1.1.1负数的引入
1.1正数和负数(1)--上课用

有限小数 ①____________( 如 1.8);
· 无限循环小数 ②__________________(如 0.3).
4.甲冷库的温度是-12 ℃,乙冷库的温度比甲冷库低5 ℃,
则乙冷库的温度是________.
2.某年度某国家有外债10亿美元,有内债10亿美元,运用数学知 识来解释说明,下列说法合理的是( ) A.如果记外债为-10亿美元,则内债为+10亿美元 B.这个国家的内债,外债互相抵消 C.这个国家欠债共20亿美元 D.这个国家没有钱
C.“增加2 Kg”与“减少-6 Kg”
D.“你比我高3 cm”与“我比你胖5 kg” 2.规定向东行驶为正,则向东行驶-100 m的意义___________. 3.长江某水文检测站,正常水位是10 m,规定高于正常水位 记为正,低于正常水位记为负.记录表上有3次记录分别为+1.5,0,
-1.6,这三次记录表示的实际水位分别是
+3,+2,+0.5,…就是3,2,0.5,….一个数前面
的“+”、“-”号叫做它的符号. 思考:0是正数么?是负数么? 结论:0既不是正数,也不是负数,是正数,负数的分界点. 备注:引入负数以后,0的意义不仅仅表示“没有”,还可以表示
一个确定的量。
二.讲授新课(1)——正数负数的定义
题型一:判断所给的数是正数还是负数
[备注] 1.具有相反意义的两个量通常分别由三部分组成: (1) 一组反义词;(2)数据;(3)单位. 2.具有相反意义的两个量,若规定其中一个量为正数,则另一 个量就是负数.
三.讲授新课(2)——正数负数的应用
1.用正数和负数表示具有相反意义的量
练习1.下列叙述中,表示相反意义的量的是( A.“向东走8 m”与“向北走6 m” B.“盈利500元”与“亏损160元” )
正数和负数教学设计与反思

《正数和负数》第一课时教案教学内容:人教版七年级上册第一章有理数 1.1 正数和负数教学目标:1在熟悉的生活情景中,能用正数和负数表示生活中具有相反意义的量、知道负数的写法和读法,会用负数表示一些日常生活中的量。
2使学生经历数学化,符号化的过程,体会负数产生的必要性。
3感受正、负数和生活的密切联系,享受创造性学习的乐趣.4教学重点:体会负数的意义,学会用正、负数表示日常生活中具有相反意义的量。
教学难点:体会负数的意义,通过描述性定义认识正数、负数和“0”。
教学过程:一、感受相反方向的数量,经历负数产生的过程。
1、回忆小学学过那些数:自然数,分数出示信息:看数的产生过程,现实中负数学习的必要。
2、引入负数的概念?3、总结正负数(1)这些数很特别,都带上了符号,它们是一种“新数”。
-9、-4.5等都叫负数; +7、+988等都叫正数。
你会读吗?请你读给大家听。
注意“-”叫负号,“+”叫正号。
(2)读给你的同伴听。
(3)把你新认识的负数再写两个,读一读。
下面让我们走进正数和负数的世界,进一步了解它们。
(板书课题)二、借助实际生活情境的直观,丰富对正负数的认识。
1、负数有什么用?用正数或负数表示下列数量。
(1向东走200米,用+200米表示;那么向西走200米元用表示。
2.说说实际问题中负数的确定(1.)表示海拔高度(2.)解释温度中正负数的含义(3)做练习三3、怎样理解具有相反意义的量三、理解01、0既不是正数也不是负数。
0是正负数的分界。
2、0只表示没有吗?1).空罐中的金币数量;2).温度中的0℃;3).海平面的高度;4).标准水位;5).身高比较的基准;6.)正数和负数的界点;3、总结0既不是正数,也不是负数;0是正数负数的分界。
0是整数,0是偶数,0是最小的自然数。
四、探究活动(出示课件):1.探究活动一:东、西为两个相反方向,如果- 4米表示一个物体向西运动4米,那么+2米表示什么?物体原地不动记为什么?若将28计为0,则可将27计为-1,试猜想若将27计为0,28应计为。
1.1正数与负数(课件 教案 练习)

归纳小结
回顾本节课所学内容,并请同学们回答以下问题:
1. 什么是正数?什么是负数? 2. 你是如何理解数0的?
3. 你能举例说明引入负数的好处吗?
作业:教科书第5页习题1.1 第1,2,4(第3题作为下节课
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
7 2017 3 . 14 , , 2018 , 2017 , 1010100 , 2 . 13113 8 2018
目标检测
2.向东行进-50 m表示的意义是 (D ). (A)向东行进50 m (C)向北行进50 m (B)向南行进50 m (D)向西行进50 m
试一试: 两人一组,一同学任意说 另一同学用正负数来表示
3 、根据需要,有时在正数前面也加上“+”号,例如,+3,+2,+0.5,…就是
数前面的“+”、“-”号叫做它的符号.“+”号读作“正”,“-”号读作“ 说明: 0既不是正数,也不是负数.
正数
例题讲解
例1 一个月内,小明体重增加2 kg,小华重减少1 kg,小强体重无变化,写出
个月的体重增长值;
3、如果水位升高3m时水位变化记作+3m,那么水位下降 3m时水位变化记作 记作 m。 m,水位不升不降时水位变化就
4、月球表面的白天平均温度零上126℃,记作 零下150℃,记作 ℃。
℃。夜间平均温度为
我来练习
5、对于“0”的说法正确的有 ( ) ①0是正数与负数的分界; ②0℃是一个确定的温度; ③0是正数;④0是自然数;⑤不存在既不是正数也不是负数的数 6、如果零上28度记作280 ℃ ,那么零下5度记作 。 7、若上升10m记作10m,那么-3m表示 。 8、比海平面低20m的地方,它的高度记作海拔 。 9、在-3,-1,0,-,2011各数中,是正数的有( )。 A、0个 B、1个 C、2个 D、3个 10、下列既不是正数又不是负数的是( )。 A、-1 B、+3 C、0.12 D、0 11、飞机上升-30米,实际上就是( )。 A、上升30米 B、下降30米 C、下降-30米 D、先上升30米,再下 12、A地海拔高度是-40m,B地比A地高20m ,C地又比B地高30m,试 数表示B、C两地的海拔高度。
七年级数学第1章有理数1.1正数和负数第1课时正数和负数教案沪科版

第1章有理数1.1 正数和负数第1课时正数和负数【知识与技能】1。
通过实例,感受引入负数的必要性,了解正负数的实际意义.2.会判断一个数是正数还是负数;会用正负数表示互为相反意义的量。
【过程与方法】从一个学生熟悉的生活实例引入正负数的概念,并通过各种师生活动加深学生对“相反意义的量”的理解;使学生会用正负数表示生活中具有相反意义的量,进一步体会数学与生活的密切联系。
【情感态度】从学生的实际生活中提出问题,既体现知识的学习过程,又体现知识的应用过程,同时还有利于激发学生的学习兴趣,培养学生严谨的思维。
【教学重点】重点是理解正负数、0表示的量的意义。
【教学难点】难点是正、负数的意义。
一、情境导入,初步认识【情境1】我先向同学们作个自我介绍,我姓××,大家可以叫我××老师,身高××米,体重××千克,今年××岁,教龄是××年,我将和同学们一起度过三年的初中学习生活。
老师刚才的介绍中出现了一些数,它们是些什么数呢?人们由记数、排序,产生了数1,2,3,…等整数;为了表示“没有"、“空位”引进了数0;测量和分配有时不能得到整数的结果,为此产生了分数和小数.所以数产生于人们实际生产和生活的需要.在生活中,仅有整数和分数够用了吗?【情境2】实物投影,并呈现问题:在《天气预报》中我们看到了哈尔滨、北京、上海三个城市某天的温度表示,如果没有播音员的解说,你能明白这些数的确切含义吗?【教学说明】学生独立思考后,小组讨论,教师注意引导学生发现生活中的数不够用了,从而引出负数.情境1中让学生发现数不够用了.情境2中让学生体验了负数的存在和意义。
【教学说明】通过现实情景再现,让学生体会到负数存在的意义,培养学生良好的数学应用意识。
通过前面的情景引入,激发学生的探究欲望,并使学生获得大量的感性材料,为正确建立相反意义的量奠定基础,有趣的情境也能激发学生学习的兴趣.二、思考探究,获取新知1。
七年级上数学第一章1.1 正数和负数优质课教案

第一章有理数1.1 正数和负数教学目标课题 1.1 正数和负数授课人素养目标1.理解具有相反意义的量及正数、负数的意义.2.会用正数、负数表示具体情境中具有相反意义的量,体会数学知识与生活的密切联系,进一步增强符号意识,培养应用意识.3.理解0的意义,体会0在解决实际问题中的“基准”作用,初步培养抽象能力.教学重点1.能理解正数、负数的概念,会判断一个数是正数还是负数.2.会用正数、负数表示具体情境中具有相反意义的量.教学难点1.用正数、负数表示具有相反意义的量时描述向指定方向变化的情况.2.理解0的意义,体会0在解决实际问题中的“基准”作用.教学活动教学步骤师生活动活动一:创设情境,导入新课【情境导入】1.观察下面三幅图,这些自然数、分数以及小学时学过的小数是由生活实际的需要产生的,那么它们能否完全满足我们目前生产、生活的需要呢?2.思考教材P1引言中的三个问题.在这三个问题中,“零下3摄氏度”“亏损10万元”“减少0.7%”能够用上面的数表示吗?这说明了什么?【教学建议】引导学生通过观察三幅图,体会小学学过的几个数都是基于现实需要产生的,然后引导学生思考三个问题,提出疑问,使学生产生探索欲望.设计意图先通过图片形式让学生体会已学过的数的产生具有必然性与局限性,然后通过列举的三个问题为引入新知做准备.活动二:实践探究,获取新知探究点1 具有相反意义的量及正数、负数的认识Ⅰ.具有相反意义的量问题1结合下面图示,对于引言中的问题(1),我们如何用数区分“零上3摄氏度”和“零下3摄氏度”呢?观察图①,零上温度和零下温度是以0 ℃为分界点的具有相反意义的量.观察图②中的天气预报可以看出,零上3摄氏度用3 ℃表示,零下3摄氏度用-3 ℃表示.问题2类似地,对于引言中的问题(2)(3),应如何用【教学建议】这里要结合教材引言中的问题进行分析,其中第一个问题与生活实际密切相关,学生通过平时看天气预报已经对此有一定的了解,教师要结合实际情境进行说明.可在最后指出具有相反意义的量的一些特点.“属性相同”,也就是同类量,比如“盈利”与“亏损”是同类量,但“盈利”与“减少”就不是设计意图借助生活实例,引导学生理解具有相反意义的量,通过相应出现的数,进一步引入正数、负数的概念,并借此体会正数、负数的意义.数分别表示“盈利50万元”“亏损10万元”以及“增长7.8%”“减少0.7%”呢?如果用“50万元”表示盈利50万元,就可以用“-10万元”表示亏损10万元.如果用“7.8%”表示增长7.8%,就可以用“-0.7%”表示减少0.7%.问题3通过问题1,2,你认为具有相反意义的量有哪些特点?成对出现、属性相同(同类量)、意义相反.Ⅱ.正数、负数的认识问题1通过上面对“具有相反意义的量”的介绍,我们已经知道有-3,-10,-0.7%这样的数,对于这种类型的数,我们该如何进行定义?概念引入:问题2正数前面的“+”号和负数前面的“-”号是否都可以去掉?为什么?正数前面的“+”号可以去掉也可以不去掉,负数前面的“-”号不能去掉.因为正数就是大于0的,加不加“+”号都没有影响;但对负数而言,只有在正数前面加上“-”号才是负数,所以“-”号不能去掉.如果一个问题中出现具有相反意义的量,就可以用正数和负数分别表示它们.我们一起来看下面的例题.例1(教材P3例1)某校组织学生去劳动实践基地采摘橘子,并称重、封装.一箱橘子的标准质量为2.5 kg.如果用正数表示超过标准的质量,那么(1)比标准质量多65 g和比标准质量少30 g各怎么表示?(2)50 g,-27 g各表示什么意思?填空分析:(1)前面我们讲到“零上温度和零下温度是以0 ℃为分界点的具有相反意义的量”,那么本题中的分界点是标准质量2.5 kg.(2)题目中比标准质量多×× g 和比标准质量少×× g 是具有相反意义的量.解:(1)比标准质量多65 g用+65 g表示,比标准质量少30 g用-30 g表示.(2)50 g表示这箱橘子的质量比标准质量多50 g,-27 g表示这箱橘子的质量比标准质量少27 g.【对应训练】教材P3练习同类量;“意义相反”指变化的方向相反,不要与意义相近混淆(比如增长与增加就不构成具有相反意义的量).另外需注意:具有相反意义的量要求意义相反,但不要求数量相等.如盈利3`000元与亏损400元是具有相反意义的量.【教学建议】这里注意引导学生正确理解正数、负数的概念.注意前面有“-”号的数不一定是负数,比如-(-3)就不是负数,这涉及后面的知识,教师知道即可,如学生有疑问可适当解释,本课时不作要求. 【教学建议】例1可让学生回答下什么是“分界点”,什么是具有相反意义的量,便于加深理解.设计意图探究点20的意义正数和负数在实践中有着广泛的应用.如图,在表示某地的高度时,通常以海平面为基准,用0 m表示海平面的海拔.【教学建议】教师提醒学生注意,生活中有在用正数、负数表示具有相反意义的量的基础上,以海拔说明0的“基准”作用,丰富0的意义. 用正数表示高于海平面的海拔,用负数表示低于海平面的海拔,如图中用正数、负数分别表示世界最高峰的海拔和我国陆地最低处的海拔.问题1结合上面这个实际应用和上面所学知识,你认为0还只仅仅表示“没有”吗?0是正数与负数的分界.0 ℃是一个确定的温度,海拔0 m是一个确定的海拔.0已不只是表示“没有”.问题2(教材P4思考)如图①是地理中的分层设色地形图,图②是手机中的部分收支款账单,其中的正数和负数的意义分别是什么?你能再举一些用正数、负数表示具有相反意义的量的例子吗?图①中的正数表示A地高于海平面4 600 m,负数表示B地低于海平面100 m.图②中的正数表示收入15元,负数分别表示支出10元、支出30元.其他例子:比如叶宇同学向南走20 m记为+20 m,那么他向北走30 m可记为-30 m.例2(教材P4例2)(1)一个月内,李明体重增加1.2 kg,张华体重减少0.5 kg,刘伟体重无变化,写出他们这个月的体重增长值.(2)四种品牌的手机今年第二季度的销售量与第一季度相比,变化率如下:A品牌减少2%,B品牌增长4%,C品牌增长1%,D品牌减少3%.写出今年第二季度这些品牌的手机销售量的增长率.填空分析:第(1)小题要求写出“增长值”,所以,用正数表示体重增加量,用负数表示体重减少量.这样,直接翻译“体重减少1 kg”就是体重增长-1 kg.第(2)小题可以此类推.解:(1)这个月李明体重增长1.2 kg,张华体重增长-0.5 kg,刘伟体重增长0 kg.(2)四种品牌的手机今年第二季度销售量的增长率是:A品牌-2%,B品牌4%,C品牌1%,D品牌-3%.追问增长-2%是什么意思?什么情况下增长率是0?增长-2%就是减少2%.第二季度的手机销售量与第一季度相同时,增长率是0.【对应训练】些具有相反意义的量没有明确的分界,一般把某一个量规定为“0”,即基准,习惯上,超过基准的部分用正数表示,低于基准的部分用负数表示.【教学建议】这个问题2继续说明0作为正数、负数的“分界”,在解决实际问题中的“基准”作用.注意例子中地形图上的海拔一般不标单位,实际采用米作单位W.手机收付款的收支平衡可以用0表示.【教学建议】用正数、负数表示具有相反意义的量时,难点是描述向指定方向变化的情况,即:向指定方向变化用正数表示;向指定方向的相反方向变化用负数表示.这与学生的日常经验有一定的矛盾,需要一个“心理转换”:把“体重减少0.5 kg”,转换为“体重增加-0.5 kg”,需要对“负”与“正”的相对性有较好的理解.实际上,只要问题中包含具有相反意义的量,就可以用正数和负数分别表示,而哪个量用负数表示,可以视实际需要而定,教学时要注意引导.教材P5练习.活动三:知识升华,巩固提升例3(教材P5习题1.1第6题)某班七组同学分别测量同一座楼的高度,测得的数据(单位:m)分别是:79.4,80.6,80.8,79.1,80,79.6,80.5.这些数据的平均值是多少?以平均值为标准,用正数表示超出的部分,用负数表示不足的部分,它们对应的数分别是什么?解:平均值是(79.4+80.6+80.8+79.1+80+79.6+80.5)÷7=560÷7=80.即这些数据的平均值是80 m.它们对应的数分别是-0.6 m,0.6 m,0.8 m,-0.9 m,0 m,-0.4 m,0.5 m.【对应训练】1.体育锻炼标准规定:13岁男生每分钟做22个仰卧起坐为达标,超过标准的个数用正数表示,不足标准的个数用负数表示.八位同学的成绩分别记录为:+3,-1,+1,0,-2,+2,+4,-3.这八位同学中达标的有(B)A.4人B.5人C.6人D.8人2.某校七年级利用劳动实践课开展创意点心制作比赛活动.李龙制作了一盒精美点心(共计6枚),现在他把6枚点心称重(单位:g)后统计列表如下:第1枚第2枚第3枚第4枚第5枚第6枚68.4 g 71.3 g 70.7 g 68.6 g 69.1 g 72 g为了简化运算,李龙依据比赛的标准质量,把超出部分记为正,不足部分记为负,列出下表(数据不完整),请你把表格补充完整:第1枚第2枚第3枚第4枚第5枚第6枚-1.6 g +1.3 g +0.7 g -1.4 g -0.9 g +2 g解:补充表格如上所示.【教学建议】对于例题中求平均值,小学时已经学过,只要将各个数据相加求和再除以7即可,这个可由学生自主完成.难点主要在于以平均值为标准,用负数表示不足的部分.这里没学有理数的加减运算,可让学生用较大数减去较小数,然后根据具有相反意义的量的知识来表示.设计意图安排此例题和对应训练是想让学生体会以平均值为标准,用正数表示超出的部分,用负数表示不足的部分的方法.活动四:随堂训练,课堂总结【随堂训练】见《创优作业》“随堂小练”册子相应课时随堂训练.【课堂总结】师生一起回顾本节课所学主要内容,并请学生回答以下问题:1.什么是正数,什么是负数,0是什么数?2.怎么表示具有相反意义的量?3.0的意义是什么?【知识结构】【作业布置】1.教材P5习题1.1第1,2,3,4,5题.2.《创优作业》主体本部分相应课时训练.板书设计1.1 正数和负数1.具有相反意义的量:①“零上3摄氏度”与“零下3摄氏度”②“盈利50万元”与“亏损10万元”……2.正数和负数教学反思本节课通过学生身边熟悉的事物,让学生感受到负数的引入确实是实际生活的需要,数学与我们的生活密不可分.学生通过经历讨论、探索、交流、合作等过程获得新知,并能用所学的新知识来解决实际问题.这样教学更能激发学生学习数学的兴趣,提升学生的能力,促进学生的发展,使每个学生在教学中都能得到收获.解题大招一用正数、负数表示具有相反意义的量当题目中已明确“一种意义”的量对应的是正数(负数)时,我们就可以判断“与之具有相反意义”的量所对应的是负数(正数).如果没有明确哪种意义的量用正数表示,那么我们可以任选一种意义的量用正数表示,而另一种意义的量必须用负数表示.例1(1)在知识竞赛中,如果用-10分表示扣10分,那么加20分记为(C)A.+10分B.-10分C.+20分D.-20分(2)如果风车顺时针旋转66°,记作+66°,那么逆时针旋转78°,记作(A)A.-78°B.78°C.-12°D.12°(3)我国古代数学名著《九章算术》中对正数和负数的概念注有“今两算得失相反,要令正负以名之”.如:库管员把仓库运进30 t粮食记为“+30”,则“-30”表示运出30 t粮食.解题大招二用正负数表示允许偏差例2某品牌饮料外包装上标明“净含量:200 mL ± 5 mL”,随机抽取四种口味的这种饮料分别检测如表.其中,净含量不合格的是(B)种类原味草莓味香草味巧克力味净含量/ mL 195 210 200 205A.原味B.草莓味C.香草味D.巧克力味分析:先计算净含量范围,比较即可求解.由题目中200 mL±5 mL可知,200+5=205(mL),200-5=195(mL),所以净含量合格范围是195 mL~205 mL之间.因为210>205,所以净含量不合格的是草莓味.故选B.解题策略:解这类题关键是知道“±××”表示的是允许偏差的范围.以本题为例,200 mL±5 mL表示饮料净含量最大可以是(200+5)mL,最小可以是(200-5)mL.培优点实际问题中“基准”的相对性例如图,已知摩天轮的最高点距地面165 m,最低点距地面5 m.(1)若以地面为基准,则摩天轮最高点和最低点的高度分别如何表示?(2)若以摩天轮最低点的位置为基准,则最高点和地面的高度分别如何表示?分析:(1)以地面为0 m时,高出地面都记为正数;(2)以该摩天轮最低点的位置为0 m时,最高点的高度为正数,地面高度为负数.解:(1)若以地面为基准,该摩天轮最高点和最低点的高度分别表示为+165 m,+5 m.(2)若以该摩天轮最低点的位置为基准,则最高点的高度为165-5=160(m).最高点的高度可表示为+160 m,地面高度表示为-5 m.。
有理数1.1_正数与负数(王冲2015)

(4)高于海平面300米的高度记为海拔高度 为+300米(规定海平面的海拔高度为0米) 则海拔高度为-600米表示 低于海平面600米 (5)如果把向西走8.9m记作-8.9m,那么 向东走25.6m应记作 25.6m 。
注意用正、负表示两种具有相反意义的量,习
惯上把向东、上升、盈利、运进、增加、收 入等规定为正,把它们的相反量规定为负。
注意:正、负数表示的基准通常为“0”,但 并不是所有的基准都必须为“0”,比如⑶中 就是以某地5月平均重气温20℃为基准量,高 于它的部分记为正,低于它的部分记为负。
一、数的产生和发展离不开生活和生产的需要: 在漫长的生活实践中,由于记事和分配生活用品 等方面的需要,逐渐产生了数的概念,出现了1、 2、3、4……这样的数;后来为了表示“没有”、 起点等,出现了0;随着社会的发展,人们又发现 很多数量具有相反的意义,比如增加和减少、前 进和后退、上升和下降、向东和向西. 为了表示这 样的量,又产生了负数…… 二、正、负数通常用来表示具有相反意义的量.
那么这个时候如: 零上5℃我们规定零上为正记作+5℃ 或5℃(读作正5℃) 零下5℃就记作-5℃(读作负5℃) 这样,只要在小学里学过的数前
面加上“+”或“-"号,就把两个 相反意义的量简明地表示出来了
例题讲解: 例1、在下列横线填上适当的文字, 使其前后构成具有相反意义的量。
支出 (1)收入1000元,______200 元。 盈利 (2)亏损1万元,______3 万元。
?
由表示“没有”、 “空位”、
产生了数
0
数字来源于生活,也是服务于生活。数也在不断的扩充,例如: 3. 另外,在生活中有时分配、测量的结果不是整数,这时就需要用 分数(小数)表示。如:0.125,½---
1.1.1 具有相反意义的量 湘教版七年级数学上册教案
课题:具有相反意义的量【教学目标】1.借助生活中的实例,认识正数和负数,体会引入负数的必要性,并能运用正、负数正确表示生活中具有相反意义的量.2.能对有理数进行分类.3.明白数学发展是生活实际的需要,培养数学应用意识.【教学重点】用正、负数正确表示具有相反意义的量.【教学难点】在正负数的规定中,对于基准的理解.行为提示:创景设疑,帮助学生知道本节课学什么.行为提示:教会学生看书,独学时对于书中的问题一定要认真探究,书写答案.教会学生落实重点.提示:引导学生思考在现实生活中,0还可以有怎样的现实意义?(1)在计数时,0可以表示没有,如0个;(2)0还常用来表示某种量的基准,例如0℃不能理解成没有温度,它是实际温度为冰点时的计量结果,用来作为计量温度的基准;(3)0比任何正数小,比任何负数大,它是正数与负数的分界.情景导入生成问题在日常生产和生活实践中,由于记数、测量、分配等方面的需要产生了自然数、小数、分数.你还见过其他的数吗?自学互研生成能力知识模块一用正数和负数表示相反意义的量(一)自主学习阅读教材P2~P3的内容,完成下面的填空:1.零上20℃表示为+20℃,那么零下7℃表示为__-7℃__.2.巴黎与北京两地时差为-7(带正号的数表示同一时刻比北京早的时间数),如果北京时间是7:00,那么巴黎时间是__0:00__.3.海平面以上789米记为+789米,则-789米表示__海平面以下789米__.(二)合作探究归纳:1.在具有相反意义的一对量中,我们把其中一种量用__正数__表示,另一种量就用__负数__表示.2.大于0的__自然数__和__分数__(或__小数__)就是正数;在正数前面添上__负号__就是负数.3.__0__既不是正数,也不是负数;正数和0统称为__非负数__.练习:全班某次数学测试的平均成绩为83分,某同学考了85分,记作+2分,得90分应记作__+7__分,得80分应记作__-3__分,得83分记作__0__分.知识模块二有理数的概念与分类(一)自主学习阅读教材P 4的内容,完成下面的填空:下列各数:-10.3,+15,0.003,+8%,-80,-10%,1,-45,0,+3.5中,属于正分数的有:0.003,+8%,+3.5;属于负分数的有:-10.3,-10%,-45;属于整数的有:+15,-80,1,0.注意:有限小数、无限循环小数与分数之间的转化关系;正数常省略“+”号,而负数不能省略“-”号.0既不是正数,也不是负数.行为提示:教会学生怎么交流.先对学,再群学.充分在小组内展示自己,分析答案,提出疑惑,共同解决(可按结对子学——帮扶学——组内群学来开展).在群学后期教师可有意安排每组展示问题,并给学生板书题目和组内演练的时间.(二)合作探究归纳:练习:在29,-5.5,67,-1,9%,3.4,0,-213,-0.01,-2,1中,属于正整数的有:29,1;属于负整数的有:-1,-2; 属于正分数的有:67,9%,3.4,;)属于负分数的有:-5.5,-213,-0.01,.)交流展示 生成新知1.将阅读教材时“生成的问题”和通过“自主学习、合作探究”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一 用正数和负数表示相反意义的量知识模块二 有理数的概念与分类课后反思 查漏补缺1.收获:___________________________________________________________2.存在困惑:___________________________________________________________。
2022年《正数和负数教案》4篇
2022年《正数和负数教案》4篇《正数和负数教案》篇1教学内容:人教版七年级上册第一章有理数 1.1 正数和负数教学目标:在熟悉的生活情景中,能用正数和负数表示生活中具有相反意义的量、知道负数的写法和读法,会用负数表示一些日常生活中的量。
使学生经历数学化,符号化的过程,体会负数产生的必要性。
感受正、负数和生活的密切联系,享受创造性学习的乐趣.教学重点:体会负数的意义,学会用正、负数表示日常生活中具有相反意义的量。
教学难点:体会负数的意义,通过描述性定义认识正数、负数和“0”。
教学过程:一、感受相反方向的数量,经历负数产生的过程。
1、回忆小学学过那些数:自然数,分数出示信息:看数的产生过程,现实中负数学习的必要。
2、引入负数的概念3、总结正负数(1)这些数很特别,都带上了符号,它们是一种“新数”。
-9、-4.5等都叫负数; +7、+988等都叫正数。
你会读吗?请你读给大家听。
注意“-”叫负号,“+”叫正号。
(2)读给你的同伴听。
(3)把你新认识的负数再写两个,读一读。
下面让我们走进正数和负数的世界,进一步了解它们。
(板书课题)二、借助实际生活情境的直观,丰富对正负数的认识。
1、负数有什么用?用正数或负数表示下列数量。
(1向东走200米,用+200米表示;那么向西走200米元用表示。
2.说说实际问题中负数的确定(1.)表示海拔高度(2.)解释温度中正负数的含义(3)做练习三3、怎样理解具有相反意义的量三、理解01、0既不是正数也不是负数。
0是正负数的分界。
2、0只表示没有吗?1).空罐中的金币数量;2).温度中的0℃;3).海平面的高度;4).标准水位;5).身高比较的基准;6.)正数和负数的界点;3、总结0既不是正数,也不是负数;0是正数负数的分界。
0是整数,0是偶数,0是最小的自然数。
四、探究活动(出示课件):1.探究活动一:东、西为两个相反方向,如果- 4米表示一个物体向西运动4米,那么+2米表示什么?物体原地不动记为什么?若将28计为0,则可将27计为-1,试猜想若将27计为0,28应计为。
(新)人教版七年级上册数学《正数和负数》教学讲解课件
人教版七年级数学上册教学讲解课件
引入课题
我们把大于零的数叫做正数。有时
在正数前面也加上“+”(正)号。 如+2.5、+5、 +1/2……“+”号可以省略。
我们把在正数(0除外)前面加上 负号“-”的数叫做负数。如-4、-1.5、
-2/3……
一个数前面的“+”、“-”号叫做它的符号。 “-”号读作 “负”,如:“-4”读作“负4”;“+”号读作“正”,如: “+2”读作“正2”。“+”号可以省略。
人教版七年级数学上册教学讲解课件
技能训练
在横线上填写适当的词,使前后具有相反意
义的量. (1)电视台预报当天的温度为零上7℃,
零下 5℃; (2) 亏损 2万元,盈利5万元; (3) 运进 8.8吨,运出7.6吨.
人教版七年级数学上册教学讲解课件
探究活动 怎样理解具有相反意义的量
说明
在同一问题中,用正、负数表示具有相反意 义的量。收入200元和支出400元,零上5℃和零 下3℃,向东20米和向西30米等等,如果正数表 示某种意义,那么负数表示它的相反的意义,反 之亦然。
人教版七年级数学上册教学讲解课件
知识回顾
问题一:我们在小学学过哪些数?你能按 照某一标准将它们分类?
自然数:0、1、2、3……
分数(小数):1/2、0.36、5%……
人教版七年级数学上册教学讲解课件
知识回顾
随着社会的发展,小学学过的自然数、分数和小 数已不能满足实际的需要 。
数的产生和发展离不开生活和生产的需要
人教版七年级数学上册教学讲解课件
例题讲解
例1.一个月内,小明体重增加2kg,小华体重减少 1kg,小强体重无变化,写出他们这个月的体重增 长值。
2023年《正数和负数教案》
2023年《正数和负数教案》2023年《正数和负数教案》篇1教学内容:人教版七年级上册第一章有理数 1.1 正数和负数教学目标:在熟悉的生活情景中,能用正数和负数表示生活中具有相反意义的量、知道负数的写法和读法,会用负数表示一些日常生活中的量。
使学生经历数学化,符号化的过程,体会负数产生的必要性。
感受正、负数和生活的密切联系,享受创造性学习的乐趣.教学重点:体会负数的意义,学会用正、负数表示日常生活中具有相反意义的量。
教学难点:体会负数的意义,通过描述性定义认识正数、负数和“0”。
教学过程:一、感受相反方向的数量,经历负数产生的过程。
1、回忆小学学过那些数:自然数,分数出示信息:看数的产生过程,现实中负数学习的必要。
2、引入负数的概念3、总结正负数(1)这些数很特别,都带上了符号,它们是一种“新数”。
-9、-4.5等都叫负数; +7、+988等都叫正数。
你会读吗?请你读给大家听。
注意“-”叫负号,“+”叫正号。
(2)读给你的同伴听。
(3)把你新认识的负数再写两个,读一读。
下面让我们走进正数和负数的世界,进一步了解它们。
(板书课题)二、借助实际生活情境的直观,丰富对正负数的认识。
1、负数有什么用?用正数或负数表示下列数量。
(1向东走200米,用+200米表示;那么向西走200米元用表示。
2.说说实际问题中负数的确定(1.)表示海拔高度(2.)解释温度中正负数的含义(3)做练习三3、怎样理解具有相反意义的量三、理解01、0既不是正数也不是负数。
0是正负数的分界。
2、0只表示没有吗?1).空罐中的金币数量;2).温度中的0℃;3).海平面的高度;4).标准水位;5).身高比较的基准;6.)正数和负数的界点;3、总结0既不是正数,也不是负数;0是正数负数的分界。
0是整数,0是偶数,0是最小的自然数。
四、探究活动(出示课件):1.探究活动一:东、西为两个相反方向,如果- 4米表示一个物体向西运动4米,那么+2米表示什么?物体原地不动记为什么?若将28计为0,则可将27计为-1,试猜想若将27计为0,28应计为。