌握规定的运算方法是解决问题的关键.三、解答题21.(1)y=26(2040)24(40)x xx x⎧⎨>⎩剟;(2)该经销商应购进草鱼25千克,乌鱼50千克,才能使进货费用最低,最低费用为1400元.【解析】【分析】【详解】(1)批发购进乌鱼所需总金额y(元)与进货量x(千克)之间的函数关系式y=26(2040) 24(40)x xx x⎧⎨>⎩剟;(2)设该经销商购进乌鱼x千克,则购进草鱼(75﹣x)千克,所需进货费用为w元.由题意得:4089%(75)95%93%75 xx x>⎧⎨⨯-+⨯⎩…解得x≥50.由题意得w=8(75﹣x)+24x=16x+600.∵16>0,∴w的值随x的增大而增大.∴当x=50时,75﹣x=25,W最小=1400(元).答:该经销商应购进草鱼25千克,乌鱼50千克,才能使进货费用最低,最低费用为1400元.22.(1)600(2)见解析(3)3200(4)【解析】(1)60÷10%=600(人).答:本次参加抽样调查的居民有600人.(2分)(2)如图;…(5分)(3)8000×40%=3200(人).答:该居民区有8000人,估计爱吃D粽的人有3200人.…(7分)(4)如图;(列表方法略,参照给分).…(8分)P(C粽)==.答:他第二个吃到的恰好是C粽的概率是.…(10分)23.(1)200;(2)52;(3)840人;(4)1 6【解析】分析:(1)用较好的频数除以较好的频率.即可求出本次抽样调查的总人数;(2)用总人数乘以非常好的频率,求出非常好的频数,再用总人数减去其它频数即可求出m的值;(3)利用总人数乘以对应的频率即可;(4)利用树状图方法,利用概率公式即可求解.详解:(1)本次抽样共调查的人数是:70÷0.35=200(人);(2)非常好的频数是:200×0.21=42(人),一般的频数是:m=200﹣42﹣70﹣36=52(人),(3)该校学生整理错题集情况“非常好”和“较好”的学生一共约有:1500×(0.21+0.35)=840(人);(4)根据题意画图如下:∵所有可能出现的结果共12种情况,并且每种情况出现的可能性相等,其中两次抽到的错题集都是“非常好”的情况有2种,∴两次抽到的错题集都是“非常好”的概率是21= 126.点睛:此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.24.-1<x≤1【解析】【分析】分别解两个不等式,然后根据数轴或“都大取大,都小取小,大小小大取中间,大大小小无解了”求解不等式组.【详解】解:341 {5122x xxx≥--->①②解不等式①可得x≤1,解不等式②可得x>-1在数轴上表示解集为:所以不等式组的解集为:-1<x≤1.【点睛】本题考查了解不等式组,熟练掌握计算法则是解题关键.25.A、C之间的距离为10.3海里.【解析】【分析】【详解】解:作AD⊥BC,垂足为D,由题意得,∠ACD=45°,∠ABD=30°.设CD=x,在Rt△ACD中,可得AD=x,在Rt△ABD中,可得BD3x.又∵BC=20,∴x3x=20,解得:x =31).∴AC2231) 1.4110(1.731)10.29310.3x=≈⨯⨯-=≈ (海里).答:A、C之间的距离为10.3海里.。