实验十 多功能数字电表和万用表的设计(部分)

合集下载

数字万用表的设计毕业设计

数字万用表的设计毕业设计

目录第一部分设计任务与调研 (1)第二部分设计说明 (3)第三部分设计成果 (9)第四部分结束语 (15)第五部分致谢 (16)第六部分参考文献 (17)第一部分设计任务与调研1、毕业设计的主要任务数字多用表(DMM)就是在电气测量中要用到的电子仪器。

它可以有很多特殊功能,但主要功能就是对电压、电阻和电流进行测量,数字多用表,作为现代化的多用途电子测量仪器,主要用于物理、电气、电子等测量领域。

自从1977年世界上首台手持式数字万用表问世以来,研究者在万用表的功能和设计上不断创新,新品迭出。

数字万用表是电测技术中的一种常用仪表,它把电子技术、计算技术、自动化技术的成果和电测技术结合在一起,以其操作方便、读数准确、体积小巧、携带方便等优点成为现代测量中不可缺少的仪器,它可以测量直流电流、交流电流、直流电压、交流电压、电阻、电容、二极管的正向压降等,正在许多领域取代模拟式(即指针式)万用表。

具有使用方便、灵敏度高、测量速度快、量程宽、过载能力强、输人阻抗高、指示值具有客观性(不存在视觉误差)、扩展能力强等优点。

数字万用表的简介万用表是电力电子等部门不可缺少的测量仪表,一般以测量电压、电流和电阻为主要目的。

万用表按显示方式分为指针万用表和数字万用表。

是一种多功能、多量程的测量仪表,一般万用表可测量直流电流、直流电压、交流电流、交流电压、电阻和音频电平等,有的还可以测交流电流、电容量、电感量及半导体的一些参数(如β)等。

所以需要设计一款具有更高的灵敏度、可以测量温度、频率(在一个较低的范围)、电容、电感,做信号发生器等等一些功能的数字型万用表。

1.2.2数字万用表是电测技术中的一种常用仪表,它把电子技术、计算技术、自动化技术的成果和电测技术结合在一起,以其操作方便、读数准确、体积小巧、携带方便等优点成为现代测量中不可缺少的仪器,它可以测量直流电流、交流电流、直流电压、交流电压、电阻、电容、二极管的正向压降等,正在许多领域取代模拟式(即指针式)万用表。

多功能电表课程设计

多功能电表课程设计

多功能电表课程设计一、课程目标知识目标:1. 理解多功能电表的基本工作原理和功能特点;2. 掌握多功能电表的使用方法,包括电压、电流、电阻的测量;3. 学会读取和解读电表测量数据,进行简单的数据分析和计算。

技能目标:1. 能够正确操作多功能电表,进行基本的电学实验测量;2. 培养学生动手实践能力,通过实际操作解决电学问题;3. 提高学生分析数据、解决问题的能力,形成科学探究的思维。

情感态度价值观目标:1. 培养学生对物理实验的兴趣,激发学习热情和积极性;2. 培养学生严谨的科学态度,注重实验安全,遵循实验规范;3. 增强团队合作意识,培养学生相互协作、共同探究的精神。

本课程针对初中物理学科,结合学生年级特点,注重理论与实践相结合,以多功能电表为载体,培养学生实际操作能力和科学探究精神。

课程目标具体、可衡量,旨在让学生在掌握基本电学知识的同时,提高实践技能和情感态度价值观。

后续教学设计和评估将以此为基础,确保课程目标的实现。

二、教学内容本章节依据课程目标,紧密围绕多功能电表的使用和电学基础知识,选择以下教学内容:1. 多功能电表的结构与原理:介绍电表的组成部分、工作原理,结合教材相关章节,使学生理解电表的内部构造及其测量原理。

2. 电表的正确使用方法:详细讲解电压、电流、电阻测量的操作步骤,强调注意事项,确保学生能够正确使用电表进行实验。

3. 电表测量数据的读取与分析:教授如何读取电表显示的数据,并进行简单的数据分析和计算,结合教材实例,提高学生分析问题的能力。

4. 实践操作与实验:安排电学实验,如测量电压、电流、电阻等,巩固理论知识,培养学生动手实践能力。

5. 教学内容的安排和进度:- 第一节课:多功能电表的结构与原理,认识电表的各个部分及其功能;- 第二节课:学习电表的正确使用方法,进行简单的电压、电流测量实验;- 第三节课:读取和分析电表测量数据,进行实际操作练习;- 第四节课:综合实验,巩固所学知识,提高实践能力。

万用表的设计方案

万用表的设计方案

万用表的设计方案1. 引言万用表是一种用于测量电压、电流和电阻的仪器。

它在电子工程、实验室以及日常生活中都有广泛的应用。

本文介绍了万用表的设计方案,包括硬件设计和软件设计。

2. 硬件设计2.1 电路配置万用表的电路配置主要由测量电压、电流和电阻的部分组成。

其中,测量电压的部分通常包括一个电压输入阻抗较高的测量电压档位,并通过电压分压电路将被测电压降至安全范围内。

测量电流的部分通常包括一个电流档位,并通过内部电阻或分流器来测量电流。

测量电阻的部分通常包括一个电阻测量档位,并通过对待测电阻加电压或流过电流,测量电压或电流来计算电阻值。

2.2 选择合适的元器件在设计万用表的硬件时,需要选择合适的元器件以满足设计要求。

例如,选择合适的电阻、电容和电感器件,以保证测量的准确性和稳定性。

同时,选择合适的集成电路和模拟开关,以实现万用表的各种功能和测量范围。

2.3 保护电路设计为了保护万用表及其使用者的安全,设计中需要考虑各种保护电路。

例如,过压保护电路用于防止超过设定范围的电压输入;过流保护电路用于防止电流超过额定范围。

此外,还可以加入防静电保护电路和过温保护电路以确保仪器的可靠性和使用寿命。

3. 软件设计3.1 用户界面设计万用表的用户界面应该简洁易用,方便用户操作。

可以采用液晶显示屏显示测量结果,并设计合适的菜单功能和操作按钮,供用户选择不同的测量模式和档位。

3.2 测量算法设计万用表的测量算法需要准确可靠。

根据不同的测量要求和档位,可以采用不同的测量算法,如电流档位采用欧姆表法测量,电压档位采用电桥法测量等。

此外,还需要考虑精度校准和误差补偿算法,以提高测量结果的准确性和稳定性。

3.3 功能设计除了基本的电压、电流和电阻测量功能外,万用表还可以设计其他功能,如温度测量、电容测量、频率测量等。

根据用户需求和市场需求,可以增加相应的功能模块和测量档位。

4. 总结万用表的设计方案需要综合考虑硬件和软件两个方面。

大学本科电信专业多功能数字万用表设计与制作毕业设计论文

大学本科电信专业多功能数字万用表设计与制作毕业设计论文

1、摘要随着科技的日新月异,电子产品发展也非常之快,在电子电路测试、家用电气设备的维修、电子仪器检修、电子元器件测量中,万用表是最普及、最常用的的测量仪表。

由于它操作简单、功能齐全、便于携带、一表多用等特点,深受电工、电子专业工作者及广大无线电爱好者的喜爱。

事实证明,万用表不仅能检测电工、电子元器件的性能优劣,查找电子、电气线路的故障,估测某些电气参数,有时还能代替专业测试仪器,获得比较准确的结果,基本上可以满足电工、电子专业人员和业余无线电爱好者的需要。

因此,推广万用表的应用技术,实现一表多用,既符合节约精神,又可以在一定程度上克服专用仪器的困难。

多功能数字万用表是在电子方面的学习、开发以及生产方面应用相当广发的一种仪器工具,整机电路设计以大规模的集成模拟和数字电路组合,采用STM32F103RBT6为核心,高精度的运算放大器,低功耗高效率的开端电源转换器,全电子调校技术赋予仪表高可靠性,高精度。

仪表可用于测量交直流电压、交直流电流、电阻、电感、电容,RS232C接口技术的应用使其和计算机构成可靠多种的双向通讯。

仪表采用独特的外观设计,采用OLED3.1液晶显示器,仪表采用220V交流供电使之成为性能更优越的高精度电工仪表。

目录1摘要 (2)2项目概述与功能需求 (5)3项目论证 (6)3.1 总体方案论证 (6)3.1.1 设计目标 (6)3.1.2 总体设计方案 (6)3.2 小模块方案设计 (9)3.3 项目设计 (12)4项目设计 (12)4.1 系统硬件设计 (12)4.1.1 测直流电流模块 (12)4.1.2 测直流电压模块 (14)4.3.3 侧交流电压模块................................................................................... 错误!未定义书签。

4.1.4测电阻模块............................................................................................ 错误!未定义书签。

数字万用表实验报告

数字万用表实验报告

数字万用表实验报告
数字万用表是一种用于测试电路中电流、电压、电阻和容量等物理量的仪器。

它可以同时测量多种电气参数,而且精度高、操作简单,因此在电子工程、机械制造、生产加工等领域得到了广泛应用。

为了更好地了解数字万用表的原理和特点,本文将进行数字万用表的实验测试,并撰写实验报告。

一、实验目的
了解数字万用表的电路原理、使用方法及注意事项,熟悉数字万用表的各个功能及操作。

二、实验仪器
数字万用表、直流电源、可变电阻、LED 灯、电池、跳线等。

三、实验步骤
1. 将数字万用表转换为电压、电流、电阻和容量测量模式,分别进行实验和测试。

2. 用跳线将电源、电阻、LED 灯等依次串连,分别用数字万用表测量其电流、电压和电阻值等。

3. 用数字万用表测试不同电池(如干电池、铅酸蓄电池等)的电压和容量。

四、实验结果
1. 数字万用表测试的 LED 灯电流约为 20mA 左右,电压为 2V 左右,电阻为 100 欧姆左右。

2. 数字万用表测试的电池电压值与理论值相适应,干电池电压为 1.5V 左右,铅酸蓄电池电压约为 12V 左右,容量也在标准范围内。

3. 测试不同范围的电阻时,数字万用表显示的电阻值与标准值相吻合。

五、实验心得
通过本次实验,我们深入了解了数字万用表的原理和功能,同时更好地掌握了其使用方法和注意事项,增强了对电路电气参数的理解和测量技能,为今后的实践工作提供了较为充分的基础。

总之,数字万用表是一种广泛应用的电子测试仪器,其精度和实用性极高,可以为我们的科研和生产活动提供有力的支持。

希望今后在科研和实验中,我们积极运用数字万用表,将其真正发挥出更大的潜力。

多功能数字电压表设计

多功能数字电压表设计
图3-1硬件系统设计框图
4硬件系统主要电路分析
4.1 C8051F020单片机最小系统电路
最小系统是指保证系统能正常工作的最基本电路和软件部分,单片机的最小系统电路包括外部晶振电路、电源电路和复位电路,如图4-3所示。
(a)外部晶振电路(b)电源电路
(c)外部复位电路
图4-1 单片机最小系统电路
时钟基本脉冲是CPU工作的基础。C8051F310单片机的系统时钟信号,由时钟振荡电路或专用时序脉冲信号提供。C8051F310在内部集成了完整的振荡电路,XTAL和EXTAL分别为振荡器的输出和输入,XTAL和EXTAL引脚可接入一个石英或陶瓷振荡器,如图4-1(a)所示。图中电阻R2是为了避免对外接晶体振荡器的过驱动,电容C可提高振荡器的稳定性。
F7SEG[1]=c&0x0f;12为ADC0转换值的高四位保存在数组F7SEG[0]中
b1=F7SEG[1]*256+F7SEG[2]*16+F7SEG[3];将ADC012位转换的十六进制数转换为十进制数
b=b1*0.5859375;将ADC0转换的值转化为相对应的电压值
6.2 电压值转化为显示的数值程序
(3)总线数据缓冲器
总线数据缓冲器是一个三态双向8位缓冲器,作为8255与系统总线之间的接口,用来传送数据、指令、控制命令以及外部状态信息。
(4)读/写控制逻辑电路
读/写控制逻辑电路接受CPU发来的控制信号RD、WR、RESET、地址信号A1-A0等,然后根据控制信号的要求,将端口数据读出,发往CPU,或者将CPU送来的数据写入端口。
{
c=ADC0H; 数据高四位
d=ADC0L;数据的低八位
ADC0CN&=0xdf;请标志位

数字万用表的设计研究

数字万用表的设计研究
数字万用表(Digital Multimeter,简称DMM)是一种常见的电测仪器,广泛应用于电子、电力、通讯、汽车等领域。

其设计要求高精度、方便使用、功能齐全、性价比高等特点。

本文将从外观设计、功能设计、性能设计三个方面进行数字万用表的设计研究。

外观设计:数字万用表通常由显示屏、转轮、选择钮、测试头等组成。

在外观设计上,需要考虑美观度、便携性和人体工学等方面。

美观度要求外观整体简洁大方,色彩鲜艳,易于区分不同的功能部件;便携性要求大小适中,重量轻,方便携带;人体工学要求测试头、选择钮等部件的位置合理,易于操控。

常见的设计风格有经典的方形设计与现代流线型设计两种风格。

功能设计:数字万用表的主要功能包括电压测量、电流测量、电阻测量和温度测量等。

在功能设计上,需要满足高精度、多档量程、自动换档等要求。

高精度要求机芯稳定,准确度高;多档量程要求在不同的测量范围有不同的量程选择,方便用户使用;自动换档要求仪器具备智能识别功能,能自动识别信号类型并自动切换到合适的档位上,减小操作难度。

性能设计:数字万用表的性能设计主要包括精度、速度、带宽等几个方面。

精度要求在不同的电压、电流等信号范围内,能够实现高精度的测量;速度要求测量速度快,尽量减少等待时间;带宽要求在不同的信号频率范围内,能够实现高精度的测量。

此外,数字万用表还应具备低功耗、稳定性等特点,以满足用户长时间测量的需要。

综上所述,数字万用表作为一种常见的电测仪器,其设计要求从外观设计、功能设计、性能设计三个方面进行研究。

只有在满足高精度、方便使用、功能齐全等要求的同时,才能够提高数字万用表在实际应用中的使用价值。

多功能数字万用表的设计与制作毕业论文

多功能数字万用表的设计与制作毕业论文目录1摘要 (2)2项目概述与功能需求 (5)3项目论证 (6)3.1 总体方案论证 (6)3.1.1 设计目标 (6)3.1.2 总体设计方案 (4)3.2 小模块方案设计 (9)3.3 项目设计 (12)4项目设计 (12)4.1 系统硬件设计 (12)4.1.1 测直流电流模块 (12)4.1.2 测直流电压模块 (14)4.3.3 侧交流电压模块 (16)4.1.4测电阻模块 (17)4.1.5 测电容模块 (18)4.1.6 测电感模块 (20)4.1.7 液晶显示模块 (22)4.1.8 电源设计模块 (25)4.2 接口设计 (24)4.2.1 外部接口 (24)4.2.2 部接口 (24)4.3 运行设计 (26)4.4 系统软件设计 (26)4.4.1 主程序设计流程图 (26)4..4.2 详细设计与编码 (28)4.4.3 引脚说明 (29)4.4.4 软件系统与其他系统的关系 (30)4.4..5 各函数模块分析 (30)5产品调试与包装 (47)5.1 调试 (47)5.2 系统数据测试 (49)5.3 测试结果分析 (52)6项目小结 (52)7致谢 (53)8参考文献 (54)9附录 (55)附录1 原理图 (55)附录2 PCB图 (56)附录3 器件清单 (57)附录4 整机实物图 (60)附录5 小组成员信息 (63)附录6 过程监控文档 (64)附录6.1 会议记录 (64)附录6.2 工作日志 (81)附录6.3 队员总结心得 (103)附录6.4 小组管理 (110)2 项目概述与功能需求1、项目设计具体容:(1)测量分辨率高;(2)测量围宽;(3)输入阻抗高;(4)集成度高,微功耗;(5)保护功能完善,抗干扰能力强;(6)具备全程保护功能;表1 性能指标表3 项目论证3.1 总体方案论证3.1.1 设计目标题目要求制作多功能数字万用表,我们团队计划在性能高、精度高、功耗低、设计简洁明了以及环保的基础上,实现测量交直流电压、交直流电流、电阻、电感、电容,RS232C接口技术的应用使其和计算机构成可靠多种的双向通讯等功能。

数字万用表设计

摘要本次设计用单片机芯片AT89s52设计一个数字万用表,能够测量交、直流电压值、直流电流、直流电阻以及电容,四位数码显示。

此系统由分流电阻、分压电阻、基准电阻、电容测试芯片电路、51单片机最小系统、显示部分、报警部分、AD转换和控制部分组成。

为使系统更加稳定,使系统整体精度得以保障,本电路使用了AD0809数据转换芯片,单片机系统设计采用AT89S52单片机作为主控芯片,配以RC上电复位电路和11.0592MHZ震荡电路,显示芯片用TEC6122,驱动8位数码管显示。

程序每执行周期耗时缩到最短,这样保证了系统的实时性。

关键词:数字万用表;AT89S52单片机;AD转换与控制目录绪论 (1)一、数字万用表设计背景 (2)(一)数字万用表的设计目的和意义 (2)(二)数字万用表的设计依据 (2)二、数字万用表总体设计方案 (3)(一)数字万用表的基本原理 (3)(二)数字万用表的硬件系统设计总体框架图 (3)(三)硬件电路设计方案及选用芯片介绍 (4)(四)数字万用表的硬件设计 ................................................. 错误!未定义书签。

三、系统软件与流程图 .................................................................. 错误!未定义书签。

(一)电路功能模块 ................................................................. 错误!未定义书签。

(二)系统总流程图 ................................................................. 错误!未定义书签。

(三)物理量采集处理流程 ..................................................... 错误!未定义书签。

万用表设计实验报告 (2)

万用表设计实验报告姓名:学号:1110190219时间:2013/4/20指导老师:徐行建任务单:070号任务单:070号一、已知参数:1.每人的任务条(每人不同,最后将任务条并设计作业一齐订好上交!) A.直流电流档的引入电流0.20mA(每人不同)B.测量机构总阻值(内阻+附加电阻=电阻Rg =3.2KΩ,每人不同)2.公共参数(每人相同)A. 测量机构的电流灵敏度:满刻度电流I S= 50μA B.DC.A::2.5级1mA 10mA 5AC.DC.V::2.5级 2.5V 10V 250V输入阻抗为:1 / I S D.AC.V:5.0级D10V 50V 250V 1000V 输入阻抗为;4KΩ/ v 整流系数为:0.441,二极管正向电阻为:600Ω交流调节电阻为2 K~3KE.DΩ.:2.5级×1 ×10 ×100 (扩展量程×1K)电阻中心值:22Ω工作电池:1.6~1.2V二、各量程的元件参数设计:1.DC. A 量程的元件参数设计和分电路调试图:(1)DC.A量程的元件参数设计。

设计一个多量程环形分流式直流电流表,如下图。

设表头内阻为Rg,电流灵敏度为Ig,扩大的电流量程为I1、I2、I3、I引,计算各分流电阻R1、R2、R3、R4。

1)当电流为I引时,Rs=R1+R2+R3+R4=Ig*Rg/(I引-Ig)=0.00005*3200/(0.0002-0.00005)=1066.67Ω2)当电流为I3时,R1+R2+R3=Ig*(Rg+Rs)/I3=0.00005*(3200+1100)/0.001=213.33Ω3)当电流为I2时,R1+R2=Ig*(Rg+Rs)/I2=0.00005*(3200+1100)/0.01=21.33Ω4)R1=Ig*(Rg+Rs)/I1=0.00005*(3200+1100)/5=0.0427Ω由2)3)4)可得R2==21.257ΩR3=192Ω5)R4=Rs-(R1+R2+R3)= 853.34Ω(2)DC.A量程的分电路调试图:2.DC.V量程的元件参数设计和分电路调试图:(1)DC.V量程的元件参数设计。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

12级电科专业《专业实验》安排表(2015下半年)说明:14周3103每一时间段实验为4学时,下午上课时间:14:30-17:30每次实验上课前需认真预习相关实验内容并写好预习报告每位学生准备8张16开实验报告纸,8张32开原始记录纸。

讲义份数:导热系数?份, 电源特性?份, 声光电路?份。

所开设实验的房间管理由各位老师自己承担。

理学院物理实验室2015.09.06实验十多功能数字电表和万用表的设计数字电表以它显示直观、准确度高、分辨率强、功能完善、性能稳定、体积小易于携带等特点在科学研究、工业现场和生产生活中得到了广泛应用。

数字电表工作原理简单,完全可以让同学们理解并利用这一工具来设计对电流、电压、电阻、压力、温度等物理量的测量,从而提高大家的动手能力和解决问题能力。

【实验目的】1、了解数字电表的基本原理及常用双积分模数转换芯片外围参数的选取原则、电表的校准原则以及测量误差来源。

2、了解万用表的特性、组成和工作原理。

3、掌握分压、分流电路的原理以及设计对电压、电流和电阻的多量程测量。

4、了解交流电压、三极管和二极管相关参数的测量。

5、通过数字电表原理的学习,能够在传感器设计中灵活应用数字电表。

【实验仪器】1、DH6505数字电表原理及万用表设计实验仪。

2、四位半通用数字万用表。

(自备)3、示波器。

(自备)4、ZX25a 电阻箱。

(自备) 【实验原理】一、数字电表原理常见的物理量都是幅值大小连续变化的所谓模拟量,指针式仪表可以直接对模拟电压和电流进行显示。

而对数字式仪表,需要把模拟电信号(通常是电压信号)转换成数字信号,再进行显示和处理。

数字信号与模拟信号不同,其幅值大小是不连续的,就是说数字信号的大小只能是某些分立的数值,所以需要进行量化处理。

若最小量化单位为∆,则数字信号的大小是∆的整数倍,该整数可以用二进制码表示。

设∆=0.1mV ,我们把被测电压U 与∆比较,看U 是∆的多少倍,并把结果四舍五入取为整数N (二进制)。

一般情况下,N ≥1000即可满足测量精度要求(量化误差≤1/1000=0.1%)。

所以,最常见的数字表头的最大示数为1999,被称为三位半(3 1/2)数字表。

如:U 是∆ (0.1mV )的1861倍,即N =1861,显示结果为186.1(mV )。

这样的数字表头,再加上电压极性判别显示电路和小数点选择位,就可以测量显示-199.9~199.9mV 的电压,显示精度为0.1mV 。

1、双积分模数转换器(ICL7107)的基本工作原理双积分模数转换电路的原理比较简单,当输入电压为Vx 时,在一定时间T1内对电量为零的电容器C 进行恒流(电流大小与待测电压Vx 成正比)充电,这样电容器两极之间的电量将随时间线性增加,当充电时间T1到后,电容器上积累的电量Q 与被测电压Vx 成正比;然后让电容器恒流放电(电流大小与参考电压Vref 成正比),这样电容器两极之间的电量将线性减小,直到T2时刻减小为零。

所以,可以得出T2也与Vx 成正比。

如果用计数器在T2开始时刻对时钟脉冲进行计数,结束时刻停止计数,得到计数值N2,则N2与Vx 成正比。

双积分AD 的工作原理就是基于上述电容器充放电过程中计数器读数N2与输入电压Vx 成正比构成的。

现在我们以实验中所用到的3位半模数转换器ICL7107为例来讲述它的整个工作过程。

ICL7107双积分式A/D 转换器的基本组成如图1所示,它由积分器、过零比较器、逻辑控制电路、闸门电路、计数器、时钟脉冲源、锁存器、译码器及显示等电路所组成。

下面主要讲一下它的转换电路,大致分为三个阶段:第一阶段,首先电压输入脚与输入电压断开而与地端相连放掉电容器C 上积累的电量,然后参考电容Cref 充电到参考电压值Vref ,同时反馈环给自动调零电容C AZ 以补偿缓冲放大器、积分器和比较器的偏置电压。

这个阶段称为自动校零阶段。

第二阶段为信号积分阶段(采样阶段),在此阶段Vs 接到Vx 上使之与积分器相连,这样电容器C 将被以恒定电流Vx/R 充电,与此同时计数器开始计数,当计到某一特定值N1(对于三位半模数转换器,N1=1000)时逻辑控制电路使充电过程结束,这样采样时间T1是一定的,假设时钟脉冲为T CP ,则T1=N1*T CP 。

在此阶段积分器输出电压Vo=-Qo/C(因为Vo 与Vx 极性相反),Qo 为T1时间内恒流(Vx/R )给电容器C 充电得到的电量,所以存在下式:Qo=dt R VxT *1⎰=1T R Vx (1)Vo=-C Qo =-1T RCVx(2)图 1 双积分AD 内部结构图图2 积分和反积分阶段曲线图第三阶段为反积分阶段(测量阶段),在此阶段,逻辑控制电路把已经充电至ref V 的参考电容ref C 按与X V 极性相反的方式经缓冲器接到积分电路,这样电容器C 将以恒定电流R V ref 放电,与此同时计数器开始计数,电容器C 上的电量线性减小,当经过时间T2后,电容器电压减小到0,由零值比较器输出闸门控制信号再停止计数器计数并显示出计数结果。

此阶段存在如下关系:Vo+C1dt R VrefT *2⎰=0 (3) 把(2)式代入上式,得:T2=VrefT 1Vx (4) 从(4)式可以看出,由于T1和Vref 均为常数,所以T2与Vx 成正比,从图2可以看出。

若时钟最小脉冲单元为CP T ,则CP T N T *=11,CP T N T *=22,代入(4),VrefN 1即有: N2= Vx (5)可以得出测量的计数值N2与被测电压Vx成正比。

T,即N1的值为1000不变。

而N2对于ICL7107,信号积分阶段时间固定为1000个CP的计数随Vx的不同范围为0~1999,同时自动校零的计数范围为2999~1000,也就是测量T不变。

即满量程时N2max=2000=2*N1,所以Vxmax=2Vref,这样若取周期总保持4000个CP参考电压为100mV,则最大输入电压为200mV;若参考电压为1V,则最大输入电压为2V。

对于ICL7107的工作原理这里我们不再多说,以下我们主要讲讲它的引脚功能和外围元件参数的选择,让同学们学会使用该芯片。

2、ICL7107双积分模数转换器引脚功能、外围元件参数的选择图3 ICL7107芯片引脚图图4 ICL7107和外围器件连接图图4 ICL7107芯片的引脚图如图3所示,它与外围器件的连接图如图4所示。

图4中它和数码管相连的脚以及电源脚是固定的,所以不加详述。

芯片的第32脚为模拟公共端,称为COM端;第36脚Vr+和35脚Vr-为参考电压正负输入端;第31脚IN+和30脚IN-为测量电压正负输入端; Cint和Rint 分别为积分电容和积分电阻,Caz为自动调零电容,它们与芯片的27、28和29相连,用示波器接在第27脚可以观测到前面所述的电容充放电过程,该脚对应实验仪上示波器接口Vint;电阻R1和C1与芯片内部电路组合提供时钟脉冲振荡源,从40脚可以用示波器测量出该振荡波形,该脚对应实验仪上示波器接口CLK,时钟频率的快慢决定了芯片的转换时间(因为测量周期总保持4000个Tcp不变)以及测量的精度。

下面我们来分析一下这些参数的具体作用:Rint为积分电阻,它是由满量程输入电压和用来对积分电容充电的内部缓冲放大器的输出电流来定义的,对于ICL7107,充电电流的常规值为Iint=4uA,则Rint=满量程/4uA。

所以在满量程为200mV,即参考电压Vref=0.1V时,Rint=50K,实际选择47K电阻;在满量程为2V,即参考电压Vref=1V时,Rint=500K,实际选择470K电阻。

Cint=T1*Iint/Vint,一般为了减小测量时工频50HZ干扰,T1时间通常选为0.1S ,具体下面再分析,这样又由于积分电压的最大值Vint=2V,所以:Cint=0.2uF,实际应用中选取0.22uF。

对于ICL7107,38脚输入的振荡频率为:f0=1/(2.2*R1*C1),而模数转换的计数脉冲频率是f0的4倍,即Tcp=1/(4*f0),所以测量周期T=4000*Tcp=1000/f0,积分时间(采样时间)T1=1000*Tcp=250/fo。

所以fo的大小直接影响转换时间的快慢。

频率过快或过慢都会影响测量精度和线性度,同学们可以在实验过程中通过改变R1的值同时观察芯片第40脚的波形和数码管上显示的值来分析。

一般情况下,为了提高在测量过程中抗50HZ工频干扰的能力,应使A/D转换的积分时间选择为50HZ工频周期的整数倍,即T1=n*20ms,考虑到线性度和测试效果,我们取T1=0.1m(n=5),这样T=0.4S,f0=40kHZ,A/D转换速度为2.5次/秒。

由T1=0.1=250/f0,若取C1=100pF,则R1≈112.5KΩ。

实验中为了让同学们更好的理解时钟频率对A/D转换的影响,我们让R1可以调节,该调节电位器就是实验仪中的电位器RWC。

3、用ICL7107A/D转换器进行常见物理参量的测量图5 图6(1)直流电压测量的实现(直流电压表)Ⅰ: 当参考电压Vref=100mV时,Rint=47KΩ。

此时采用分压法实现测量0~2V的直流电压 ,电路图见图5。

Ⅱ:直接使参考电压Vref=1V,Rint=470KΩ来测量0~2V的直流电压,电路图如图6。

(2)直流电流测量的实现(直流电流表)直流电流的测量通常有两种方法,第一种为欧姆压降法,如图7所示,即让被测电流流过一定值电阻Ri,然后用200mV的电压表测量此定值电阻上的压降Ri*Is(在Vref=100mV 时,保证Ri*Is≤200mV就行),由于对被测电路接入了电阻,因而此测量方法会对原电路有影响,测量电流变成Is’=R0*Is/(R0+Ri),所以被测电路的内阻越大,误差将越小。

第二种方法是由运算放大器组成的I-V变换电路来进行电流的测量,此电路对被测电路的无影响,但是由于运放自身参数的限制,因此只能够用在对小电流的测量电路中,所以在这里就不再详述。

图7(3)电阻值测量的实现(欧姆表)Ⅰ:当参考电压选择在100mV时,此时选择Rint=47KΩ,测试的接线图如图8所示,图中Dw是提供测试基准电压,而Rt 是正温度系数(PTC)热敏电阻,既可以使参考电压低于100mV,同时也可以防止误测高电压时损坏转换芯片,所以必需满足Rx=0时,Vr≤100mV。

由前面所讲述的7107的工作原理,存在:Vr=(Vr+)–(Vr-)=Vd*Rs/(Rs+Rx+Rt) (6)IN=(IN+)–(IN-)=Vd*Rx/(Rs+Rx+Rt) (7)由前述理论N2/N1=IN/Vr有:Rx=(N2/N1)*Rs (8)所以从上式可以得出电阻的测量范围始终是0~2RsΩ。

相关文档
最新文档