2018-2019高中数学必修五检测:利用简单的线性规划求最值(附答案)
澄城县实验中学2018-2019学年上学期高二数学12月月考试题含解析

澄城县实验中学2018-2019学年上学期高二数学12月月考试题含解析班级__________姓名__________ 分数__________一、选择题1. 若动点A ,B 分别在直线l 1:x+y ﹣7=0和l 2:x+y ﹣5=0上移动,则AB 的中点M 到原点的距离的最小值为( )A .3B .2C .3D .42. 满足下列条件的函数中,为偶函数的是( ))(x f )(x f A.B.C. D.()||xf e x =2()x xf e e =2(ln )ln f x x =1(ln )f x x x=+【命题意图】本题考查函数的解析式与奇偶性等基础知识,意在考查分析求解能力.3. 甲、乙两所学校高三年级分别有1 200人,1 000人,为了了解两所学校全体高三年级学生在该地区六校联考的数学成绩情况,采用分层抽样方法从两所学校一共抽取了110名学生的数学成绩,并作出了频数分布统计表如下:甲校:分组[70,80[80,90[90,100[100,110频数34815分组[110,120[120,130[130,140[140,150]频数15x32乙校:分组[70,80[80,90[90,100[100,110频数1289分组[110,120[120,130[130,140[140,150]频数1010y3则x ,y 的值分别为 A 、12,7B 、 10,7C 、 10,8D 、 11,94. 若集合A ={-1,1},B ={0,2},则集合{z|z =x +y ,x ∈A ,y ∈B}中的元素的个数为( )A5B4C3D25. 复数z=在复平面上对应的点位于()A .第一象限B .第二象限C .第三象限D .第四象限6. 已知x ,y 满足时,z=x ﹣y 的最大值为( )A .4B .﹣4C .0D .27. (2015秋新乡校级期中)已知x+x ﹣1=3,则x 2+x ﹣2等于()A .7B .9C .11D .138. 集合的真子集共有( ){}1,2,3A .个B .个C .个D .个9. 已知函数,且,则( )x x x f 2sin )(-=)2(),31(log ),23(ln 3.02f c f b f a ===A .B .C .D .c a b >>a c b >>a b c >>b a c>>【命题意图】本题考查导数在单调性上的应用、指数值和对数值比较大小等基础知识,意在考查基本运算能力.10.设D 、E 、F 分别是△ABC 的三边BC 、CA 、AB 上的点,且=2,=2,=2,则与()A .互相垂直B .同向平行C .反向平行D .既不平行也不垂直11.在平面直角坐标系中,把横、纵坐标均为有理数的点称为有理点.若a 为无理数,则在过点P (a ,﹣)的所有直线中()A .有无穷多条直线,每条直线上至少存在两个有理点B .恰有n (n ≥2)条直线,每条直线上至少存在两个有理点C .有且仅有一条直线至少过两个有理点D .每条直线至多过一个有理点12.圆()与双曲线的渐近线相切,则的值为( )222(2)x y r -+=0r >2213y x -=rA B . C . D .2【命题意图】本题考查圆的一般方程、直线和圆的位置关系、双曲线的标准方程和简单几何性质等基础知识,意在考查基本运算能力.二、填空题13.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,若6a=4b=3c ,则cosB= .14.【盐城中学2018届高三上第一次阶段性考试】已知函数f (x )=,对任意的m ∈[﹣2,2],f (mx ﹣3x x 2)+f (x )<0恒成立,则x 的取值范围为_____.15.定义:[x](x ∈R )表示不超过x 的最大整数.例如[1.5]=1,[﹣0.5]=﹣1.给出下列结论:①函数y=[sinx]是奇函数;②函数y=[sinx]是周期为2π的周期函数;③函数y=[sinx]﹣cosx 不存在零点;④函数y=[sinx]+[cosx]的值域是{﹣2,﹣1,0,1}.其中正确的是 .(填上所有正确命题的编号) 16.(本小题满分12分)点M (2pt ,2pt 2)(t 为常数,且t ≠0)是拋物线C :x 2=2py (p >0)上一点,过M 作倾斜角互补的两直线l 1与l 2与C 的另外交点分别为P 、Q .(1)求证:直线PQ 的斜率为-2t ;(2)记拋物线的准线与y 轴的交点为T ,若拋物线在M 处的切线过点T ,求t 的值.17.已知函数,则__________;的最小值为__________.18.过原点的直线l 与函数y=的图象交于B ,C 两点,A 为抛物线x 2=﹣8y 的焦点,则|+|= .三、解答题19.我省城乡居民社会养老保险个人年缴费分100,200,300,400,500,600,700,800,900,1000(单位:元)十个档次,某社区随机抽取了50名村民,按缴费在100:500元,600:1000元,以及年龄在20:39岁,40:59岁之间进行了统计,相关数据如下:100﹣500元600﹣1000总计20﹣391061640﹣59151934总计252550(1)用分层抽样的方法在缴费100:500元之间的村民中随机抽取5人,则年龄在20:39岁之间应抽取几人?(2)在缴费100:500元之间抽取的5人中,随机选取2人进行到户走访,求这2人的年龄都在40:59岁之间的概率.20.某城市决定对城区住房进行改造,在建新住房的同时拆除部分旧住房.第一年建新住房am2,第二年到第四年,每年建设的新住房比前一年增长100%,从第五年起,每年建设的新住房都比前一年减少am2;已知旧住房总面积为32am2,每年拆除的数量相同.(Ⅰ)若10年后该城市住房总面积正好比改造前的住房总面积翻一番,则每年拆除的旧住房面积是多少m2?(Ⅱ),求前n(1≤n≤10且n∈N)年新建住房总面积S n21.某商场销售某种品牌的空调器,每周周初购进一定数量的空调器,商场每销售一台空调器可获利500元,若供大于求,则每台多余的空调器需交保管费100元;若供不应求,则可从其他商店调剂供应,此时每台空调器仅获利润200元.(Ⅰ)若该商场周初购进20台空调器,求当周的利润(单位:元)关于当周需求量n(单位:台,n∈N)的函数解析式f(n);(Ⅱ)该商场记录了去年夏天(共10周)空调器需求量n(单位:台),整理得表:周需求量n1819202122频数12331以10周记录的各需求量的频率作为各需求量发生的概率,若商场周初购进20台空调器,X表示当周的利润(单位:元),求X的分布列及数学期望.22.(本小题满分12分)在多面体中,四边形与均为正方形,平面ABCDEFG ABCD CDEF CF ⊥,平面,且.ABCD BG ⊥ABCD 24AB BG BH ==(1)求证:平面平面;AGH ⊥EFG (2)求二面角的大小的余弦值.D FGE --23.已知数列{a n }满足a 1=a ,a n+1=(n ∈N *).(1)求a 2,a 3,a 4;(2)猜测数列{a n }的通项公式,并用数学归纳法证明.24.某工厂修建一个长方体形无盖蓄水池,其容积为4800立方米,深度为3米.池底每平方米的造价为150元,池壁每平方米的造价为120元.设池底长方形长为x 米.(Ⅰ)求底面积并用含x 的表达式表示池壁面积;(Ⅱ)怎样设计水池能使总造价最低?最低造价是多少?澄城县实验中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1. 【答案】A【解析】解:∵l 1:x+y ﹣7=0和l 2:x+y ﹣5=0是平行直线,∴可判断:过原点且与直线垂直时,中的M 到原点的距离的最小值∵直线l 1:x+y ﹣7=0和l 2:x+y ﹣5=0,∴两直线的距离为=,∴AB 的中点M 到原点的距离的最小值为+=3,故选:A【点评】本题考查了两点距离公式,直线的方程,属于中档题. 2. 【答案】D.【解析】3. 【答案】B 【解析】 1从甲校抽取110×=60人,1 2001 200+1 000从乙校抽取110×=50人,故x =10,y =7.1 0001 200+1 0004. 【答案】C【解析】由已知,得{z|z =x +y ,x ∈A ,y ∈B}={-1,1,3},所以集合{z|z =x +y ,x ∈A ,y ∈B}中的元素的个数为3.5. 【答案】A【解析】解:∵z===+i,∴复数z在复平面上对应的点位于第一象限.故选A.【点评】本题考查复数的乘除运算,考查复数与复平面上的点的对应,是一个基础题,在解题过程中,注意复数是数形结合的典型工具.6.【答案】A【解析】解:由约束条件作出可行域如图,联立,得A(6,2),化目标函数z=x﹣y为y=x﹣z,由图可知,当直线y=x﹣z过点A时,直线在y轴上的截距最小,z有最大值为4.故选:A.【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.7.【答案】A【解析】解:∵x+x﹣1=3,则x2+x﹣2=(x+x﹣1)2﹣2=32﹣2=7.故选:A.【点评】本题考查了乘法公式,考查了推理能力与计算能力,属于中档题.8.【答案】C【解析】考点:真子集的概念.9.【答案】D10.【答案】D【解析】解:如图所示,△ABC中,=2,=2,=2,根据定比分点的向量式,得==+,=+,=+,以上三式相加,得++=﹣,所以,与反向共线.【点评】本题考查了平面向量的共线定理与定比分点的应用问题,是基础题目. 11.【答案】C【解析】解:设一条直线上存在两个有理点A(x1,y1),B(x2,y2),由于也在此直线上,所以,当x1=x2时,有x1=x2=a为无理数,与假设矛盾,此时该直线不存在有理点;当x1≠x2时,直线的斜率存在,且有,又x2﹣a为无理数,而为有理数,所以只能是,且y2﹣y1=0,即;所以满足条件的直线只有一条,且直线方程是;所以,正确的选项为C.故选:C.【点评】本题考查了新定义的关于直线方程与直线斜率的应用问题,解题的关键是理解新定义的内容,寻找解题的途径,是难理解的题目.12.【答案】C二、填空题13.【答案】 .【解析】解:在△ABC中,∵6a=4b=3c∴b=,c=2a,由余弦定理可得cosB===.故答案为:.【点评】本题考查余弦定理在解三角形中的应用,用a表示b,c是解决问题的关键,属于基础题.14.【答案】2 2,3⎛⎫- ⎪⎝⎭【解析】15.【答案】 ②③④ 【解析】解:①函数y=[sinx]是非奇非偶函数;②函数y=[sinx]的周期与y=sinx的周期相同,故是周期为2π的周期函数;③函数y=[sinx]的取值是﹣1,0,1,故y=[sinx]﹣cosx不存在零点;④函数数y=[sinx]、y=[cosx]的取值是﹣1,0,1,故y=[sinx]+[cosx]的值域是{﹣2,﹣1,0,1}.故答案为:②③④.【点评】本题考查命题的真假判断,考查新定义,正确理解新定义是关键.16.【答案】【解析】解:(1)证明:l 1的斜率显然存在,设为k ,其方程为y -2pt 2=k (x -2pt ).①将①与拋物线x 2=2py 联立得,x 2-2pkx +4p 2t (k -t )=0,解得x 1=2pt ,x 2=2p (k -t ),将x 2=2p (k -t )代入x 2=2py 得y 2=2p (k -t )2,∴P 点的坐标为(2p (k -t ),2p (k -t )2).由于l 1与l 2的倾斜角互补,∴点Q 的坐标为(2p (-k -t ),2p (-k -t )2),∴k PQ ==-2t ,2p (-k -t )2-2p (k -t )22p (-k -t )-2p (k -t )即直线PQ 的斜率为-2t .(2)由y =得y ′=,x 22p x p ∴拋物线C 在M (2pt ,2pt 2)处的切线斜率为k ==2t .2pt p其切线方程为y -2pt 2=2t (x -2pt ),又C 的准线与y 轴的交点T 的坐标为(0,-).p 2∴--2pt 2=2t (-2pt ).p 2解得t =±,即t 的值为±.121217.【答案】【解析】【知识点】分段函数,抽象函数与复合函数【试题解析】当时,当时,故的最小值为故答案为:18.【答案】 4 .【解析】解:由题意可得点B 和点C 关于原点对称,∴|+|=2||,再根据A 为抛物线x 2=﹣8y 的焦点,可得A (0,﹣2),∴2||=4,故答案为:4.【点评】本题主要考查抛物线的方程、简单性质,属于基础题,利用|+|=2||是解题的关键.三、解答题19.【答案】【解析】解:(1)设抽取x人,则,解得x=2,即年龄在20:39岁之间应抽取2人.(2)设在缴费100:500元之间抽取的5人中,年龄在20:39岁年龄的两人为A,B,在40:59岁之间为a,b,c,随机选取2人的情况有(A,B),(A,a),(A,b),(A,c),(B,a),(B,b),(B,c),(a,b),(a,c),(b,c),共10种,年龄都在40:59岁之间的有(a,b),(a,c),(b,c),共3种,则对应的概率P=.【点评】本题主要考查分层抽样的应用,以及古典概型的计算,利用列举法是解决本题的关键.20.【答案】【解析】解:(I)10年后新建住房总面积为a+2a+4a+8a+7a+6a+5a+4a+3a+2a=42a.设每年拆除的旧住房为xm2,则42a+(32a﹣10x)=2×32a,解得x=a,即每年拆除的旧住房面积是am2(Ⅱ)设第n年新建住房面积为a,则a n=所以当1≤n≤4时,S n=(2n﹣1)a;当5≤n≤10时,S n=a+2a+4a+8a+7a+6a+(12﹣n)a=故【点评】本小题主要考查函数模型的选择与应用,属于基础题.解决实际问题通常有四个步骤:(1)阅读理解,认真审题;(2)引进数学符号,建立数学模型;(3)利用数学的方法,得到数学结果;(4)转译成具体问题作出解答,其中关键是建立数学模型.21.【答案】【解析】解:(I)当n≥20时,f(n)=500×20+200×(n﹣20)=200n+6000,当n≤19时,f(n)=500×n﹣100×(20﹣n)=600n﹣2000,∴.(II)由(1)得f(18)=8800,f(19)=9400,f(20)=10000,f(21)=10200,f(22)=10400,∴P(X=8800)=0.1,P(X=9400)=0.2,P(X=10000)=0.3,P(X=10200)=0.3,P(X=10400)=0.1,X的分布列为X88009400100001020010400P0.10.20.30.30.1∴EX=8800×0.1+9400×0.2+10000×0.3+10200×0.3+10400×0.1=9860.22.【答案】【解析】【命题意图】本题主要考查空间直线与平面间的垂直关系、空间向量、二面角等基础知识,意在考查空间想象能力、逻辑推理能力,以及转化的思想、方程思想.GH∈AGH AGH⊥EFG∵平面,∴平面平面.……………………………5分23.【答案】【解析】解:(1)由a n+1=,可得a2==,a3===,a4===.(2)猜测a n=(n∈N*).下面用数学归纳法证明:①当n=1时,左边=a1=a,右边==a,猜测成立.②假设当n=k(k∈N*)时猜测成立,即a k=.则当n=k+1时,a k+1====.故当n=k+1时,猜测也成立.由①,②可知,对任意n∈N*都有a n=成立.24.【答案】【解析】解:(Ⅰ)设水池的底面积为S1,池壁面积为S2,则有(平方米),可知,池底长方形宽为米,则(Ⅱ)设总造价为y,则当且仅当,即x=40时取等号,所以x=40时,总造价最低为297600元.答:x=40时,总造价最低为297600元.。
海曙区第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案

海曙区第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 设a ,b ,c ,∈R +,则“abc=1”是“”的()A .充分条件但不是必要条件B .必要条件但不是充分条件C .充分必要条件D .既不充分也不必要的条件2. 中,“”是“”的( )ABC ∆A B >cos 2cos 2B A >A. 充分必要条件 B. 充分不必要条件 C. 必要不充分条件D. 既不充分也不必要条件【命题意图】本题考查三角函数的性质与充分必要条件等基础知识,意在考查构造函数的思想与运算求解能力.3. 已知点P (x ,y )的坐标满足条件,(k 为常数),若z=3x+y 的最大值为8,则k 的值为()A .B .C .﹣6D .64. 下列满足“∀x ∈R ,f (x )+f (﹣x )=0且f ′(x )≤0”的函数是( )A .f (x )=﹣xe |x|B .f (x )=x+sinxC .f (x )=D .f (x )=x 2|x|5. 设集合是三角形的三边长,则所表示的平面区域是()(){,|,,1A x y x y x y =--}AA .B .C .D .6. 关于函数,下列说法错误的是( )2()ln f x x x=+(A )是的极小值点2x =()f x ( B ) 函数有且只有1个零点 ()y f x x =- (C )存在正实数,使得恒成立k ()f x kx >(D )对任意两个正实数,且,若,则12,x x 21x x >12()()f x f x =124x x +>7. 已知向量=(﹣1,3),=(x ,2),且,则x=()A .B .C .D .8. 设k=1,2,3,4,5,则(x+2)5的展开式中x k 的系数不可能是()班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .10B .40C .50D .809. 执行如图所示的程序框图,若输入的分别为0,1,则输出的( )A .4B .16C .27D .3610.设i 是虚数单位,是复数z 的共轭复数,若z =2(+i ),则z=( )A .﹣1﹣iB .1+iC .﹣1+iD .1﹣i11.以过椭圆+=1(a >b >0)的右焦点的弦为直径的圆与其右准线的位置关系是( )A .相交B .相切C .相离D .不能确定12.《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,甲所得为()A .钱B .钱C .钱D .钱二、填空题13.不等式的解集为 .14.若直线:与直线:垂直,则 .012=--ay x 2l 02=+y x =a15.已知变量x ,y ,满足,则z=log 4(2x+y+4)的最大值为 .16.函数y=lgx 的定义域为 .17.如图,长方体ABCD ﹣A 1B 1C 1D 1中,AA 1=AB=2,AD=1,点E 、F 、G 分别是DD 1、AB 、CC 1的中点,则异面直线A 1E 与GF 所成的角的余弦值是 .18.设f(x)是定义在R上的周期为2的函数,当x∈[﹣1,1)时,f(x)=,则f()= .三、解答题19.已知函数f(x)=lg(2016+x),g(x)=lg(2016﹣x)(1)判断函数f(x)﹣g(x)的奇偶性,并予以证明.(2)求使f(x)﹣g(x)<0成立x的集合.20.某校在一次趣味运动会的颁奖仪式上,高一、高二、高三各代表队人数分别为120人、120人、n人.为了活跃气氛,大会组委会在颁奖过程中穿插抽奖活动,并用分层抽样的方法从三个代表队中共抽取20人在前排就坐,其中高二代表队有6人.(1)求n的值;(2)把在前排就坐的高二代表队6人分别记为a,b,c,d,e,f,现随机从中抽取2人上台抽奖.求a和b 至少有一人上台抽奖的概率.(3)抽奖活动的规则是:代表通过操作按键使电脑自动产生两个[0,1]之间的均匀随机数x,y,并按如图所示的程序框图执行.若电脑显示“中奖”,则该代表中奖;若电脑显示“谢谢”,则不中奖,求该代表中奖的概率.21.某校为选拔参加“央视猜灯谜大赛”的队员,在校内组织猜灯谜竞赛.规定:第一阶段知识测试成绩不小于160分的学生进入第二阶段比赛.现有200名学生参加知识测试,并将所有测试成绩绘制成如下所示的频率分布直方图.(Ⅰ)估算这200名学生测试成绩的中位数,并求进入第二阶段比赛的学生人数;(Ⅱ)将进入第二阶段的学生分成若干队进行比赛.现甲、乙两队在比赛中均已获得120分,进入最后抢答阶段.抢答规则:抢到的队每次需猜3条谜语,猜对1条得20分,猜错1条扣20分.根据经验,甲队猜对每条谜语的概率均为,乙队猜对前两条的概率均为,猜对第3条的概率为.若这两队抢到答题的机会均等,您做为场外观众想支持这两队中的优胜队,会把支持票投给哪队?22.(1)已知f (x )的定义域为[﹣2,1],求函数f (3x ﹣1)的定义域;(2)已知f (2x+5)的定义域为[﹣1,4],求函数f (x )的定义域.23.已知复数z=m (m ﹣1)+(m 2+2m ﹣3)i (m ∈R )(1)若z 是实数,求m 的值;(2)若z 是纯虚数,求m 的值;(3)若在复平面C 内,z 所对应的点在第四象限,求m 的取值范围.24.(本小题满分12分)设曲线:在点处的切线与轴交与点,函数.C ln (0)y a x a =≠00(,ln )T x a x x 0((),0)A f x 2()1xg x x=+(1)求,并求函数在上的极值;0()f x ()f x (0,)+∞(2)设在区间上,方程的实数解为,的实数解为,比较与的大小.(0,1)()f x k =1x ()g x k =2x 1x 2x海曙区第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1. 【答案】A【解析】解:因为abc=1,所以,则==≤a+b+c .当a=3,b=2,c=1时,显然成立,但是abc=6≠1,所以设a ,b ,c ,∈R +,则“abc=1”是“”的充分条件但不是必要条件.故选A . 2. 【答案】A.【解析】在中ABC ∆2222cos 2cos 212sin 12sin sin sin sin sin B A B A A B A B>⇒->-⇔>⇔>,故是充分必要条件,故选A.A B ⇔>3. 【答案】 B【解析】解:画出x ,y 满足的可行域如下图:z=3x+y 的最大值为8,由,解得y=0,x=,(,0)代入2x+y+k=0,∴k=﹣,故选B .【点评】如果约束条件中含有参数,可以先画出不含参数的几个不等式对应的平面区域,分析取得最优解是哪两条直线的交点,然后得到一个含有参数的方程(组),代入另一条直线方程,消去x ,y 后,即可求出参数的值. 4. 【答案】A【解析】解:满足“∀x ∈R ,f (x )+f (﹣x )=0,且f ′(x )≤0”的函数为奇函数,且在R 上为减函数,A 中函数f (x )=﹣xe |x|,满足f (﹣x )=﹣f (x ),即函数为奇函数,且f ′(x )=≤0恒成立,故在R 上为减函数,B 中函数f (x )=x+sinx ,满足f (﹣x )=﹣f (x ),即函数为奇函数,但f ′(x )=1+cosx ≥0,在R 上是增函数,C 中函数f (x )=,满足f (﹣x )=f (x ),故函数为偶函数;D 中函数f (x )=x 2|x|,满足f (﹣x )=f (x ),故函数为偶函数,故选:A . 5. 【答案】A【解析】考点:二元一次不等式所表示的平面区域.6. 【答案】 C 【解析】,,且当时,,函数递减,当时,,22212'()x f x x x x-=-+='(2)0f =02x <<'()0f x <2x >'()0f x >函数递增,因此是的极小值点,A 正确;,2x =()f x ()()g x f x x =-221'()1g x x x=-+-,所以当时,恒成立,即单调递减,又,2217()24x x -+=-0x >'()0g x <()g x 11()210g e e e =+->,所以有零点且只有一个零点,B 正确;设,易知当2222()20g e e e =+-<()g x 2()2ln ()f x xh x x x x==+2x >时,,对任意的正实数,显然当时,,即,222ln 21112()x h x x x x x x x x =+<+<+=k 2x k >2k x <()f x k x<,所以不成立,C 错误;作为选择题这时可得结论,选C ,下面对D 研究,画出函数草()f x kx <()f x kx >图可看出(0,2)的时候递减的更快,所以124x x+>7.【答案】C【解析】解:∵,∴3x+2=0,解得x=﹣.故选:C.【点评】本题考查了向量共线定理、方程的解法,考查了推理能力与计算能力,属于中档题.8.【答案】C【解析】二项式定理.【专题】计算题.【分析】利用二项展开式的通项公式求出展开式的x k的系数,将k的值代入求出各种情况的系数.【解答】解:(x+2)5的展开式中x k的系数为C5k25﹣k当k﹣1时,C5k25﹣k=C5124=80,当k=2时,C5k25﹣k=C5223=80,当k=3时,C5k25﹣k=C5322=40,当k=4时,C5k25﹣k=C54×2=10,当k=5时,C5k25﹣k=C55=1,故展开式中x k的系数不可能是50故选项为C【点评】本题考查利用二项展开式的通项公式求特定项的系数.9.【答案】D【解析】【知识点】算法和程序框图【试题解析】A=0,S=1,k=1,A=1,S=1,否;k=3,A=4,S=4,否;k=5,A=9,S=36,是,则输出的36。
上海市上海中学2018-2019学年高二上学期期中数学试题(原卷+解析版)

由
由于B在直线 上,故m=1
故选:A
【点睛】本题考查了线性规划,考查了学生数形结合,转化与划归的能力,属于中档题.
16.如图, 的 边长为 , 分别是 中点,记 , ,则()
A. B.
C. D. ,但 的值不确定
【答案】C
【解析】
试题分析:因为 分别是 中点,所以根据平面向量的线性运算 可得 ,所以 由 可得 ,故选C.
(1)求向量 与 的夹角 ;
(2)若 ,且 ,求实数t的值及 .
【答案】(1) ;(2) , = .
【解析】
【分析】
(1)由向量的数量积,代值计算即可;
(2)由数量积为0,代入计算即可.
【详解】(1)因为
故
解得:
因为 ,所以 .
(2)
则
化简得:
解得:此时=Fra bibliotek==
=
【点睛】本题考查向量数量积的运算,属基础题.
19.
如图,在平面直角坐标系xOy中,平行于x轴且过点A(3 ,2)的入射光线l1
被直线l:y= x反射.反射光线l2交y轴于B点,圆C过点A且与l1,l2都相切.
(1)求l2所在直线的方程和圆C的方程;
(2)设 分别是直线l和圆C上的动点,求 的最小值及此时点 的坐标.
【答案】(1) 所在的直线方程为 ,圆C的方程为 (2)
【解析】
【详解】(1)直线 设 .
的倾斜角为 , 反射光线 所在的直线方程为
.即 .
已知圆C与 , 圆心C在过点D且与 垂直的直线上,
考点:平面向量的线性运算与数量积运算.
三、解答题
17.已知二元一次方程组的增广矩阵为 ,请利用行列式求解此方程组.
神木县高中2018-2019学年上学期高三数学10月月考试题

神木县高中2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1. 设函数()log |1|a f x x =-在(,1)-∞上单调递增,则(2)f a +与(3)f 的大小关系是( ) A .(2)(3)f a f +> B .(2)(3)f a f +< C. (2)(3)f a f += D .不能确定 2. 定义:数列{a n }前n 项的乘积T n =a 1•a 2•…•a n ,数列a n =29﹣n ,则下面的等式中正确的是( ) A .T 1=T 19 B .T 3=T 17C .T 5=T 12D .T 8=T 113. 在等差数列{}n a 中,11a =,公差0d ≠,n S 为{}n a 的前n 项和.若向量13(,)m a a =,133(,)n a a =-, 且0m n ?,则2163n n S a ++的最小值为( )A .4B .3 C.2 D .92【命题意图】本题考查等差数列的性质,等差数列的前n 项和,向量的数量积,基本不等式等基础知识,意在考查学生的学生运算能力,观察分析,解决问题的能力.4. 等比数列的前n 项,前2n 项,前3n 项的和分别为A ,B ,C ,则( )A .B 2=ACB .A+C=2BC .B (B ﹣A )=A (C ﹣A )D .B (B ﹣A )=C (C ﹣A )5. 集合A={1,2,3},集合B={﹣1,1,3},集合S=A ∩B ,则集合S 的子集有( ) A .2个 B .3 个 C .4 个 D .8个6. sin 15°sin 5°-2sin 80°的值为( )A .1B .-1C .2D .-27. 在某次测量中得到的A 样本数据如下:82,84,84,86,86,86,88,88,88,88.若B 样本数据恰好是A 样本数据都加2后所得数据,则A ,B 两样本的下列数字特征对应相同的是( ) A .众数 B .平均数 C .中位数 D .标准差8. 已知22(0)()|log |(0)x x f x x x ⎧≤=⎨>⎩,则方程[()]2f f x =的根的个数是( )A .3个B .4个C .5个D .6个 9. 以下四个命题中,真命题的是( )A .2,2x R x x ∃∈≤-B .“对任意的x R ∈,210x x ++>”的否定是“存在0x R ∈,20010x x ++<C .R θ∀∈,函数()sin(2)f x x θ=+都不是偶函数D .已知m ,n 表示两条不同的直线,α,β表示不同的平面,并且m α⊥,n β⊂,则“αβ⊥”是 “//m n ”的必要不充分条件【命题意图】本题考查量词、充要条件等基础知识,意在考查逻辑推理能力. 10.设i是虚数单位,是复数z 的共轭复数,若z =2(+i ),则z=( )A .﹣1﹣iB .1+iC .﹣1+iD .1﹣i11.已知,y 满足不等式430,35250,1,x y x y x -+≤⎧⎪+-≤⎨⎪≥⎩则目标函数2z x y =+的最大值为( )A .3B .132C .12D .1512.数列{a n }是等差数列,若a 1+1,a 3+2,a 5+3构成公比为q 的等比数列,则q=( ) A .1 B .2C .3D .4二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)13.在ABC ∆中,已知角C B A ,,的对边分别为c b a ,,,且B c C b a sin cos +=,则角B 为 .14.在极坐标系中,O 是极点,设点A ,B 的极坐标分别是(2,),(3,),则O 点到直线AB的距离是 .15.在正方体ABCD ﹣A 1B 1C 1D 1中,异面直线A 1B 与AC 所成的角是 °.16.在直角梯形,,DC//AB,AD DC 1,AB 2,E,F ABCD AB AD ⊥===分别为,AB AC 的中点,点P 在以A 为圆心,AD 为半径的圆弧DE 上变动(如图所示).若AP ED AF λμ=+,其中,R λμ∈, 则2λμ-的取值范围是___________.三、解答题(本大共6小题,共70分。
2017-2018学年河南省洛阳市高二上学期期中数学试题(解析版)

2017-2018学年河南省洛阳市高二(上)期中数学试卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x2﹣x﹣6<0},B={x|x2+2x﹣8>0},则A∪B=()A.{x|2<x<3}B.{x|﹣2<x<3}C.{x|x>﹣4或x>2}D.{x|x<﹣4或x >﹣2}2.(5分)△ABC中,==,则△ABC一定是()A.直角三角形B.钝角三角形C.等腰三角形D.等边三角形3.(5分)若a,b,c∈R,且a>b,则下列不等式一定成立的是()A.>0 B.(a﹣b)c2>0 C.ac>bc D.a+c≥b﹣c4.(5分)在等比数列{a n}中,a n>0,已知a1=6,a1+a2+a3=78,则a2=()A.12 B.18 C.24 D.365.(5分)设正实数a,b满足2a+3b=1,则的最小值是()A.25 B.24 C.22 D.166.(5分)海中有一小岛,海轮由西向东航行,望见这岛在北偏东75°,航行8n mile以后,望见这岛在北偏东60°,海轮不改变航向继续前进,直到望见小岛在正北方向停下来做测量工作,还需航行()n mile.A.8 B.4 C.D.7.(5分)设等差数列{a n}的公差d≠0,且a2=﹣d,若a k是a6与a k+6等比中项,则k=()A.5 B.6 C.9 D.368.(5分)若函数f(x)=的定义域是R,则实数a的取值范围是()A.(﹣2,2)B.(﹣∞,﹣2)∪(2,+∞)C.(﹣∞,﹣2]∪[2,+∞)D.[﹣2,2]9.(5分)已知△ABC的内角A、B、C的对边分别为a、b、c.若a=bcosC+csinB,且△ABC的面积为1+.则b的最小值为()A.2 B.3 C.D.10.(5分)设等差数列{a n}的前n项和为S n,S15>0,a8+a9<0,则使<0成立的最小自然数n的值为()A.15 B.16 C.17 D.1811.(5分)在平而直角坐标系中,不等式组表示的平面区域面积为π,若x,y满足上述约束条件,则z=的最小值为()A.﹣1 B.C.D.12.(5分)已知数列{a n}中,a1=2,若a n+1﹣a n=a n2,设T m=,若T m<2018,则正整数m的最大值为()A.2019 B.2018 C.2017 D.2016二、填空题:本题共4个小题,每小题5分,共20分.x<0|2<x<3}B.{x|-2<x<3}C.{x|x>13.(5分)不等式组表示的平面区域内的整点坐标是.14.(5分)已知△ABC的内角A,B,C的对边分别为a,b,c,若a=2且sinA+cosA=2,则角C的大小为.15.(5分)如图所示,在圆内接四边形ABCD中,AB=6,BC=3,CD=4,AD=5,则四边形ABCD的面积为.16.(5分)已知数列{a n}中,a1=l,S n为其前n项和,当n≥2时,2a n+S n2=a n S n成立,则S10=.三、解答题:本大题共6个小题,共70分.解答应写出文字说明、证明过程或盐酸步骤.17.(10分)在△ABC中,角A,B,C所对的边分别为a,b,c,已知a2+c2﹣b2=﹣ac.(1)求B;(2)若,,求a,c.18.(12分)已知方程x2+2(a+2)x+a2﹣1=0.(1)当该方程有两个负根时,求实数a的取值范围;(2)当该方程有一个正根和一个负根时,求实数a的取值范围.19.(12分)已知{a n}是各项均为正数的等比数列,且a1+a2=6,a1a2=a3.(1)求数列{a n}的通项公式;(2){b n}为各项非零的等差数列,其前n项和S n=n2,求数列的前n项和T n.20.(12分)某市园林局将一块三角形地块ABC的一个角AMN建设为小游园,已知A=120°,AB,AC的长度均大于400米,现要在边界AM,AN处建设装饰墙,沿MN建设宽1.5米的健康步道.(1)若装饰墙AM,AN的总长度为400米,AM,AN 的长度分别为多少时,所围成的三角形地块AMN的面积最大?(2)若AM段装饰墙墙髙1米,AN段装饰墙墙髙1.5米,AM段装饰墙造价为每平方米150元,AN段装饰墙造价为每平方米100元,建造装饰墙用了90000元.若建设健康步道每100米需5000元,AM,AN的长度分别为多少时,所用费用最少?21.(12分)已知△ABC为锐角三角形,角A,B,C的对边分别为a,b,c且(b2+c2﹣a2)tanA=bc.(1)求角A的大小;(2)若a=,求2b﹣c的取值范围.22.(12分)设数列{a n}的前n项和为S n,且S n=4﹣a n﹣.(1)令b n=2n﹣1•a n,证明数列{b n}为等差数列,并求{b n}的通项公式;(2)是否存在n∈N*,使得不等式成立,若存在,求出λ的取值范围,若不存在,请说明理由.2017-2018学年河南省洛阳市高二(上)期中数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x2﹣x﹣6<0},B={x|x2+2x﹣8>0},则A∪B=()A.{x|2<x<3}B.{x|﹣2<x<3}C.{x|x>﹣4或x>2}D.{x|x<﹣4或x >﹣2}【分析】解不等式得出集合A、B,根据并集的定义写出A∪B.【解答】解:集合A={x|x2﹣x﹣6<0}={x|(x+2)(x﹣3)<0}={x|﹣2<x<3},B={x|x2+2x﹣8>0}={x|(x+4)(x﹣2)>0}={x|x<﹣4或x>2},则A∪B={x|x<﹣4或x>﹣2}.故选:D.【点评】本题考查了解不等式与集合的运算问题,是基础题.2.(5分)△ABC中,==,则△ABC一定是()A.直角三角形B.钝角三角形C.等腰三角形D.等边三角形【分析】由,利用正弦定理可得tanA=tanB=tanC,再利用三角函数的单调性即可得出.【解答】解:由正弦定理可得:=,又,∴tanA=tanB=tanC,又A,B,C∈(0,π),∴A=B=C=,则△ABC是等边三角形.故选:D.【点评】本题考查了正弦定理、三角函数的单调性,考查了推理能力与计算能力,属于中档题.3.(5分)若a,b,c∈R,且a>b,则下列不等式一定成立的是()A.>0 B.(a﹣b)c2>0 C.ac>bc D.a+c≥b﹣c【分析】对于A,根据不等式的性质即可判断,举反例即可判断B,C,D【解答】解:A、∵a﹣b>0,c2>0,∴>0B、∵a﹣b>0,∴(a﹣b)2>0,又c2≥0,∴(a﹣b)2c≥0,本选项不一定成立,C、c=0时,ac=bc,本选项不一定成立;D、当a=﹣1,b=﹣2,c=﹣3时,a+c=﹣4,b﹣c=1,显然不成立,本选项不一定成立;故选A【点评】此题考查了不等式的性质,利用了反例的方法,是一道基本题型.4.(5分)在等比数列{a n}中,a n>0,已知a1=6,a1+a2+a3=78,则a2=()A.12 B.18 C.24 D.36【分析】先求出公比q,即可求出答案.【解答】解:设公比为q,由a1=6,a1+a2+a3=78,可得6+6q+6q2=78,解得q=3或q=﹣4(舍去),∴a2=6q=18,故选:B【点评】本题考查了等比数列的通项公式,属于基础题.5.(5分)设正实数a,b满足2a+3b=1,则的最小值是()A.25 B.24 C.22 D.16【分析】直接利用函数的关系式及均值不等式求出函数的最小值.【解答】解:正实数a,b满足2a+3b=1,则=(2a+3b)()=+9≥13+12=25,故的最小值为25.故选:D.【点评】本题考查的知识要点:函数的关系式的恒等变换,均值不等式的应用.6.(5分)海中有一小岛,海轮由西向东航行,望见这岛在北偏东75°,航行8n mile以后,望见这岛在北偏东60°,海轮不改变航向继续前进,直到望见小岛在正北方向停下来做测量工作,还需航行()n mile.A.8 B.4 C.D.【分析】作出示意图,根据等腰三角形锐角三角函数的定义即可求出继续航行的路程.【解答】解:设海岛位置为A,海伦开始位置为B,航行8n mile后到达C处,航行到D处时,海岛在正北方向,由题意可知BC=8,∠ABC=15°,∠BCA=150°,∠ADC=90°,∠ACD=30°,∴∠BAC=15°,∴AC=BC=8,∴CD=AC•cos∠ACD=4.故选C.【点评】本题考查了解三角形的应用,属于基础题.7.(5分)设等差数列{a n}的公差d≠0,且a2=﹣d,若a k是a6与a k+6等比中项,则k=()A.5 B.6 C.9 D.36【分析】运用等差数列的通项公式,以及等比数列的中项的性质,化简整理解方程即可得到k的值.【解答】解:等差数列{a n}的公差d≠0,且a2=﹣d,可得a1=a2﹣d=﹣2d,则a n=a1+(n﹣1)d=(n﹣3)d,若a k是a6与a k+6的等比中项,即有a k2=a6a k+6,即为(k﹣3)2d2=3d•(k+3)d,由d不为0,可得k2﹣9k=0,解得k=9(0舍去).故选:C.【点评】本题考查等差数列的通项公式和等比数列中项的性质,考查化简整理的运算能力,属于基础题.8.(5分)若函数f(x)=的定义域是R,则实数a的取值范围是()A.(﹣2,2)B.(﹣∞,﹣2)∪(2,+∞)C.(﹣∞,﹣2]∪[2,+∞)D.[﹣2,2]【分析】要使函数有意义,则2﹣1≥0,解得即可.【解答】解:要使函数有意义,则2﹣1≥0,即x2+ax+1≥0,∴△=a2﹣4≤0,解得﹣2≤a≤2,故选:D【点评】本题考查了函数的定义域和不等式的解法,属于基础题.9.(5分)已知△ABC的内角A、B、C的对边分别为a、b、c.若a=bcosC+csinB,且△ABC的面积为1+.则b的最小值为()A.2 B.3 C.D.【分析】已知等式利用正弦定理化简,再利用诱导公式及两角和与差的正弦函数公式化简,求出tanB的值,确定出B的度数,利用三角形面积公式求出ac的值,利用余弦定理,基本不等式可求b的最小值.【解答】解:由正弦定理得到:sinA=sinCsinB+sinBcosC,∵在△ABC中,sinA=sin[π﹣(B+C)]=sin(B+C),∴sin(B+C)=sinBcosC+cosBsinC=sinCsinB+sinBcosC,∴cosBsinC=sinCsinB,∵C∈(0,π),sinC≠0,∴cosB=sinB,即tanB=1,∵B∈(0,π),∴B=,=acsinB=ac=1+,∵S△ABC∴ac=4+2,由余弦定理得到:b2=a2+c2﹣2accosB,即b2=a2+c2﹣ac≥2ac﹣ac=4,当且仅当a=c时取“=”,∴b的最小值为2.故选:A.【点评】此题考查了正弦、余弦定理,基本不等式以及三角形的面积公式,熟练掌握定理及公式是解本题的关键,属于中档题.10.(5分)设等差数列{a n}的前n项和为S n,S15>0,a8+a9<0,则使<0成立的最小自然数n的值为()A.15 B.16 C.17 D.18【分析】由于S15==15a8>0,a8+a9<0,可得a8>0,a9<0,进而得出.【解答】解:∵S15==15a8>0,a8+a9<0,∴a8>0,a9<0,∴S16==8(a8+a9)<0,则使<0成立的最小自然数n的值为16.故选:B.【点评】本题考查了等差数列的通项公式与求和公式及其性质、不等式的性质,考查了推理能力与计算能力,属于中档题.11.(5分)在平而直角坐标系中,不等式组表示的平面区域面积为π,若x,y满足上述约束条件,则z=的最小值为()A.﹣1 B.C.D.【分析】由约束条件作出可行域,由z==1+,而的几何意义为可行域内的动点与定点P(﹣3,2)连线的斜率.结合直线与圆的位置关系求得答案.【解答】解:∵不等式组(r为常数)表示的平面区域的面积为π,∴圆x2+y2=r2的面积为4π,则r=2.由约束条件作出可行域如图,由z==1+,而的几何意义为可行域内的动点与定点P(﹣3,2)连线的斜率.设过P的圆的切线的斜率为k,则切线方程为y﹣2=k(x+3),即kx﹣y+3k+2=0.由=2,解得k=0或k=﹣.∴z=的最小值为1﹣=﹣.故选:C.【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法和数学转化思想方法,是中档题.12.(5分)已知数列{a n}中,a1=2,若a n+1﹣a n=a n2,设T m=,若T m<2018,则正整数m的最大值为()A.2019 B.2018 C.2017 D.2016=a n2+a n=a n(a n+1)≥6,推导出=,从而【分析】a n+1,进而T m=m﹣(﹣)<m﹣,由此能求出正整数m的最大值.【解答】解:由a n﹣a n=a n2,得a n+1=a n2+a n=a n(a n+1)≥6,+1∴=,∴=﹣,∴++…+=(﹣)+(﹣)+…+(﹣)=﹣∈(0,),∵,∴T m==m﹣(﹣)=m﹣+<m﹣+=m﹣∵T m<2018,∴m﹣<2018,∴m<2018+∴正整数m的最大值为2018,故选:B【点评】本题考查了数列递推关系、放缩法,考查了推理能力与计算能力,属于中档题.二、填空题:本题共4个小题,每小题5分,共20分.x<0|2<x<3}B.{x|-2<x<3}C.{x|x>13.(5分)不等式组表示的平面区域内的整点坐标是(﹣1,1).【分析】先根据不等式组画出可行域,再验证哪些当横坐标、纵坐标为整数的点是否在可行域内.【解答】解:根据不等式组画出可行域如图:由图象知,可行域内的点的横坐标为整数时x=﹣1,纵坐标可能为﹣1或﹣2即可行域中的整点可能有(﹣1,1)、(﹣1,2),经验证点(﹣1,1)满足不等式组,(﹣1,2)不满足不等式组,∴可行域中的整点为(﹣1,1),故答案为:(﹣1,1),【点评】本题考查一元二次不等式表示的区域,要会画可行域,同时要注意边界直线是否能够取到,还要会判断点是否在可行域内(点的坐标满足不等式组时,点在可行域内).属简单题.14.(5分)已知△ABC的内角A,B,C的对边分别为a,b,c,若a=2且sinA+cosA=2,则角C的大小为.【分析】利用三角恒等变换求出A,再利用正弦定理得出C.【解答】解:∵sinA+cosA=2,即2sin(A+)=2,∵0<A<π,∴A+=,即A=,由正弦定理得:,即,∴sinC=,∴C=或C=(舍).故答案为:.【点评】本题考查了正弦定理,属于基础题.15.(5分)如图所示,在圆内接四边形ABCD 中,AB=6,BC=3,CD=4,AD=5,则四边形ABCD 的面积为 6.【分析】利用余弦定理可求BD 2=5﹣4cosA=25+24cosA ,解得cosA=,结合范围0<A <π,利用同角三角函数基本关系式可求sinA ,利用三角形面积公式即可计算得解.【解答】解:∵四边形ABCD 圆内接四边形, ∴∠A +∠C=π,∵连接BD ,由余弦定理可得BD 2=AB 2+AD 2﹣2AB•AD•cosA=36+25﹣2×6×5cosA=61﹣60cosA , 且BD 2=CB 2+CD 2﹣2CB•CD•cos (π﹣A ) =9+16+2×3×4cosA=25+24cosA , ∴61﹣60cosA=25+24cosA , ∴cosA= 又0<A <π, ∴sinA=.∴S 四边形ABCD =S △ABD +S △CBD =AB•AD•sinA +CD•CB•sin (π﹣A )=×6×5×+×3×4×=6,故答案为:6【点评】本题主要考查了余弦定理,同角三角函数基本关系式,三角形面积公式的应用,考查了转化思想和数形结合思想的应用,属于中档题.16.(5分)已知数列{a n}中,a1=l,S n为其前n项和,当n≥2时,2a n+S n2=a n S n成立,则S10=.S n=S n﹣1﹣S n,可得数列{}是首项为1,公差为的等【分析】由已知得S n﹣1差数列,从而能求【解答】解:∵2a n+S n2=a n S n,∴S n2=a n(S n﹣2),a n=S n﹣S n﹣1(n≥2),∴S n2=(S n﹣S n﹣1)(S n﹣2),S n=S n﹣1﹣S n,…①即S n﹣1•S n≠0,由题意S n﹣1•S n,得﹣=,将①式两边同除以S n﹣1∵a1=l,∴=1∴数列{}是首项为1,公差为的等差数列,∴=1+(n﹣1)=(n+1)∴S n=,∴S10=,故答案为:【点评】本题考查数列的递推公式和前n项和,属于中档题三、解答题:本大题共6个小题,共70分.解答应写出文字说明、证明过程或盐酸步骤.17.(10分)在△ABC中,角A,B,C所对的边分别为a,b,c,已知a2+c2﹣b2=﹣ac.(1)求B;(2)若,,求a,c.【分析】(1)直接利用关系式的恒等变换,转化为余弦定理的形式,进一步求出B的值.(2)利用正弦定理已知条件求出结果.【解答】解:(1)△ABC中,角A,B,C所对的边分别为a,b,c,已知a2+c2﹣b2=﹣ac.则:,由于:0<B<π,解得:B=.(2)由于,所以:a=2c,由及a2+c2﹣b2=﹣ac.得到:a2+c2+ac=7.解得:a=2,c=1.【点评】本题考查的知识要点:余弦定理的应用,正弦定理的应用.18.(12分)已知方程x2+2(a+2)x+a2﹣1=0.(1)当该方程有两个负根时,求实数a的取值范围;(2)当该方程有一个正根和一个负根时,求实数a的取值范围.【分析】(1)当方程有两个负根时,利用判别式△≥0和根与系数的关系求出a的取值范围;(2)根据方程有一个正根和一个负根时,对应二次函数满足f(0)<0,由此求出实数a的取值范围.【解答】解:方程x2+2(a+2)x+a2﹣1=0的判别式为△=4(a+2)2﹣4(a2﹣1)=16a+20,当△=16a+20≥0时,设方程x2+2(a+2)x+a2﹣1=0两个实数根为x1、x2,则x1+x2=﹣2(a+2),x1x2=a2﹣1;(1)∵方程x2+2(a+2)x+a2﹣1=0有两个负根,∴,解得,即a>1或﹣≤a<﹣1,∴实数a的取值范围是[﹣,﹣1)∪(1,+∞);(2)∵方程x2+2(a+2)x+a2﹣1=0有一个正根和一个负根,∴对应二次函数满足f(0)=a2﹣1<0,解得﹣1<a<1,∴实数a的取值范围是(﹣1,1).【点评】本题考查了一元二次方程根的分布情况以及判别式和根与系数的关系应用问题,是中档题.19.(12分)已知{a n}是各项均为正数的等比数列,且a1+a2=6,a1a2=a3.(1)求数列{a n}的通项公式;(2){b n}为各项非零的等差数列,其前n项和S n=n2,求数列的前n项和T n.【分析】(1)设数列{a n}的公比为q,(q>0),由题意列方程组求得首项和公比,则数列{a n}的通项公式可求;(2)由{b n}的前n项和求得通项,代入,然后利用错位相减法求其前n项和T n.【解答】解:(1)设数列{a n}的公比为q,(q>0),由a1+a2=6,a1a2=a3,得,解得a1=q=2.∴;(2)当n=1时,b1=S1=1,当n≥2时,b n=S n﹣S n﹣1=n2﹣(n﹣1)2=2n﹣1,∴,∴,,∴=,∴.【点评】本题考查数列递推式,考查了错位相减法求数列的前n项和,是中档题.20.(12分)某市园林局将一块三角形地块ABC的一个角AMN建设为小游园,已知A=120°,AB,AC的长度均大于400米,现要在边界AM,AN处建设装饰墙,沿MN建设宽1.5米的健康步道.(1)若装饰墙AM,AN的总长度为400米,AM,AN 的长度分别为多少时,所围成的三角形地块AMN的面积最大?(2)若AM段装饰墙墙髙1米,AN段装饰墙墙髙1.5米,AM段装饰墙造价为每平方米150元,AN段装饰墙造价为每平方米100元,建造装饰墙用了90000元.若建设健康步道每100米需5000元,AM,AN的长度分别为多少时,所用费用最少?(1)设AM=x米,AN=y米,则x+y=400,△AMN的面积S=xysin120°=xy,【分析】利用基本不等式,可得结论;(2)由题意得,即x+y=600,要使竹篱笆用料最省,只需MN最短,利用余弦定理求出MN,即可得出结论.【解答】解:设AM=x米,AN=y米,则(1)x+y=400,A=120°,△AMN的面积S=xysin120°=xy≤,当且仅当x=y=200时取等号;(2)由题意得150x+1.5y•100=90000,即x+y=600,要使竹篱笆用料最省,只需MN最短,所以MN2=x2+y2﹣2xycos120°=x2+y2+xy=(x+y)2+y2﹣xy=360000﹣xy所以x=y=300时,MN有最小值300.∴AM=AN=300米时,所用费用最少为3×5000=15000元.【点评】本题考查利用数学知识解决实际问题,考查三角形面积的计算,余弦定理的运用,属于中档题.21.(12分)已知△ABC为锐角三角形,角A,B,C的对边分别为a,b,c且(b2+c2﹣a2)tanA=bc.(1)求角A的大小;(2)若a=,求2b﹣c的取值范围.【分析】(1)利用余弦定理列出关系式,代入已知等式变形求出sinA的值,即可确定出角A的大小;(2),由(1)可得A,由正弦定理可得,从而利用三角函数恒等变换的应用可得2b﹣c=2sin(B﹣),结合B的范围B,可得2b﹣c 取值范围.【解答】解:(1)由(b2+c2﹣a2)tanA=bc.及余弦定理b2+c2﹣a2=2bccosA,得sinA=∵△ABC为锐角三角形,∴A=.(2)由正弦定理可得,∴2b﹣c=4sinB﹣2sinC=4sinB﹣2sin()=3sinB﹣cosB=2sin(B﹣).∵△ABC为锐角三角形,∴,∴∴,2∴2b﹣c的取值范围为(0,3)【点评】本题主要考查了三角函数恒等变换的应用,考查了正弦定理,正弦函数的图象和性质在解三角形中的应用,属于中档题.22.(12分)设数列{a n}的前n项和为S n,且S n=4﹣a n﹣.(1)令b n=2n﹣1•a n,证明数列{b n}为等差数列,并求{b n}的通项公式;(2)是否存在n∈N*,使得不等式成立,若存在,求出λ的取值范围,若不存在,请说明理由.【分析】(1)由已知可得2a n=a n﹣1+,故2n﹣1•a n=2n﹣2•a n﹣1+1,进而可得数列{b n}为等差数列,并得到{b n}的通项公式;(2)存在n=1,使得不等式成立,且9≤λ≤10,利用对勾函数和反比例函数的图象性质,可得答案.【解答】解:(1)∵数列{a n}的前n项和为S n,且S n=4﹣a n﹣.∴当n=1时,a1=S1=4﹣a1﹣,即a1=1,=4﹣a n﹣1﹣.当n≥2时,S n﹣1则a n=S n﹣S n﹣1=a n﹣1﹣a n﹣,即2a n=a n﹣1+,故2n﹣1•a n=2n﹣2•a n﹣1+1,即2n﹣1•a n﹣2n﹣2•a n﹣1=1,∵b n=2n﹣1•a n,即{b n}是以1为首项,以1为公差的等差数列;即b n=n;(2)由(1)知:⇔,根据对勾函数的性质,可得:在n=3时取最小值,由反比例函数的性质,可得:在n=1时取最大值10;当n=1时,9≤λ≤10;当n=2时,6≤λ≤5,不存在满足条件的λ值;当n=3时,≤λ≤,不存在满足条件的λ值;当n≥4时,不存在满足条件的λ值;综上可得:存在n=1,使不等式成立,9≤λ≤10.【点评】本题考查的知识点是数列与不等式及函数的综合应用,难度中档.。
吉林省延边第二中学2018-2019学年高二上学期第二次阶段考试数学(理)试题(解析版)

延边二中2018—2019学年度第一学期第二次阶段检测高二年级数学试卷(理)一、选择题(共12小题,每小题4分,共48分,每题只有一个选项正确)1.已知命题:,,则命题的否定为()A. ,B. ,C. ,D. ,【答案】C【解析】全称命题的否定为特称命题,则命题:,的否定为, .本题选择C选项.2.已知双曲线的一条渐近线与直线垂直,则双曲线的离心率为( )A. B. C. D.【答案】A【解析】由条件可得双曲线的渐近线方程为,不妨取,∵渐近线与直线垂直,∴,∴,∴双曲线的离心率为。
选A。
3.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其大意为:“有一个人走了 378里路,第一天健步行走,从第二天起因脚痛每天走的路程为前一天的一半,走了 6天后到达目的地.”则此人第4天走了()A. 60里B. 48里C. 36里D. 24里【答案】D【解析】试题分析:由题意知,此人每天走的里数构成公比为的等比数列,设等比数列的首项为,则有,,,所以此人第天和第天共走了里,故选C.考点:1、阅读能力及建模能力;2、等比数列的通项及求和公式.4.“方程表示双曲线”的一个充分不必要条件是()A. 或B.C.D. 或【答案】B【解析】【分析】根据双曲线的标准方程形式,构造不等式,再根据充分条件、必要条件的定义判断即可.【详解】根据方程表示双曲线,可知k(1-k)<0,解得k>1或k<0,根据充分不必要条件的概念,可知B选项符合,故选B.【点睛】本题考查了双曲线的标准方程,考查了充分不必要条件;一般情况下,涉及求字母参数的充分不必要条件时,常常利用集合的包含关系来解决.5.两个等差数列或,其前项和分别为和,且,则()A. B. C. D.【答案】A【解析】【分析】根据等差数列的性质与等差数列的前n项和公式,将转化为求解.【详解】已知数列或是等差数列,则,∵,∴故选A.【点睛】本题考查了等差数列的性质的应用,考查了等差数列的前n项和公式,灵活应用等差数列的性质和求和公式是解答本题的关键.6.已知椭圆:()的左、右焦点为,,离心率为,过的直线交于,两点.若的周长为,则的方程为()A. B. C. D.【答案】A【解析】试题分析:若△AF1B的周长为4可知,所以方程为考点:椭圆方程及性质视频7.已知直线与椭圆交于两点,中点是,则直线的斜率为()A. B. C. D. 4【答案】C【解析】【分析】设交点坐标,利用“点差法”,构造出,再利用中点坐标公式和中点坐标,以及斜率公式求解即可.【详解】设交点坐标,则,两式相减得,,故,故选C【点睛】本题考查了直线与椭圆的相交弦问题,一般涉及弦的中点和直线斜率问题时,可采用“点差法”,建立中点坐标与斜率的关系求解.8.设其中满足,若的最大值是9,则的最小值为( )A. 1B.C.D. 6【答案】B【解析】【分析】根据约束条件,画出可行域,利用目标函数的几何意义以及z的最大值是9,分析得目标函数过B点时,取得最大值,得k的值,进而求z的最小值.【详解】作出不等式组表示的平面区域,如图阴影部分所示,作直线:2x+y=0,平移直线,当直线经过B点时,z取得最大值,B点的坐标为(k,k),故2k+k=3k=9,解得k=3,当直线经过A点时,z取得最小值,求得A点的坐标为(-6,3),故z min= -12+3= -9.故选B【点睛】本题考查了简单的线性规划,考查了根据目标函数的最值求参数,解决这类问题,一般先画出可行域,然后分析目标函数经过哪个顶点时取得最值,再根据已知最值和交点坐标,求得参数的值.9.已知两点,点是椭圆上任意一点,则点到直线的距离最大值为( )A. B. C. 6 D.【答案】B 【解析】 【分析】先求出直线AB 的方程,然后结合图形,将点到直线的的最大距离转化为求与直线AB 平行且与椭圆相切的直线与直线AB 的最大距离,再利用两平行线间的距离求出即可【详解】由两点A (-1,0 ),B ( 0,1),则直线AB 的方程为y=x+1, 由图可知,直线y=x+m (m <0)和椭圆相切于P 点时,到AB 的距离最大.联立方程得, 整理得25x 2+32mx+16m 2-144=0由于直线y=x+m 和椭圆相切,则△=(32m )2-4×25×(16m 2-144)=0,解得m= -5或m=5(舍去)由于y=x+1与直线y=x-5的距离为则点P 到直线AB 距离的最大值为 ,故选B.【点睛】本题考查了直线与椭圆的位置关系有关的最值问题,涉及了根据两点求直线方程,两平行直线间的距离公式;椭圆中求最值的方法有两类:函数法和数形结合法,本题采用数形结合法,关键是理解与直线AB 平行且与椭圆相切的直线所经过的切点到直线AB 的距离.最大或最小.10.在中,角,,的对边分别为,,,若,,则角的最大值为()A. B. C. D.【答案】C【解析】由题意得,又,时等号成立。
南阳市第一中学2018-2019学年高三上学期11月月考数学试卷含答案
1. 已知 g ( x) ( ax 取值范围是( 班级_______________ 座号______ 姓名_______________ 分数_______________ ___________________________________________________________________________________________________ A. ( 1, ) 2. 若 sin( ) B. ( 1, 0) C. ( 2, ) D. ( 2, 0)
(Ⅱ)设 g ( x) f ( x) x 2a ln x ,且 g ( x) 有两个极值点,其中 x1 [0,1] ,求 g ( x1 ) g ( x2 ) 的最小值. 【命题意图】本题考查导数的应用等基础知识,意在考查转化与化归思想和综合分析问题、解决问题的能力.
24.如图,在三棱柱 ABC A1 B1C1 中, A1 A AB, CB A1 ABB1 . (1)求证: AB1 平面 A1 BC ; (2)若 AC 5, BC 3, A1 AB 60o ,求三棱锥 C AA1 B 的体积.
S n 0.45 ,由程序框图可得 k 值是 6. 故选 D.
4. 【答案】D 【解析】
第 5 页,共 14 页
试题分析:在 ABC 中, tan Ag sin B tan Bg sin A ,化简得
2 2
sin A sin B g sin 2 B g sin 2 A ,解得 cos A cos B
第 4 页,共 14 页
南阳市第一中学 2018-2019 学年高三上学期 11 月月考数学试卷含答案(参考答案) 一、选择题
2019-2020学年云南师大附中高三(下)月考数学试卷(理科)(含答案)
2019-2020学年云南师大附中高三(下)月考数学试卷(理科)(六)一、选择题.1.(5分)已知集合2{|log 1}A x x =<,集合{|||2}B x N x =∈<,则(A B = )A .{|01}x x <<B .{|02}x x <C .{|22}x x -<<D .{0,1}2.(5分)已知i 为虚数单位,则复数3(1)(1)(i i --= )A .2iB .2i -C .2D .2-3.(5分)已知平面向量a ,b 的夹角为30︒,||1a =,1()2a a b -=-,则||(b = )AB .2C .3D .44.(5分)已知实数x ,y 满足约束条件()1221x y x y y +⎧⎪-⎨⎪⎩,则yx 的最大值为( )A .2B .32C .1D .235.(5分)在区间(0,3)上随机地取一个数k ,则事件“直线y kx =与双曲线22:1C x y -=有两个不同的交点“发生的概率为( ) A .13B .12C .23D .16.(5分)已知3(21)()x x a -+展开式中各项系数之和为27,则其展开式中2x 项的系数为( )A .24B .18C .12D .47.(5分)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c,若sin A =,a =,c a >,则角C 的大小为( )A .3πB .2πC .23πD .34π8.(5分)在下面四个三棱柱中,A ,B 为三棱柱的两个顶点,E ,F ,G 为所在棱的中点,则在这四个三棱柱中,直线AB 与平面EFG 不平行的是( )A .B .C .D .9.(5分)已知椭圆2222:1(0)x y C a b a b +=>>与抛物线2:2(0)E y px p =>有公共焦点F ,椭圆C 与抛物线E 交于A ,B 两点,且A ,B ,F 三点共线,则椭圆C 的离心率为( )A 21B .22C .3D .51-10.(5分)已知数列{}n a 满足:对*n N ∀∈,1log (2)n n a n +=+,设n T 为数列{}n a 的前n 项之积,则下列说法错误的是( ) A .12a a >B .17a a >C .63T =D .76T T <11.(5分)数学家托勒密从公元127年到151年在亚历山大城从事天文观测,在编制三角函数表过程中发现了很多重要的定理和结论,如图便是托勒密推导倍角公式“2cos212sin αα=-”所用的几何图形。
宿松县实验中学2018-2019学年高三上学期11月月考数学试卷含答案
宿松县实验中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 函数f (x )=3x +x ﹣3的零点所在的区间是( ) A .(0,1) B .(1,2) C .(2.3) D .(3,4) 2. 在曲线y=x 2上切线倾斜角为的点是( )A .(0,0)B .(2,4) C.(,)D.(,)3. 数列{a n }是等差数列,若a 1+1,a 3+2,a 5+3构成公比为q 的等比数列,则q=( ) A .1 B .2C .3D .44. 在平面直角坐标系中,若不等式组(为常数)表示的区域面积等于, 则的值为( )A .B .C .D .5. 复数z=(其中i 是虚数单位),则z的共轭复数=( ) A.﹣iB.﹣﹣i C.+iD.﹣+i6. 设关于x 的不等式:x 2﹣ax ﹣2>0解集为M ,若2∈M, ∉M ,则实数a 的取值范围是( ) A .(﹣∞,)∪(1,+∞)B .(﹣∞,)C .[,1) D.(,1)7. 过点(﹣1,3)且平行于直线x ﹣2y+3=0的直线方程为( )A .x ﹣2y+7=0B .2x+y ﹣1=0C .x ﹣2y ﹣5=0D .2x+y ﹣5=08.一个算法的程序框图如图所示,若运行该程序后输出的结果为,则判断框中应填入的条件是( )A .i ≤5?B .i ≤4?C .i ≥4?D .i ≥5?9. 已知直线 a 平面α,直线b ⊆平面α,则( )A .a bB .与异面C .与相交D .与无公共点10.已知全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},则(∁U A )∩(∁U B )=( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .{5,8}B .{7,9}C .{0,1,3}D .{2,4,6}11.方程(x 2﹣4)2+(y 2﹣4)2=0表示的图形是( )A .两个点B .四个点C .两条直线D .四条直线12.设函数f (x )=,f (﹣2)+f (log 210)=( )A .11B .8C .5D .2二、填空题13.已知实数x ,y 满足约束条件⎪⎩⎪⎨⎧≥+-≥-≤-1122y x y x y x ,若目标函数ay x z +=2仅在点)4,3(取得最小值,则a 的取值范围是 .14.已知函数5()sin (0)2f x x a x π=-≤≤的三个零点成等比数列,则2log a = . 15.已知(2x﹣)n展开式的二项式系数之和为64,则其展开式中常数项是 .16.设O 为坐标原点,抛物线C :y 2=2px (p >0)的准线为l ,焦点为F ,过F斜率为的直线与抛物线C相交于A ,B 两点,直线AO 与l 相交于D ,若|AF|>|BF|,则= .17.已知θ是第四象限角,且sin (θ+)=,则tan (θ﹣)= .18.已知圆22240C x y x y m +-++=:,则其圆心坐标是_________,m 的取值范围是________. 【命题意图】本题考查圆的方程等基础知识,意在考查运算求解能力.三、解答题19.已知函数()()xf x x k e =-(k R ∈). (1)求()f x 的单调区间和极值; (2)求()f x 在[]1,2x ∈上的最小值.(3)设()()'()g x f x f x =+,若对35,22k ⎡⎤∀∈⎢⎥⎣⎦及[]0,1x ∀∈有()g x λ≥恒成立,求实数λ的取值范围.20.如图所示,在四棱锥P ABCD -中,底面ABCD 为菱形,E 为AC 与BD 的交点,PA ⊥平 面ABCD ,M 为PA 中点,N 为BC 中点. (1)证明:直线//MN 平面ABCD ;(2)若点Q 为PC 中点,120BAD ∠=︒,PA =1AB =,求三棱锥A QCD -的体积.21.(本小题满分12分)已知向量,a b 满足:||1a =,||6b =,()2a b a ∙-=. (1)求向量与的夹角; (2)求|2|a b -.22.已知抛物线C :y 2=2px (p >0)过点A (1,﹣2).(Ⅰ)求抛物线C 的方程,并求其准线方程;(Ⅱ)是否存在平行于OA (O 为坐标原点)的直线L ,使得直线L 与抛物线C 有公共点,且直线OA 与L 的距离等于?若存在,求直线L 的方程;若不存在,说明理由.23.某城市100户居民的月平均用电量(单位:度),以[)160,180,[)180,200,[)200,220,[)220,240,[)240,260,[)260,280,[]280,300分组的频率分布直方图如图.(1)求直方图中的值;(2)求月平均用电量的众数和中位数.1111]24.【2017-2018第一学期东台安丰中学高三第一次月考】已知函数()2ln f x ax x =+,()21145ln 639f x x x x =++,()22122f x x ax =+,a R ∈ (1)求证:函数()f x 在点()(),e f e 处的切线恒过定点,并求出定点的坐标; (2)若()()2f x f x <在区间()1,+∞上恒成立,求a 的取值范围; (3)当23a =时,求证:在区间()0,+∞上,满足()()()12f x g x f x <<恒成立的函数()g x 有无穷多个.(记ln5 1.61,6 1.79ln ==)宿松县实验中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】A【解析】解:∵f(0)=﹣2<0,f(1)=1>0,∴由零点存在性定理可知函数f(x)=3x+x﹣3的零点所在的区间是(0,1).故选A【点评】本题主要考查了函数的零点的判定定理,这种问题只要代入所给的区间的端点的值进行检验即可,属于基础题.2.【答案】D【解析】解:y'=2x,设切点为(a,a2)∴y'=2a,得切线的斜率为2a,所以2a=tan45°=1,∴a=,在曲线y=x2上切线倾斜角为的点是(,).故选D.【点评】本小题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力.属于基础题.3.【答案】A【解析】解:设等差数列{a n}的公差为d,由a1+1,a3+2,a5+3构成等比数列,得:(a3+2)2=(a1+1)(a5+3),整理得:a32+4a3+4=a1a5+3a1+a5+3即(a1+2d)2+4(a1+2d)+4=a1(a1+4d)+4a1+4d+3.化简得:(2d+1)2=0,即d=﹣.∴q===1.故选:A.【点评】本题考查了等差数列的通项公式,考查了等比数列的性质,是基础的计算题.4.【答案】B【解析】【知识点】线性规划【试题解析】作可行域:由题知:所以故答案为:B5.【答案】C【解析】解:∵z==,∴=.故选:C.【点评】本题考查了复数代数形式的乘除运算,是基础题.6.【答案】C【解析】解:由题意得:,解得:≤a<1,则实数a的取值范围为[,1).故选C【点评】此题考查了一元二次不等式的解法,以及不等式组的解法,根据题意列出关于a的不等式组是解本题的关键.7.【答案】A【解析】解:由题意可设所求的直线方程为x﹣2y+c=0∵过点(﹣1,3)代入可得﹣1﹣6+c=0 则c=7∴x﹣2y+7=0故选A.【点评】本题主要考查了直线方程的求解,解决本题的关键根据直线平行的条件设出所求的直线方程x﹣2y+c=0.8.【答案】B【解析】解:模拟执行程序框图,可得i=1,sum=0,s=0满足条件,i=2,sum=1,s=满足条件,i=3,sum=2,s=+满足条件,i=4,sum=3,s=++满足条件,i=5,sum=4,s=+++=1﹣+﹣+﹣+﹣=.由题意,此时不满足条件,退出循环,输出s的,则判断框中应填入的条件是i≤4.故选:B.【点评】算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.程序填空也是重要的考试题型,这种题考试的重点有:①分支的条件②循环的条件③变量的赋值④变量的输出.其中前两点考试的概率更大.此种题型的易忽略点是:不能准确理解流程图的含义而导致错误.9.【答案】D【解析】试题分析:因为直线a平面α,直线b⊆平面α,所以//a b或与异面,故选D.考点:平面的基本性质及推论.10.【答案】B【解析】解:由题义知,全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},所以C U A={2,4,6,7,9},C U B={0,1,3,7,9},所以(C U A)∩(C U B)={7,9}故选B11.【答案】B【解析】解:方程(x2﹣4)2+(y2﹣4)2=0则x2﹣4=0并且y2﹣4=0,即,解得:,,,,得到4个点. 故选:B .【点评】本题考查二元二次方程表示圆的条件,方程的应用,考查计算能力.12.【答案】B 【解析】解:∵f (x )=,∴f (﹣2)=1+log 24=1+2=3,=5,∴f (﹣2)+f (log 210)=3+5=8. 故选:B .【点评】本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.二、填空题13.【答案】(,2)-∞-【解析】不等式组表示的平面区域的角点坐标分别为(1,0),(0,1),(3,4)A B C , ∴2A z =,B z a =,64C z a =+.∴64264a a a+<⎧⎨+<⎩,解得2a <-. 14.【答案】12-考点:三角函数的图象与性质,等比数列的性质,对数运算.【名师点睛】本题考查三角函数的图象与性质、等比数列的性质、对数运算法则,属中档题.把等比数列与三角函数的零点有机地结合在一起,命题立意新,同时考查数形结合基本思想以及学生的运算能力、应用新知识解决问题的能力,是一道优质题. 15.【答案】 60 .【解析】解:由二项式系数的性质,可得2n=64,解可得,n=6;(2x ﹣)6的展开式为为T r+1=C 66﹣r•(2x )6﹣r •(﹣)r =(﹣1)r•26﹣r•C 66﹣r •,令6﹣r=0,可得r=4, 则展开式中常数项为60. 故答案为:60.【点评】本题考查二项式定理的应用,注意系数与二项式系数的区别.16.【答案】 .【解析】解:∵O 为坐标原点,抛物线C :y 2=2px (p >0)的准线为l ,焦点为F ,过F 斜率为的直线与抛物线C 相交于A ,B 两点,直线AO 与l 相交于D ,∴直线AB 的方程为y=(x ﹣),l 的方程为x=﹣,联立,解得A (﹣,P ),B (,﹣)∴直线OA 的方程为:y=,联立,解得D (﹣,﹣)∴|BD|==,∵|OF|=,∴ ==.故答案为:.【点评】本题考查两条件线段的比值的求法,是中档题,解题时要认真审题,要熟练掌握抛物线的简单性质.17.【答案】.【解析】解:∵θ是第四象限角,∴,则,又sin (θ+)=,∴cos (θ+)=.∴cos ()=sin (θ+)=,sin ()=cos (θ+)=.则tan (θ﹣)=﹣tan ()=﹣=.故答案为:﹣.18.【答案】(1,2)-,(,5)-∞.【解析】将圆的一般方程化为标准方程,22(1)(2)5x y m -++=-,∴圆心坐标(1,2)-, 而505m m ->⇒<,∴m 的范围是(,5)-∞,故填:(1,2)-,(,5)-∞.三、解答题19.【答案】(1)()f x 的单调递增区间为(1,)k -+∞,单调递减区间为(,1)k -∞-,1()(1)k f x f k e -=-=-极小值,无极大值;(2)2k ≤时()(1)(1)f x f k e ==-最小值,23k <<时1()(1)k f x f k e -=-=-最小值,3k ≥时,2()(2)(2)f x f k e ==-最小值;(3)2e λ≤-.【解析】(2)当11k -≤,即2k ≤时,()f x 在[]1,2上递增,∴()(1)(1)f x f k e ==-最小值;当12k -≥,即3k ≥时,()f x 在[]1,2上递减,∴2()(2)(2)f x f k e ==-最小值;当112k <-<,即23k <<时,()f x 在[]1,1k -上递减,在[]1,2k -上递增,∴1()(1)k f x f k e -=-=-最小值.(3)()(221)x g x x k e =-+,∴'()(223)x g x x k e =-+, 由'()0g x =,得32x k =-, 当32x k <-时,'()0g x <; 当32x k >-时,'()0g x >,∴()g x 在3(,)2k -∞-上递减,在3(,)2k -+∞递增,故323()()22k g x g k e -=-=-最小值,又∵35,22k ⎡⎤∈⎢⎥⎣⎦,∴[]30,12k -∈,∴当[]0,1x ∈时,323()()22k g x g k e -=-=-最小值,∴()g x λ≥对[]0,1x ∀∈恒成立等价于32()2k g x e λ-=-≥最小值;又32()2k g x e λ-=-≥最小值对35,22k ⎡⎤∀∈⎢⎥⎣⎦恒成立.∴32min (2)k ek --≥,故2e λ≤-.1考点:1、利用导数研究函数的单调性进而求函数的最值;2、不等式恒成立问题及分类讨论思想的应用. 【方法点睛】本题主要考查利用导数研究函数的单调性进而求函数的最值、不等式恒成立问题及分类讨论思想的应用.属于难题. 数学中常见的思想方法有:函数与方程的思想、分类讨论思想、转化与划归思想、数形结合思想、建模思想等等,分类讨论思想解决高中数学问题的一种重要思想方法,是中学数学四种重要的数学思想之一,尤其在解决含参数问题发挥着奇特功效,大大提高了解题能力与速度.运用这种方法的关键是将题设条件研究透,这样才能快速找准突破点. 充分利用分类讨论思想方法能够使问题条理清晰,进而顺利解答,希望同学们能够熟练掌握并应用与解题当中.本题(2)就是根据这种思想讨论函数单调区间的. 20.【答案】(1)证明见解析;(2)18. 【解析】试题解析:(1)证明:取PD 中点R ,连结MR ,RC , ∵//MR AD ,//NC AD ,12MR NC AD ==, ∴//MR NC ,MR AC =, ∴四边形MNCR 为平行四边形,∴//MN RC ,又∵RC ⊂平面PCD ,MN ⊄平面PCD , ∴//MN 平面PCD .(2)由已知条件得1AC AD CD ===,所以ACD S ∆=, 所以111328A QCD Q ACD ACD V V S PA --∆==⨯⨯=.考点:1、直线与平面平行的判定;2、等积变换及棱锥的体积公式.21.【答案】(1)3π;(2) 【解析】试题分析:(1)要求向量,a b 的夹角,只要求得这两向量的数量积a b ⋅,而由已知()2a b a ∙-=,结合数量积的运算法则可得a b ⋅,最后数量积的定义可求得其夹角;(2)求向量的模,可利用公式22a a =,把考点:向量的数量积,向量的夹角与模.【名师点睛】本题考查向量的数量积运算及特殊角的三角函数值,求解两个向量的夹角的步骤:第一步,先计算出两个向量的数量积;第二步,分别计算两个向量的模;第三步,根据公式cos ,a b a b a b⋅<>=求得这两个向量夹角的余弦值;第四步,根据向量夹角的范围在[0,]π内及余弦值求出两向量的夹角. 22.【答案】【解析】解:(I )将(1,﹣2)代入抛物线方程y 2=2px ,得4=2p ,p=2∴抛物线C 的方程为:y 2=4x ,其准线方程为x=﹣1(II )假设存在符合题意的直线l ,其方程为y=﹣2x+t ,由得y 2+2y ﹣2t=0,∵直线l 与抛物线有公共点,∴△=4+8t ≥0,解得t ≥﹣又∵直线OA 与L 的距离d==,求得t=±1∵t ≥﹣ ∴t=1∴符合题意的直线l 存在,方程为2x+y ﹣1=0【点评】本题小题主要考查了直线,抛物线等基础知识,考查推理论证能力,运算求解能力,考查函数与方程思想,数形结合的思想,化归与转化思想,分类讨论与整合思想.23.【答案】(1)0.0075x =;(2)众数是230,中位数为224.【解析】试题分析:(1)利用频率之和为一可求得的值;(2)众数为最高小矩形底边中点的横坐标;中位数左边和右边的直方图的面积相等可求得中位数.1试题解析:(1)由直方图的性质可得(0.0020.00950.0110.01250.0050.0025)201x ++++++⨯=, ∴0.0075x =.考点:频率分布直方图;中位数;众数. 24.【答案】(1)切线恒过定点1,22e ⎛⎫⎪⎝⎭.(2) a 的范围是11,22⎡⎤-⎢⎥⎣⎦ (3) 在区间()1,+∞上,满足()()()12f x g x f x <<恒成立函数()g x 有无穷多个【解析】试题分析:(1)根据导数的几何意义求得切线方程为11222e y ae x e ⎛⎫⎛⎫-=+- ⎪⎪⎝⎭⎝⎭,故过定点1,22e ⎛⎫ ⎪⎝⎭;试题解析:(1)因为()12f x ax x '=+,所以()f x 在点()(),e f e 处的切线的斜率为12k ae e=+, 所以()f x 在点()(),e f e 处的切线方程为()2121y ae x e ae e ⎛⎫=+-++ ⎪⎝⎭,整理得11222e y ae x e ⎛⎫⎛⎫-=+- ⎪⎪⎝⎭⎝⎭,所以切线恒过定点1,22e ⎛⎫⎪⎝⎭.(2)令()()()2p x f x f x =-=212ln 02a x ax x ⎛⎫--+< ⎪⎝⎭,对()1,x ∈+∞恒成立,因为()()1212p x a x a x =--+'()22121a x ax x --+=()()()1211*x a x x⎡⎤---⎣⎦=令()0p x '=,得极值点11x =,2121x a =-,①当112a <<时,有211x x >=,即112a <<时,在()2,x +∞上有()0p x '>,此时()p x 在区间()2,x +∞上是增函数,并且在该区间上有()()()2,p x p x ∈+∞,不合题意;②当1a ≥时,有211x x <=,同理可知,()p x 在区间()1,+∞上,有()()()1,p x p ∈+∞,也不合题意; ③当12a ≤时,有210a -≤,此时在区间()1,+∞上恒有()0p x '<, 从而()p x 在区间()1,+∞上是减函数;要使()0p x <在此区间上恒成立,只须满足()111022p a a =--≤⇒≥-, 所以1122a -≤≤. 综上可知a 的范围是11,22⎡⎤-⎢⎥⎣⎦. (利用参数分离得正确答案扣2分)(3)当23a =时,()21145ln 639f x x x x =++,()221423f x x x =+ 记()()22115ln 39y f x f x x x =-=-,()1,x ∈+∞.因为22565399x x y x x='-=-,令0y '=,得x =所以()()21y f x f x =-在⎛ ⎝为减函数,在⎫+∞⎪⎪⎭上为增函数,所以当x =时,min 59180y =设()()()15901180R x f x λλ=+<<,则()()()12f x R x f x <<, 所以在区间()1,+∞上,满足()()()12f x g x f x <<恒成立函数()g x 有无穷多个。
梨树区第一中学2018-2019学年高三上学期11月月考数学试卷含答案
梨树区第一中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 函数y=f ′(x )是函数y=f (x )的导函数,且函数y=f (x )在点p (x 0,f (x 0))处的切线为l :y=g (x )=f ′(x 0)(x ﹣x 0)+f (x 0),F (x )=f (x )﹣g (x ),如果函数y=f (x )在区间[a ,b]上的图象如图所示,且a <x 0<b ,那么()A .F ′(x 0)=0,x=x 0是F (x )的极大值点B .F ′(x 0)=0,x=x 0是F (x )的极小值点C .F ′(x 0)≠0,x=x 0不是F (x )极值点D .F ′(x 0)≠0,x=x 0是F (x )极值点2. 已知双曲线kx 2﹣y 2=1(k >0)的一条渐近线与直线2x+y ﹣3=0垂直,则双曲线的离心率是( )A .B .C .4D .3. 若则的值为( )⎩⎨⎧≥<+=-)2(,2)2(),2()(x x x f x f x)1(f A .8B .C .2D .81214. (理)已知tan α=2,则=()A .B .C .D .5. 记集合T={0,1,2,3,4,5,6,7,8,9},M=,将M 中的元素按从大到小排列,则第2013个数是( )A .B .C .D .6. 若f (x )=x 2﹣2x ﹣4lnx ,则f ′(x )>0的解集为( )A .(0,+∞)B .(﹣1,0)∪(2,+∞)C .(2,+∞)D .(﹣1,0)7. 与﹣463°终边相同的角可以表示为(k ∈Z )()A .k360°+463°B .k360°+103°C .k360°+257°D .k360°﹣257°8. 函数在一个周期内的图象如图所示,此函数的解析式为()sin()y A x ωϕ=+班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .B .C .D .2sin(23y x π=+22sin(2)3y x π=+2sin(23x y π=-2sin(2)3y x π=-9. 已知f (x )=m •2x +x 2+nx ,若{x|f (x )=0}={x|f (f (x ))=0}≠∅,则m+n 的取值范围为( )A .(0,4)B .[0,4)C .(0,5]D .[0,5]10.用反证法证明某命题时,对结论:“自然数a ,b ,c 中恰有一个偶数”正确的反设为( )A .a ,b ,c 中至少有两个偶数B .a ,b ,c 中至少有两个偶数或都是奇数C .a ,b ,c 都是奇数D .a ,b ,c 都是偶数11.在等比数列中,,前项和为,若数列也是等比数列,则等于( )A .B .C .D .12.已知锐角△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,23cos 2A+cos2A=0,a=7,c=6,则b=( )A .10B .9C .8D .5二、填空题13.已知函数f (x )=,点O 为坐标原点,点An (n ,f (n ))(n ∈N +),向量=(0,1),θn 是向量与i 的夹角,则++…+= .14.设满足条件,若有最小值,则的取值范围为.,x y ,1,x y a x y +≥⎧⎨-≤-⎩z ax y =-a 15.已知函数f (x )=sinx ﹣cosx ,则= .16.函数f (x )=a x +4的图象恒过定点P ,则P 点坐标是 .17.已知变量x ,y ,满足,则z=log 4(2x+y+4)的最大值为 .18.已知函数f (x )=x 3﹣ax 2+3x 在x ∈[1,+∞)上是增函数,求实数a 的取值范围 .三、解答题19.(本小题满分12分)如图,四棱锥中,底面是边长为的菱形,且,侧面为等边三角形,P ABCD -ABCD 260oABC ∠=PDC 且与底面垂直,为的中点.ABCD M PB (Ⅰ)求证:;PA ⊥DM (Ⅱ)求直线与平面所成角的正弦值.PC DCM20.在中,、、是 角、、所对的边,是该三角形的面积,且(1)求的大小;(2)若,,求的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018-2019高中数学必修五检测:利用简单的线性规划求最值(附答案)
[即时达标对点练]
题组1 求线性目标函数的最值
1.已知x ,y 满足约束条件⎩⎨⎧x -y ≥0,
x +y -4≤0,y ≥1,
则z =-2x +y 的最大值是(
)
A .-1
B .-2
C .-5
D .1
2.若变量x ,y 满足约束条件⎩⎨⎧y ≤1,
x +y ≥0,x -y -2≤0,
则z =x -2y 的最大值为(
)
A .4
B .3
C .2
D .1 题组2 求非线性目标函数的最值
3.已知x ,y 满足约束条件⎩⎨⎧x ≥0,
y ≥0,x +y ≥1,
则(x +3)2
+y 2
的最小值为(
)
A.10 B .22 C .8 D .10
4.已知变量x ,y 满足约束条件⎩⎨⎧x -y +2≤0,x ≥1,x +y -7≤0,
则y
x
的取值范围是________.
题组3 已知目标函数的最值求参数
5.已知a >0,x ,y 满足约束条件⎩⎨⎧x ≥1,
x +y ≤3,y ≥a (x -3),
若z =2x +y 的最小值为1,则a
=( )
A.14
B.1
2
C .1
D .2 6.设m >1,在约束条件⎩⎨⎧y ≥x ,
y ≤mx ,x +y ≤1
下,目标函数z =x +5y 的最大值为4,则
m 的值为________.
[能力提升综合练]
1.若变量x ,y 满足约束条件⎩⎨⎧x +y ≤4,
x -y ≤2,x ≥0,y ≥0,
则2x +y 的最大值是(
)
A .2
B .4
C .7
D .8
2.设O 为坐标原点,A (1,1),若点B (x ,y )满足⎩⎨⎧
x 2+y 2-2x -2y +1≥0,
1≤x ≤2,
1≤y ≤2,
则
取得最小值时,点B 的个数是( )
A .1
B .2
C .3
D .无数个
3.设x ,y 满足约束条件⎩⎨⎧x +y ≥a ,
x -y ≤-1,
且z =x +ay 的最小值为7,则a =( )
A .-5
B .3
C .-5或3
D .5或-3
4.在△ABC 中,三个顶点分别为A (2,4),B (-1,2),C (1,0),点P (x ,y )在△ABC 的内部及其边界上运动,则y -x 的取值范围为( )
A .[1,3]
B .[-3,1]
C .[-1,3]
D .[-3,-1]
5.已知点P (x ,y )的坐标满足条件⎩⎨⎧x +y ≤4,
y ≥x ,x ≥1,
点O 为坐标原点,那么|PO |的最小
值
等于________,最大值等于________.
6.若目标函数z =x +y +1在约束条件⎩⎪⎨⎪⎧x +y -2≤0,
x -y +2≤0,
y ≤n ,x ≥-3
下,取得最大值的最优解有
无穷多个,则n 的取值范围是________.
7.已知变量x ,y 满足约束条件⎩
⎨⎧1≤x +y ≤4,
-2≤x -y ≤2,若目标函数z =ax +y (其中a >0)
仅在点(3,1)处取得最大值,求a 的取值范围.
8.如果点P 在平面区域⎩⎨⎧2x -y +2≥0,
x +y -2≤0,2y -1≥0
上,点Q 在曲线x 2
+(y +2)2
=1上,
求|PQ |的最小值.
答案
1.解析:选A 作出可行域,如图所示,
当z =-2x +y 经过点A 时,z 取得最大值,由⎩
⎪⎨⎪⎧x -y =0,
y =1得A (1,1),
则z max =-2×1+1=-1.
2.解析:选B 画出可行域(如图),
由z =x -2y 得y =12x -z
2
,则当目标函数过C (1,-1)时取得最大值,
所以z max =1-2×(-1)=3.
3.解析:选D 先由约束条件作出可行域如图.A (0,1),B (1,0),目标函数z =(x +3)2+y 2表示阴影部分的点与点C (-3,0)的距离的平方.由图可知最小值为|AC |2=32+12=10.
4.解析:画出可行域如图,由y
x 的几何意义知,最优解为A ⎝⎛⎭⎫52,92,B (1,6), 而k QA =9
5,k QB =6,
∴y
x
的取值范围为⎣⎡⎦⎤95,6.
答案:⎣⎡⎦⎤
95,6
5.解析:选B 由已知约束条件,作出可行域,如图中△ABC 内部及边界部分,由目标函数z =2x +y 的几何意义为直线l :y =-2x +z 在y 轴上的截距,知当直线l 过可行域内的点B (1,-2a )时,目标函数z =2x +y 的最小值为1,则2-2a =1,a =1
2
.
6.解析:画出可行域如图,可知z =x +5y 在点A ⎝⎛⎭
⎫11+m ,m
1+m 取最大值为4,
解得m =3.
答案:3
[能力提升综合练]
1.解析:选C 画出可行域如图(阴影部分).
设目标函数为z =2x +y ,由⎩
⎪⎨⎪⎧x +y =4,
x -y =2解得A (3,1),当目标函数过A (3,1)时取得最大
值,∴z max =2×3+1=7,
故选C. 2.
解析:选B 如图,阴影部分为点B (x ,y )所在的区域. ∵OA ―→·OB ―→=x +y , 令z =x +y ,则y =-x +z .
由图可知,当点B 在C 点或D 点时,z 取最小值,故点B 的个数为2.
3.解析:选B 二元一次不等式组表示的平面区域如图所示,其中A ⎝⎛⎭⎫
a -12,a +12.平移直线x +ay =0,可知在点A ⎝⎛
⎭⎫
a -12,a +12处,z 取得最值,
因此a -12+a ×a +12
=7,
化简得a 2+2a -15=0,
解得a =3或a =-5,但a =-5时,z 取得最大值,故舍去,答案为a =3. 4.
解析:选C 先画出三角形区域(如图),然后转化为一个线性规划问题,求线性目标函数z =y -x 的取值范围.由图求出其取值范围是[-1,3].
5.解析:点P (x ,y )满足的可行域为△ABC 区域,A (1,1),C (1,3).由图可得,
|PO |最小值=|AO |=2;|PO |最大值=|CO |=10.
答案:2
10
6.解析:先根据⎩⎪⎨⎪
⎧x +y -2≤0,x -y +2≤0,x ≥-3作出如图所示阴影部分的可行域,欲使目标函数z =x
+y +1取得最大值的最优解有无穷多个,需使目标函数对应的直线平移时达到可行域的边
界直线x +y -2=0,且只有当n >2时,可行域才包含x +y -2=0这条直线上的线段BC 或其部分.
答案:(2,+∞)
7.解:由约束条件画出可行域(如图所示)为矩形ABCD (包括边界).
点C 的坐标为(3,1),z 最大即直线y =-ax +z 在y 轴上的截距最大, ∴-a <k CD , 即-a <-1. ∴a >1.
即a 的取值范围为(1,+∞).
8.解:画出不等式组⎩⎪⎨⎪
⎧2x -y +2≥0,x +y -2≤0,2y -1≥0所表示的平面区域,x 2+(y +2)2=1所表示的曲线
是以(0,-2)为圆心,1为半径的一个圆.
如图所示,只有当点P 在点A ⎝⎛⎭⎫0,12,点Q 在点B (0,-1)时,|PQ |取最小值3
2
.。