高一数学数列试题

合集下载

高一数学_等比数列综合练习_精心整理_含答案版本

高一数学_等比数列综合练习_精心整理_含答案版本

考点1等比数列的通项与前n 项和 题型1已知等比数列的某些项,求某项【例1】已知{}n a 为等比数列,162,262==a a ,则=10a【解题思路】可以考虑基本量法,或利用等比数列的性质【解析】方法1: 811622451612=⇒⎩⎨⎧====q q a a q a a ∴1312281162469110=⨯===q a q a a方法2: 812162264===a a q,∴13122811624610=⨯==q a a 方法3:{}n a 为等比数列∴13122216222261026102===⇒=⋅a a a a a a【名师指引】给项求项问题,先考虑利用等比数列的性质,再考虑基本量法.题型2 已知前n 项和n S 及其某项,求项数.【例2】⑴已知n S 为等比数列{}n a 前n 项和,93=nS ,48=n a ,公比2=q ,则项数=n .⑵已知四个实数,前三个数成等差数列,后三个数成等比数列,首末两数之和为37,中间两数之和为36,求这四个数. 【解题思路】⑴利用等比数列的通项公式11-=n nqa a 及qq a S n n --=1)1(1求出1a 及q ,代入n S 可求项数n ;⑵利用等差数列、等比数列设出四个实数代入已知,可求这四个数.【解析】⑴由93=n S ,48=n a ,公比2=q ,得532248293)12(111=⇒=⇒⎩⎨⎧=⋅=--n a a nn n . ⑵方法1:设这四个数分别为d c b a ,,,,则⎪⎪⎩⎪⎪⎨⎧=+=+=+=363722c b b a bd c c a b ;方法2:设前2个数分别为b a ,,则第43、个数分别为a b --3736,,则 ⎩⎨⎧-=-+-=)37()36()36(22a b b a b b ,解得⎩⎨⎧==1612b a 或⎪⎩⎪⎨⎧==481499b a ; 方法3:设第32、个数分别为c b ,,则第1个数为c b -2,第1个数为bc 2,则⎩⎨⎧==⇒⎪⎩⎪⎨⎧=++-20163622c b c b b c c b 或⎪⎩⎪⎨⎧==463481c b ; 方法4:设第32、个数分别为c b ,,设第4,1个数分别为ca c c a ++22,2;方法5:设第43、个数分别为d c ,,则设第2,1个数分别为c d --36,37,则⎩⎨⎧===⇒⎩⎨⎧-=+-=-251620)36()37()36(22d c c d c c d c 或.449,463==d c 【名师指引】平时解题时,应注意多方位、多角度思考问题,加强一题多解的练习,这对提高我们的解题能力大有裨益.题型3 求等比数列前n 项和【例3】等比数列 ,8,4,2,1中从第5项到第10项的和. 【解题思路】可以先求出10S ,再求出4S ,利用410S S -求解;也可以先求出5a 及10a ,由10765,,,,a a a a 成等比数列求解.【解析】由2,121==a a ,得2=q ,∴102321)21(11010=--=S ,1521)21(144=--=S ,∴.1008410=-S S 【例4】已知n S 为等比数列{}n a 前n 项和,13233331-+++++=n na ,求n S【解题思路】可以先求出n a ,再根据n a 的形式特点求解.【解析】 212331)31(133331132-=--=+++++=-n n n na ,∴n n S n nn 2131)31(32121)3333(2132---⨯=-++++= 即.432143--=n S n n 【例5】已知n S 为等比数列{}n a 前n 项和,n n n a 3)12(⋅-=,求n S .【解题思路】分析数列通项形式特点,结合等比数列前n 项和公式的推导,采用错位相减法求和. 【解析】 n nn a 3)12(⋅-=∴n n n S 3)12(35333132⋅-++⋅+⋅+⋅= ,----------------①14323)12(3)32(3533313+⋅-+⋅-++⋅+⋅+⋅=n n nn n S -------------②①—②,得14323)12()3333(232+⋅--+++++=-n n n n S63)22(3)12(31)31(923111-⋅-=⋅----⨯+=++-n n n n n∴.33)1(1+⋅-=+n n n S【名师指引】根据数列通项的形式特点,等比数列求和的常用方法有:公式法、性质法、分解重组法、错位相减法,即数列求和从“通项”入手.【新题导练】 1.已知{}n a 为等比数列,6,3876321=++=++a a a a a a ,求131211a a a ++的值.【解析】设等比数列{}n a 的公比为q ,6,3876321=++=++a a a a a a ,∴23216545=++++=a a a a a a q ,∴131211a a a ++;2.如果将100,50,20依次加上同一个常数后组成一个等比数列,则这个等比数列的公比为 .【解析】设这个常数为x ,则x x x +++100,50,20成等比数列,∴)100)(20()50(2x x x ++=+,解得45=x ,∴17418520545204550==++=q . 3.已知n S 为等比数列{}n a 的前n 项和,364,243,362===n S a a ,则=n ;【解析】3,12433151612==⎩⎨⎧⇒====q a q a a q a a 或3,11-=-=q a , 当3,11==q a 时,636431)31(1=⇒=--=n S n n ; 当3,11-=-=q a 时,[]n S nn ⇒=+---=36431)3(11无整数解. 4.已知等比数列{}n a 中,21a =,则其前3项的和3S 的取值范围是 .【解析】∵等比数列()n a 中21a = ∴312321111S a a a a q q q q⎛⎫=++=++=++ ⎪⎝⎭ ∴当公比0q>时,31113S q q =++≥+=; 当公比0q<时,31111S q q ⎛⎫=---≤-=- ⎪⎝⎭, ∴(][)3,13,S ∈-∞-+∞5.已知n S 为等比数列{}n a 前n 项和,0>n a ,80=nS ,65602=n S ,前n 项中的数值最大的项为54,求100S .【解析】由0>na ,80=n S ,65602=n S ,知1≠q ,∴.65601)1(,801)1(2121=--==--=qq a S q q a S n n n n∴81821122=⇒=--=n n nn n q q q S S ,∴1>q ,又 前n 项中的数值最大的项为: 5411==-n n q a a ,∴321=q a ,∴.133,21001001-=⇒==S q a 考点2 证明数列是等比数列【例6】已知数列{}n a 和{}n b 满足:λ=1a ,4321-+=+n a a n n ,)213()1(+--=n a b n n n ,其中λ为实数,+∈N n . ⑴ 对任意实数λ,证明数列{}n a 不是等比数列;⑵ 试判断数列{}n b 是否为等比数列,并证明你的结论.【解题思路】⑴证明数列{}n a 不是等比数列,只需举一个反例;⑵证明数列{}n b 是等比数列,常用:①定义法;②中项法.【解析】⑴ 证明:假设存在一个实数λ,使{}n a 是等比数列,则有3122a a a ⋅=,即,094949494)494()332(222=⇔-=+-⇔-=-λλλλλλλ矛盾. 所以{}n a 不是等比数列.⑵ 解:因为[]21)1(3)1()213()1(11++--=+--=++n a n a b n n n n n[])14232()1(183)1(111+--=+--=+++n a n a n n n nn n n b n a 32)213()1(321-=+--=+又)18(11+-=λb ,所以当)(0,18+∈=-=N n b n λ,此时{}n b 不是等比数列; 当)8(,181+-=-≠λλb 时,由上可知)(32,01++∈-=∴≠N n b b b n n n ,此时{}n b 是等比数列.【名师指引】等比数列的判定方法: ⑴定义法:q a a nn =+1(+∈N n ,0≠q 是常数)⇔{}n a 是等比数列; ⑵中项法:221++⋅=n n n a a a (+∈N n )且0≠n a ⇔{}n a 是等比数列.【新题导练】6.已知数列{}n a 的首项123a =,121n n n a a a +=+,1,2,3,n =….证明:数列1{1}n a -是等比数列;【解析】 121n n n a a a +=+,∴ 111111222n n n na a a a ++==+⋅,∴11111(1)2n n a a +-=-,又123a =,∴11112a -=, ∴数列1{1}n a -是以12为首项,12为公比的等比数列.考点3 等比数列的性质【例7】已知n S 为等比数列{}n a 前n 项和,54=nS ,602=n S ,则=n S 3 .【解题思路】结合题意考虑利用等比数列前n 项和的性质求解. 【解析】{}n a 是等比数列,∴n n n n n S S S S S 232,,--为等比数列,∴318236)60(5433=⇒=-n n S S .【名师指引】给项求项问题,先考虑利用等比数列的性质,再考虑基本量法.【新题导练】 7.已知等比数列{}n a 中,36)2(,04624=++>a a a a a n ,则=+53a a .【解析】{}n a 是等比数列,0>n a∴⇒=+⇒=++36)(36)2(2534624a a a a a a 653=+a a .考点4 等比数列与其它知识的综合【例8】设n S 为数列{}n a 的前n 项和,已知()21n n n ba b S -=-⑴证明:当2b =时,{}12n na n --⋅是等比数列;⑵求{}n a 的通项公式【解题思路】由递推公式{}0,,=n a S n n 求数列的通项公式)(n f a n=,主要利用:⎩⎨⎧≥-==-)2()1(11n S S n S a n nn ,同时注意分类讨论思想.【解析】由题意知12a =,且 ()21n n n ba b S -=-,()11121n n n ba b S +++-=-两式相减,得()()1121n n n n ba ab a ++--=-,即 12n n n a ba +=+ ①⑴当2b =时,由①知 122n n n a a +=+于是 ()()1122212n n n n n a n a n +-+⋅=+-+⋅()122n n a n -=-⋅又111210n a --⋅=≠,所以{}12n n a n --⋅是首项为1,公比为2=q 的等比数列。

高一数学试题大全

高一数学试题大全

高一数学试题答案及解析1.设数列{an }的前n项之和为Sn,令,称Tn为数列a1,a2,…an的理想数,如果a1,a 2,…a500的理想数为2004,那么数列7,a1,a2,…a500的理想数为.【答案】2007【解析】略2.设Sn=+++ +,且,则n的值为()A.9B.8C.7D.6【答案】D【解析】则由得.则.【考点】数列裂项相消.3.若为第三象限,则的值为()A.B.C.D.【答案】B【解析】因为为第三象限,所以.因此,故选择B.【考点】同角三角函数基本关系及三角函数符号.4.函数,的图象与轴交于点,过点的直线与函数的图象交于两点,则 ( )A.4B.8C.16D.32【答案】D.【解析】当时,,∴,又∵的图象关于点中心对称,∴,,∴.【考点】三角函数的图象与性质.5.一个样本数据按从小到大的顺序排列为:,其中,中位数是,则等于( )A.B.C.D.【答案】A【解析】由中位数的概念可知:中位数是将数据从小到大排列,处于正中间的一个数(或是正中间两个数的平均数),由已知应有,故选A.【考点】样本数据的特征量.6.等比数列中,,公比,用表示它的前n项之积,则中最大的是A.B.C.D.【答案】C【解析】注意到,,,,所以排除B.因为,所以要使最大,只可能为9,12或13中的一个.因为,所以;又,所以.故选C.【考点】等比数列的性质.7.已知是等比数列,有,是等差数列,且,则 ( )A.4B.8C.0或8D.16【答案】B【解析】等比数列中,由,可知,因为数列是等差数列,∴,故选B【考点】等差数列的性质;等比数列的性质.8.若向量两两所成的角相等,且,则等于()A.B.C.或D.或【答案】C【解析】因为向量两两所成的角相等,所以它们的夹角为0或,当夹角为0时,,当夹角为时,=1+1+9+=4,得,所以选C.【考点】向量的模.9.在△ABC中,已知++ab=,则∠C=()A.30°B.60°C.120°D.150°【答案】C【解析】因为,△ABC中,已知++ab=,所以,,∠C=120°,选C。

江苏省无锡市高一数学 数列重点难点突破六(含解析)苏教版-苏教版高一全册数学试题

江苏省无锡市高一数学 数列重点难点突破六(含解析)苏教版-苏教版高一全册数学试题

高一数学数列重点难点必考点串讲六课前抽测(基础题课后作业+学霸必做题课堂集训)1、在ABC △中,内角,,A B C 的对边分别为,,a b c 5,5b CA CB =⋅=-,则ABC △的面积是.【解析】即:222b c a bc +-=,所以由余弦定理得:又因为:0A π<<因为5CA CB =-即:5cos 5a C =-即:联立解得:12c =,所以ABC △的面积是:考点:1.正弦定理;2.余弦定理;3.三角形的面积公式.则考点:正弦定理与三角恒等变形.3.在ABC ∆中,三内角A ,B ,C 的对边分别为a ,b ,c 且222a b c bc =++,S 为ABC ∆的面积,则.【解析】试题分析:∵222a b c bc =++,∴设ABC ∆外接圆的半径为R ,则,∴1R =,考点:1.正余弦定理的运用;2.三角恒等变形. 4、设数列}{n a 满足21=a则该数列的前2015项的乘积=⋅⋅⋅⋅⋅2015321a a a a _________.【答案】3. 【解析】试题分析:由题意可得,,, ∴数列{}n a 是以4为周期的数列,而201545033=⨯+,∴前2015项乘积为1233a a a =. 考点:数列的递推公式.5、已知在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,且B ∠为钝角.X 围. 【答案】【解析】试题分析:(Ⅱ)由B 为钝角知应用正弦定理,进一步试题解析:又(0,)A ∈π,∴分分 考点:1.正弦定理、余弦定理的应用;2.三角函数的图象和性质.6.(本小题满分12分)设为ABC ∆的内角A 、B 、C 所对的边分别为a 、b 、c ,且2cos 2a C b c =-. (1)求角A 的大小;(2,求b c +的取值X 围. (2)(1,2]. 【解析】试题分析:(1角A 的值;或由余弦定理将cos C 转化为边,从而可求角A 的值;(2)用正弦定理将边,b c 转化为由角B 的取值X 围可求b c +的取值X 围.或用余弦定理得221b c bc +=+,再利用基本不等式可求得2b c +≤,又b c a +>,可求b c +的取值X 围. 试题解析:(1)解法 1 由2cos 2a C b c =-得2sin cos 2sin sin A C B C =-.又()sin sin B A C =+=sin cos cos sin A C A C +,所以2cos sin A C sin C =.因为sin 0C ≠,所以又因为0A π<<,所以(6分)解法2由2cos 2a C b c =-得,即222a b c bc =+-,又2222cos a b c bc A =+-,所以,又因为0A π<<,所以(6分)(2)解法1由正弦定理得,故b c +的取值X 围是(]1,2.(12分) 解法2 由(1)及余弦定理得221b c bc +=+,所以2b c +≤,又1b c a +>=.故b c +的取值X 围是(]1,2.(12分)考点:正弦定理、余弦定理、三角变换、三角函数图象及性质、基本不等式. 7.(本小题满分10分)在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,若sin (tan tan )tan tan B A C A C +=. (1)求证:,,a b c 成等比数列;(2)若1,2a c ==,求ABC ∆的面积S .【答案】(1)见解析,(2【解析】 试题分析:(1)第一步首先利用切化弦,整理后的正弦式借助正弦定理进行角化边即可得出结论,第二步借助第一步结论,把2,1==c a B cos B sin →,最后求面积.试题解析:(1)由已知CA C AB tan tan )tan (tan sin =+.得:即:C A C A B sin sin )sin(sin =+,即:C A B sin sin sin 2= 由正弦定理:ac b =2,所以:c b a ,,成等比数列. (2)由(1)知:ac b =2,2,1==c a ,所以:考点:1.三角函数的切化弦;2.正弦定理;3.余弦定理;4.三角形的面积公式; 8、在数列{}n a 中,(1求数列{}n b 的通项公式; (2)求数列{}n a 的前n 项和n S【答案】(12【解析】 试题分析:(1)数列的递推关系是给出数列的一种方法,根据给出的初始值和递推关系可以依次写出这个数列的各项,再由递推关系求数列的通项公式,常用方法有:一是求出数列的前几项,再归纳总结出数列的一个通项公式;二是将已知递推关系式整理、变形,变成等差数列或者等比数列,或用累加法,累乘法,迭代法求通项. (2)一般地,如果数列{}n a 是等差数列,{}n b 是等比数列,求数列{}n n b a ⋅的前n 项的和时,可采用错位相减法求和,一般是和式两边同乘以等比数列{}n b 的公比,然后做差求解.考点:(1)累加法求通项公式.(2)错位相减法求数列的和. 8.设递增数列{}n a 满足01=a ,且()*112102,n n n a a a n n N ++-+=≥∈. (1)证明:;(2记数列{}n b 的前n 项和为n S ,n 的值.【答案】(1)见解析;(2)n 80=【解析】(1)证明:当2n ≥时,因为数列{}n a 是递增数列,所以1110n n a a a ++>⇒≠,,公差为1的等差数列,所以是以1为首项,1d =为公差的等差数列. (2)由(1则: 1nn-=1n ++-1191n ≥+成立的最大正整数n 80=.考点:等差数列的证明,裂项求和法,不等式等基础知识.9.函数的___________。

高一数学试题答案及解析

高一数学试题答案及解析

高一数学试题答案及解析一、选择题(本题共8小题,每小题5分,共40分)1. 若函数f(x)=x^2-4x+m,且f(1)=-3,则m的值为()A. 0B. 1C. 2D. 3答案:B解析:将x=1代入函数f(x)=x^2-4x+m中,得到f(1)=1^2-4*1+m=-3,解得m=1。

2. 已知等差数列{an}的前n项和为Sn,若a1=1,公差d=2,则S5的值为()A. 15B. 25C. 35D. 45答案:A解析:根据等差数列前n项和公式Sn=n/2*(2a1+(n-1)d),代入n=5,a1=1,d=2,得到S5=5/2*(2*1+(5-1)*2)=15。

3. 若cosα=-1/2,则α的值为()A. π/3B. 2π/3C. π/6D. 5π/6答案:B解析:根据特殊角的三角函数值,cos(2π/3)=-1/2,所以α=2π/3。

4. 已知函数f(x)=x^3-3x,求f'(x)的值为()A. 3x^2-3B. 3x^2+3C. x^2-3D. x^2+3答案:A解析:对函数f(x)=x^3-3x求导,得到f'(x)=3x^2-3。

5. 若直线l的方程为y=2x+1,则直线l的斜率为()A. 1B. 2C. -1D. -2答案:B解析:直线方程y=2x+1中,斜率k=2。

6. 已知集合A={x|x^2-5x+6=0},B={x|x^2-3x+2=0},则A∩B 的值为()A. {1, 2}B. {2}C. {1}D. {1, 3}答案:B解析:解方程x^2-5x+6=0得到A={2, 3},解方程x^2-3x+2=0得到B={1, 2},所以A∩B={2}。

7. 若复数z=1+i,则|z|的值为()A. √2B. 2C. 1D. 0答案:A解析:根据复数模的计算公式,|z|=√(1^2+1^2)=√2。

8. 已知函数f(x)=x^2-4x+3,求f(-1)的值为()A. 8B. 6C. 4D. 2答案:A解析:将x=-1代入函数f(x)=x^2-4x+3中,得到f(-1)=(-1)^2-4*(-1)+3=8。

高一数学教材习题变式训练(数列)

高一数学教材习题变式训练(数列)

数学教材习题变式训练(数列)一、有关通项问题1、利用11(1)(2)n nn S n a S S n -=⎧=⎨-≥⎩求通项.(北师大版第20页习题5)数列{}n a 的前n 项和21n S n =+.(1)试写出数列的前5项;(2)数列{}n a 是等差数列吗?(3)你能写出数列{}n a 的通项公式吗? 变式题1、设数列}{n a 的前n 项和为S n =2n 2,求数列}{n a 的通项公式;解:(1):当;2,111===S a n 时 ,24)1(22,2221-=--=-=≥-n n n S S a n n n n 时当故{a n }的通项公式为4,2}{,241==-=d a a n a n n 公差是即的等差数列. 变式题2、数列{a n }的前n 项和为S n ,且a 1=1,113n n a S +=,n =1,2,3,……,求a 2,a 3,a 4的值及数列{a n }的通项公式.解:(I )由a 1=1,113n n a S +=,n=1,2,3,……,得 211111333a S a ===,3212114()339a S a a ==+=,431231116()3327a S a a a ==++=,由1111()33n n n n n a a S S a +--=-=(n ≥2),得143n n a a +=(n ≥2),又a 2=31,所以a n =214()33n -(n ≥2),∴ 数列{a n }的通项公式为21114()233n n n a n -=⎧⎪=⎨⎪⎩≥变式题3、已知数列{}n a 的首项15,a =前n 项和为n S ,且*15()n n S S n n N +=++∈, 证明数列{}1n a +是等比数列.解:由已知*15()n n S S n n N +=++∈可得12,24n n n S S n -≥=++两式相减得()1121n n n n S S S S +--=-+即121n n a a +=+从而()1121n n a a ++=+当1n =时21215S S =++所以21126a a a +=+又15a =所以211a =从而()21121a a +=+故总有112(1)n n a a ++=+,*n N ∈又115,10a a =+≠从而1121n n a a ++=+即数列{}1n a +是等比数列;2、解方程求通项:(北师大版第17页习题3)在等差数列{}n a 中,(1)已知812148,168,S S a d ==求和;(2)已知658810,5,a S a S ==求和;(3)已知3151740,a a S +=求.变式题1、{}n a 是首项11a =,公差3d =的等差数列,如果2005n a =,则序号n 等于(A )667 (B )668 (C )669 (D )670 分析:本题考查等差数列的通项公式,运用公式直接求出. 解:1(1)13(1)2005n a a n d n =+-=+-=,解得669n =,选C点评:等差等比数列的通项公式和前n 项和的公式是数列中的基础知识,必须牢固掌握.而这些公式也可视作方程,利用方程思想解决问题. 3、待定系数求通项:写出下列数列{}n a 的前5项:(1)111,41(1).2n n a a a n -==+> 变式题1、已知数列{}n a 满足*111,21().n n a a a n N +==+∈ 求数列{}n a 的通项公式;解:*121(),n n a a n N +=+∈ 112(1),n n a a +∴+=+{}1n a ∴+是以112a +=为首项,2为公比的等比数列. 12.n n a ∴+=即 *21().n n a n N =-∈ 4、由前几项猜想通项:(北师大版第8页习题1)根据下面的图形及相应的点数,在空格及括号中分别填上适当的图形和数,写出点数的通项公式.变式题1、如下图,第(1)个多边形是由正三角形“扩展“而来,第(2)个多边形是由正方形“扩展”而来,……,如此类推.设由正n 边形“扩展”而来的多边形的边数为n a ,(1) (4) (7) ( ) ( )则6a = ;345991111a a a a +++⋅⋅⋅+=.解:由图可得:22(1)n a n n n n n =+-=+,所以642a =;又211111(1)1n a n n n n n n ===-+++ 所以345991111a a a a +++⋅⋅⋅+=1111111197()()()3445991003100300-+-++-=-= 变式题2、(北师大版第9页习题2)观察下列各图,并阅读下面的文字,像这样,10条直线相交,交点的个数最多是( ),其通项公式为 . A .40个 B .45个 C .50个 D .55个解:由题意可得:设{}n a 为n 条直线的交点个数,则21a =,1(1),(3)n n a a n n -=+-≥,因为11n n a a n --=-,由累加法可求得:(1)12(1)2n n n a n -=+++-=,所以10109452a ⨯==,选B.二、有关等差、等比数列性质问题1、(北师大版第31页习题3)一个等比数列前n 项的和为48,前2n 项的和为60,则前3n 项的和为( )A .83B .108C .75D .63变式题1、一个等差数列前n 项的和为48,前2n 项的和为60,则前3n 项的和为 。

高一下数学等比数列

高一下数学等比数列

高一下数学等比数列一.选择题(共21小题)1.已知等比数列{a n}中,a3a11=4a7,数列{b n}是等差数列,且b7=a7,则b5+b9等于()A.2B.4C.8D.162.已知各项均不相等的等比数列{a n},若3a2,2a3,a4成等差数列,设S n为数列{a n}的前n项和,则等于()A.B.C.3D.13.已知等比数列{a n}的各项都为正数,且a3,成等差数列,则的值是()A.B.C.D.4.等比数列{a n}满足a1=1,q=﹣3,则a5=()A.81B.﹣81C.243D.﹣2435.已知单调递减的等比数列{a n}中,a1>0,则该数列的公比q的取值范围是()A.q=1B.q<0C.q>1D.0<q<16.已知{a n}为等比数列,且a1=32,a2a3=128,设b n=log2a n,数列{b n}的前n项和为S n,则S n的最大值为()A.13B.14C.15D.167.已知数列{a n}满足a1=2,a n+1﹣a n=2n,则a9=()A.510B.512C.1022D.10248.已知{a n}是等比数列,a2=2,a5=,则公比q=()A.B.﹣2C.2D.9.在△ABC中,角A,B,C所对的边分别为a,b,c,若角A,B,C依次成等差数列,边a,b,c依次成等比数列,且b=2,则S△ABC=()A.B.1C.2D.10.等比数列{a n}的各项均为正数,且a2a9+a5a6=6,则log3a1+log3a2+…+log3a10=()A.6B.5C.4D.1+log3511.已知数列{a n}的前n项和为S n,且满足S n=2a n﹣2,a1=2,则a2020=()A.22019B.22020C.22021D.22021﹣212.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其意思是“有一个人走378里,第一天健步行走,从第二天起脚痛每天走的路程是前一天的一半,走了6天后到达目的地.”请问第三天走了()A.60里B.48里C.36里D.24里13.在等比数列{a n}中,a1=﹣16,a4=8,则a7=()A.﹣4B.±4C.﹣2D.±214.已知等比数列{a n}中,a1=2,a5=18,则a2a3a4等于()A.36B.216C.±36D.±21615.已知等比数列{a n}满足a n+1<a n,a3=1,2a12+a11=a10,若{a n}的前n项和为S n,则S3为()A.1或7B.﹣1C.7D.116.在等比数列{a n}中,a2,a10是方程x2﹣5x+3=0的两根,则log3a6=()A.1B.C.D.﹣117.已知等比数列{a n}的各项均为正数,若a1=1,a2+a3=6a1,则a5=()A.4B.10C.16D.3218.等比数列{a n}的前n项和为S n,已知S3=1,S6=9,则S9等于()A.81B.17C.24D.7319.在等比数列{a n}中,已知a2a4a6=8,则a3a5=()A.3B.5C.4D.220.等比数列{a n}的各项均为正数,且a6a7+a5a8=18,则log3a1+log3a2+…log3a12=()A.12B.10C.8D.2+log3521.已知各项不为0的等差数列{a n},满足a72﹣a3﹣a11=0,数列{b n}是等比数列,且b7=a7,则b6b8=()A.2B.4C.8D.16二.填空题(共3小题)22.已知等差数列{a n}的前n项和为S n,若,则cos(a2+a4)=23.若{a n}是等比数列,且前n项和为S n=3n﹣1+t,则t=.24.正项等比数列{a n}其中a2•a5=10,则lga3+lga4=.三.解答题(共16小题)25.已知△ABC的面积为S,且.(1)求tan2A的值;(2)若,,求△ABC的面积S.26.在等比数列{a n}中,a1+a2=6,a2+a3=12.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设{b n}是等差数列,且b2=a2,b4=a4.求数列{b n}的公差,并计算b1﹣b2+b3﹣b4+…﹣b100的值.27.已知数列{a n}的前n项和为S n,且满足2S n=3a n﹣3.(1)证明数列{a n}是等比数列;(2)若数列{b n}满足b n=log3a n,记数列{}前n项和为T n,证明:≤T n<1.28.已知等差数列{a n}的前n项和为S n,S5=30,S7=56;各项均为正数的等比数列{b n}满足b1b2=,b2b3=.(1)求数列{a n}和{b n}的通项公式;(2)求数列{a n•b n}的前n项和T n.29.已知数列{a n}的前n项和S n和通项a n满足S n=2a n﹣1,n∈N*.(1)求数列{a n}的通项公式;(2)已知数列{b n}中,b1=3a1,b n+1=b n+3,n∈N*,求数列{a n+b n}的前n项和T n.30.已知首项为的等比数列{a n}不是递减数列,其前n项和为S n(n∈N*),且S3+a3,S5+a5,S4+a4成等差数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设T n=S n﹣(n∈N*),求数列{T n}的最大项的值与最小项的值.31.设递增等差数列{a n}的前n项和为S n,已知a3=1,a4是a3和a7的等比中项,(Ⅰ)求数列{a n}的通项公式;(Ⅱ)求数列{a n}的前n项和S n.32.等比数列{a n}的各项均为正数,且2a1+3a2=1,a32=9a2a6.(1)求数列{a n}的通项公式;(2)设b n=log3a1+log3a2+…+log3a n,求数列的前n项和T n.33.在公差不为零的等差数列{a n}中,a1+a3=8,且a1,a3,a9成等比数列.(1)求数列{a n}的通项公式;(2)设b n=,数列{b n}的前n项和为S n,求证:S n<.34.已知各项均为正数的等比数列{a n}满足:,且3a3是a4,a5的等差中项.(1)求a n;(2)若,求数列{b n}的前n项和T n.35.在公差不为零的等差数列{a n}中,若首项a1=1,a4是a2与a8的等比中项.(1)求数列{a n}的通项公式;(2)求数列{2n•a n}的前n项和S n.36.已知{a n}是公差不为0的等差数列,满足a3=7,且a1、a2、a6成等比数列.(1)求数列{a n}的通项公式;(2)设,求数列{b n}的前n项和S n.37.已知数列{a n}中,a1=1,a n=2a n﹣1+1(n≥2,n∈N*).(Ⅰ)记b n=a n+1,求证:{b n}为等比数列;(Ⅱ)在(Ⅰ)的条件下,设c n=(n+1)b n,求数列{c n}的前n项和T n.38.已知等比数列{a n}的公比q>1,且a1,a3的等差中项为5,a2=4.(1)求数列{a n}的通项公式;(2)设b n=,求数列{b n}的前n项和S n.39.(1)设等差数列{a n}的前n项和为S n,若a6=S3=12,求{a n}的通项a n;(2)等比数列{a n}中,a5﹣a1=15,a4﹣a2=6,求公比q.40.在等比数列{a n}中a2=3,a5=81.(1)求a n;(2)设b n=log3a n,求数列{b n}的前n项和S n.高一下数学等比数列参考答案一.选择题(共21小题)1.C;2.A;3.A;4.A;5.D;6.C;7.B;8.D;9.D;10.B;11.B;12.B;13.A;14.B;15.C;16.B;17.C;18.D;19.C;20.A;21.B;二.填空题(共3小题)22.;23.;24.1;。

苏教版高一数学必修5等比数列测试题及答案

苏教版高一数学必修5等比数列测试题及答案

等比数列测试题A 组一.填空题(本大题共8小题,每小题5分,共40分)1.在等比数列{}n a 中,3620,160a a ==,则n a = .1.20×2n-3.提示:q 3=16020=8,q=2.a n =20×2n-3. 2.等比数列中,首项为98,末项为13,公比为23,则项数n 等于 .2.4. 提示:13=98×(23)n-1,n=4.3.在等比数列中,n a >0,且21n n n a a a ++=+,则该数列的公比q 等于 ..提示:由题设知a n q 2=a n +a n q,得. 4.在等比数列{a n }中,已知S n =3n +b ,则b 的值为_______.4.b=-1.提示:a 1=S 1=3+b ,n ≥2时,a n =S n -S n -1=2×3n -1.a n 为等比数列,∴a 1适合通项,2×31-1=3+b ,∴b =-1. 5.等比数列{}n a 中,已知12324a a +=,3436a a +=,则56a a +=5.4.提示:∵在等比数列{}n a 中, 12a a +,34a a +,56a a +也成等比数列,∵12324a a +=,3436a a +=∴5636364324a a ⨯+==. 6.数列{a n }中,a 1,a 2-a 1,a 3-a 2,…,a n -a n -1…是首项为1、公比为31的等比数列,则a n 等于 。

6.23(1-n 31).提示:a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=23(1-n 31)。

7.等比数列 ,8,4,2,132a a a 的前n 项和S n = .7. 1,,21(2)1a 122n nn a S a a⎧=⎪⎪=⎨-⎪≠⎪-⎩,。

提示:公比为a q 2=, 当1=q ,即21=a 时,;,12n S a n == 当1≠q ,即21≠a 时,12≠a ,则a a S n n 21)2(1--=.8. 已知等比数列{}n a 的首项为8,n S 是其前n 项和,某同学经计算得224S =,338S =,465S =,后来该同学发现其中一个数算错了,则算错的那个数是__________,该数列的公比是________.8.2S ;32。

高一数学数列复习题有详细答案新人教版必修1

高一数学数列复习题有详细答案新人教版必修1

数列复习题班级______ 姓名______ 学号_______一、选择题1、若数列{a n }的通项公式是a n =2(n +1)+3,则此数列 ( )(A)是公差为2的等差数列 (B)是公差为3的等差数列(C) 是公差为5的等差数列 (D)不是等差数列2、等差数列{a n }中,a 1=3,a 100=36,则a 3+a 98等于 ( )(A)36 (B)38 (C)39 (D)423、含2n+1个项的等差数列,其奇数项的和与偶数项的和之比为 ( ) (A)n n 12+ (B)n n 1+ (C)n n 1- (D)nn 21+ 4、设等差数列的首项为a,公差为d ,则它含负数项且只有有限个负数项的条件是( )(A)a >0,d >0 (B)a >0,d <0 (C)a <0,d >0 (D)a <0,d <05、在等差数列{a n }中,公差为d ,已知S 10=4S 5,则d a 1是 ( ) (A)21 (B)2 (C)41 (D)4 6、设{a n }是公差为-2的等差数列,如果a 1+ a 4+ a 7+……+ a 97=50,则a 3+ a 6+ a 9……+ a 99=( )(A)182 (B)-80 (C)-82 (D)-847、等差数列{a n } 中,S 15=90,则a 8= ( )(A)3 (B)4 (C)6 (D)128、等差数列{a n }中,前三项依次为xx x 1,65,11+,则a 101= ( ) (A)3150 (B)3213 (C)24 (D)328 9、数列{a n }的通项公式nn a n ++=11,已知它的前n 项和为S n =9,则项数n= ( )(A)9 (B)10 (C)99 (D)10010、等差数列{a n }中,a 3+ a 4+ a 5+ a 6+ a 7=450,求a 2+a 8= ( )(A)45 (B)75 (C)180 (D)30011、已知{a n }是等差数列,且a 2+ a 3+ a 8+ a 11=48,则a 6+ a 7= ( )(A)12 (B)16 (C)20 (D)2412、在项数为2n+1的等差数列中,若所有奇数项的和为165,所有偶数项的和为150,则n 等于 ( )(A)9 (B)10 (C)11 (D)1213、等差数列{a n } 的前m 项和为30,前2m 项和为100,则它的前3m 项和为( )(A)130 (B)170 (C)210 (D)16014、等差数列{a n }的公差为21,且S 100=145,则奇数项的和a 1+a 3+a 5+……+ a 99=( ) (A)60 (B)80 (C)72.5 (D)其它的值15、等差数列{a n }中,a 1+a 2+……a 10=15,a 11+a 12+……a 20=20,则a 21+a 22+……a 30=( )(A)15 (B)25 (C)35 (D)4516、等差数列{a n }中,a 1=3,a 100=36,则a 3+a 98= ( )(A)36 (B)39 (C)42 (D)4517、{a n }是公差为2的等差数列,a 1+a 4+a 7+……+a 97=50,则a 3+a 6+……+ a 99= ( )(A)-50 (B)50 (C)16 (D)1.8218、若等差数列{a n }中,S 17=102,则a 9= ( )(A)3 (B)4 (C)5 (D)619、夏季高山上温度从山脚起每升高100米,降低0.7℃,已知山顶的温度是14.1℃,山脚的温度是26℃,则山的相对高度是 ( )(A)1500 (B)1600 (C)1700 (D)180020、若x ≠y ,且两个数列:x ,a 1,a 2,y 和x ,b 1,b 2,b 3,y 各成等差数列,那么=--31b y x a ( )(A)43 (B)34 (C)32 (D)值不确定 21、一个等差数列共有2n 项,奇数项的和与偶数项的和分别为24和30,且末项比首项大10.5,则该数列的项数是 ( )(A)4 (B)8 (C)12 (D)2022、等差数列{a n }中如果a 6=6,a 9=9,那么a 3= ( )(A)3 (B)32 (C)916 (D)4 23、设{a n }是等比数列,且a 1=32,S 3=916,则它的通项公式为a n = ( ) (A)1216-⎪⎭⎫ ⎝⎛∙n (B)n ⎪⎭⎫ ⎝⎛-∙216 (C)1216-⎪⎭⎫ ⎝⎛-∙n (D)1216-⎪⎭⎫ ⎝⎛-∙n 或23 24、已知a 、b 、c 、d 是公比为2的等比数列,则dc b a ++22= ( ) (A)1 (B)21 (C)41 (D)81 25、已知等比数列{a n } 的公比为q ,若21+n a =m (n 为奇数),则213+n a = ( ) (A)mq n -1 (B) mq n (C) mq (D) 8126、已知等比数列前10项的和为10,前20项的和为30,那么前30项的和为( )(A)60 (B)70 (C)90 (D)12627、若{a n }是等比数列,已知a 4 a 7=-512,a 2+a 9=254,且公比为整数,则数列的a 12是( )(A)-2048 (B)1024 (C)512 (D)-51228、数列{a n }、{b n }都是等差数列,它们的前n 项的和为1213-+=n n T S n n ,则这两个数列的第5项的比为 ( ) (A)2949 (B)1934 (C)1728 (D)以上结论都不对29、已知cb b a ac lg lg 4lg 2∙=,则a ,b ,c ( ) (A)成等差数列 (B)成等比数列(C)既成等差数列又成等比数列 (D)既不成等差数列又不成等比数列30、若a+b+c ,b+c -a ,c+a -b ,a+b -c 成等比数列,且公比为q ,则q 3+q 2+q 的值为( )(A)1 (B)-1 (C)0 (D)231、若一等差数列前四项的和为124,后四项的和为156,又各项的和为350,则此数列共有 ( )(A)10项 (B)11项 (C)12项 (D)13项32、在3和9之间插入两个正数,使前三个数成等比数列,后三个数成等差数列,则二数之和为 ( ) (A)2113 (B)04111或 (C)2110 (D)219 33、数列1,211+,3211++,……,n+⋅⋅⋅++211的前n 项和为 ( ) (A) n n 12+ (B)122+n n (C)12++n n (D)12+n n 34、设数列{a n }各项均为正值,且前n 项和S n =21(a n +n a 1),则此数列的通项a n 应为 ( )(A) a n =n n -+1 (B) a n =1--n n(C) a n =12+-+n n (D) a n =12-n35、数列{a n }为等比数列,若a 1+ a 8=387,a 4 a 5=1152,则此数列的通项a n 的表达式为( )(A) a n =3×2n -1 (B) a n =384×(21)n -1 (C) a n =3×2n -1或a n =384×(21)n -1 (D) a n =3×(21)n -1 36、已知等差数{a n }中,a 3+ a 4+ a 5+ a 6+ a 7=450,则a 1+ a 9= ( )(A)45 (B)75 (C)180 (D)30037、已知等比数列{a n }中,a n >0,公比q ≠1,则 ( )(A)26242723a a a a +〉+ (B)26242723a a a a +〈+(C)26242723a a a a +=+ (D)的大小不确定与26242723a a a a ++38、在等比数列中,首项89,末项31,公比32,求项数 ( ) (A)3 (B)4 (C)5 (D)639、等比数列{a n }中,公比为2,前四项和等于1,则前8项和等于 ( )(A)15 (B)17 (C)19 (D)2140、某厂产量第二年增长率为p ,第三年增长率为q ,第四年增长率为r ,设这三年增长率为x ,则有 ( ) (A)3r q p x ++= (B)3r q p x ++<(C)3r q p x ++≤ (D)3r q p x ++≥ 二、填空题1、已知等差数列公差d >0,a 3a 7=-12,a 4+a 6=-4,则S 20=_______2、数列{a n }中,若a 1,a 2,a 3成等差数列,a 2,a 3,a 4成等比数列,a 3,a 4,a 5的倒数又成等差数列,则a 1,a 3,a 5成_______数列3、已知{a n }为等差数列,a 1=1,S 10=100,a n =_______.令a n =log 2b n ,则的前五项之和S 5′=_______4、已知数列 )2)(1(1,,201,121,61++n n 则其前n 项和S n =________. 5、数列前n 项和为S n =n 2+3n,则其通项a n 等于____________.6、等差数列{a n }中, 前4项和为26, 后4项之和为110, 且n 项和为187, 则n 的值为____________.7、已知等差数列{a n }的公差d ≠0, 且a 1,a 3,a 9成等比数列, 1042931a a a a a a ++++的值是________. 8、等差数列{a n }中, S 6=28, S 10=36(S n 为前n 项和), 则S 15等于________.9、等比数列{a n }中, 公比为2, 前99项之和为56, 则a 3+a 6+a 9+…a 99等于________.10、等差数列{a n }中, a 1=1,a 10=100,若存在数列{b n }, 且a n =log 2b n ,则b 1+b 2+b 3+b 4+b 5等于____________.11、已知数列1, ,3,2,1nn n n n n --- , 前n 项的和为____________. 12、已知{a n }是等差数列,且有a 2+a 3+a 10+a 11=48, 则a 6+a 7=____________.13、等比数列{a n }中, a 1+a 2+a 3+a 4=80, a 5+a 6a 7+a 8=6480, 则a 1必为________.14、三个数a 1、1、c 1成等差数列,而三个数a 2、1、c 2成等比数列, 则22c a c a ++等于____________.15、已知12, lgy 成等比数列, 且x >1,y >1, 则x 、y 的最小值为________. 16、在数列{a n }中, 5221-=+n n n a a a , 已知{a n }既是等差数列, 又是等比数列,则{a n }的前20项的和为________.17、若数列{a n }, )1)(2(1,3211+++==+n n a a a n n 且 (n ∈N), 则通项a n =________. 18、已知数列{a n }中, n n a a a )12(,22314-=-=+(n ≥1), 则这个数列的通项公式a n =________.19、正数a 、b 、c 成等比数列, x 为a 、b 的等差中项, y 为b 、c 的等差中项, 则a c x y+的值为________. 20、等比数列{a n }中, 已知a 1·a 2·a 3=1,a 2+a 3+a 4=47, 则a 1为________. 三、解答题1、在等差数列{a n }中,a 1=-250,公差d=2,求同时满足下列条件的所有a n 的和,(1)70≤n ≤200;(2)n 能被7整除.2、设等差数列{a n }的前n 项和为S n .已知a 3=12, S 12>0,S 13<0.(Ⅰ)求公差d 的取值范围; (Ⅱ)指出S 1,S 2,…,S 12,中哪一个值最大,并说明理由.3、数列{n a }是首项为23,公差为整数的等差数列,且前6项为正,从第7项开始变为负的,回答下列各问:(1)求此等差数列的公差d;(2)设前n 项和为n S ,求n S 的最大值;(3)当n S 是正数时,求n 的最大值.4、设数列{n a }的前n 项和n S .已知首项a 1=3,且1+n S +n S =21+n a ,试求此数列的通项公式n a 及前n 项和n S .5、已知数列{n a }的前n 项和31=n S n(n +1)(n +2),试求数列{n a 1}的前n 项和.6、已知数列{n a }是等差数列,其中每一项及公差d 均不为零,设2122++++i i i a x a x a =0(i=1,2,3,…)是关于x 的一组方程.回答:(1)求所有这些方程的公共根;(2)设这些方程的另一个根为i m ,求证111+m ,112+m ,113+m ,…, 11+n m ,…也成等差数列.7、如果数列{n a }中,相邻两项n a 和1+n a 是二次方程n n n c nx x ++32=0(n=1,2,3…)的两个根,当a 1=2时,试求c 100的值.8、有两个无穷的等比数列{n a }和{n a },它们的公比的绝对值都小于1,它们的各项和分别是1和2,并且对于一切自然数n,都有1+n a ,试求这两个数列的首项和公比.9、有两个各项都是正数的数列{n a },{n b }.如果a 1=1,b 1=2,a 2=3.且n a ,n b ,1+n a 成等差数列, n b ,1+n a ,1+n b 成等比数列,试求这两个数列的通项公式.10、若等差数列{log 2x n }的第m 项等于n ,第n 项等于m(其中m ≠n),求数列{x n }的前m +n 项的和。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学数列试题1.设为数列的前n项和,若是非零常数,则称该数列为“和等比数列”.若数列是首项为,公差为()的等差数列,且数列是“和等比数列”,则与的关系式为 .【答案】【解析】若数列是首项为,公差为d(d≠0)的等差数列,且数列是“和等比数列”,则,若是非零常数,则d=2c1【考点】本题考查的知识点是和等比关系的确定和性质,解答的关键是正确理解“和等比数列”的定义,并能根据定义构造出满足条件的方程.2.设成等比数列,其公比为2,则的值为()A.B.C.D.1【答案】A【解析】略3.(本小题满分12分)已知等差数列的公差,该数列的前项和为,且满足.(Ⅰ)求数列的通项公式;(Ⅱ)设,,求数列的通项公式.【答案】(Ⅰ)(Ⅱ)【解析】(Ⅰ)将已知条件转化为等差数列的基本量,解方程组得到首项和公差,进而得到通项公式(Ⅱ)借助于数列求得数列的递推公式,根据特点采用累和法求通项试题解析:(Ⅰ)因为所以,即.因为,,所以.所以.所以.(Ⅱ)因为,所以,,…….相加得==即.【考点】1.等差数列通项公式;2.累和法求通项4.若数列的前n项和为,则()A.B.C.D.【答案】A【解析】此题是已知求通项,当时,,当时,,验证:当时,成立,所以.【考点】已知求5.已知等比数列的前项和为,若,则的值是.【答案】【解析】,【考点】等比数列性质及求和公式6.在等比数列中,,且,是和的等差中项.(1)求数列的通项公式;(2)若数列满足(),求数列的前项和.【答案】(1)(2)【解析】(1)将已知条件建立等式关系后转化为等比数列的首项和公比表示,通过解方程组得到基本量,从而写出通项公式;(2)首先将数列通项公式化简,根据特点求和时采用分组求和,通项中部分分成一组,部分分成一组,分别利用等比数列等差数列求和公式计算试题解析:(1)设等比数列的公比为.由可得,因为,所以依题意有,得因为,所以,所以数列通项为(6分)(2)可得.(12分)【考点】1.等差等比数列通项公式及求和;2.数列的分组求和7.设等差数列中,已知,则 =______.【答案】10【解析】,所以,==10【考点】等差数列的性质应用8.若是等比数列,有,是等差数列,且,则()A.4B.8C.0D.16【答案】B【解析】根据等比数列的性质,所以,解得:,又根据等差数列的性质【考点】1.等差数列的性质;2.等比数列的性质.9.等差数列的前三项为,,,则;数列的通项公式.【答案】;【解析】前三项成等差数列,所以,所以,,那数列的前三项分别是,,,所以数列是首项为,公差为的等差数列,所以【考点】1.等差数列的通项公式;2.等差中项.10.(本小题满分9分)等比数列的各项均为正数,且(1)求数列的通项公式;(2)设求数列的前n项和.【答案】(1)(2)【解析】第一问设出首项和公比,利用得到,得到通项公式a=n 第二问首先借助第一问求出再利用裂项求和.试题解析:解析:(Ⅰ)设数列的公比为q,由得所以。

由条件可知a>0,故。

由得,所以。

=.故数列的通项式为an(Ⅱ)故所以数列的前n项和为【考点】等比数列的通项公式,裂项求和法.11.数列满足,则的整数部分是()A.B.C.D.【答案】B【解析】,所以所以:,,累加得:所以根据已知,所以根据递推公式得:,,,所以,那么那么的整数部分是.【考点】1.递推数列;2.累加法.12.已知数列、都是公差为1的等差数列,其首项分别为、,且、.设,则数列的前10项和等于.【答案】【解析】,所以,而,所以代入后得:,所以是等差数列,那么前10项和是.【考点】1.等差数列的通项公式;2.等差数列的前项和.13.已知等差数列的公差,若,则_____.【答案】1008【解析】由前n项和公式可得:,所以可得【考点】1.等差数列前n项和公式;2.等差中项14.已知等比数列满足,则.【答案】64【解析】设等比数列公比为,根据题意可得,所以,所以【考点】等比数列性质15.设是等差数列的前n项和,若S7=35,则a4=()A.8B.7C.6D.5【答案】D【解析】依题意有.【考点】等差数列前项和公式.16.设等差数列的前项和为,且,,数列的前项和为,且,().(1)求数列的通项公式及前项和;(2)求数列的通项公式及前项和为;(3)记集合,若集合中有且仅有5个元素,求实数的取值范围.【答案】(1),;(2);;(3).【解析】(1)依据题设及等差数列的通项公式建立方程解;(2)先依据题设运用叠乘的方法求,再运用错位相减法求;(3)运用函数的单调性建立不等式进行求解.试题解析:(1)由题意得,解得,所以,所以.(2)由得所以当时,即,当时,,适合上式,所以.,①,②①-②得,,所以(3)因为所以由上面可得:,令又因为,所以当时,,即又,,,,,因为集合中有且仅有5个元素,所以,解的个数为5,所以.【考点】1、等差数列的通项及前项和的应用;2、数列中的叠乘、错位相减等数学方法;3、灵活运用数列知识分析问题解决问题的能力.【易错点晴】本题主要考查的是数列与等差数列的通项公式及前项和公式的运用,属于中档偏难的问题.解题时一定要借助题设条件,灵活运用数学思想和方法,否则很容易出现错误.第一问直接利用等差数列的通项和前项和公式建立方程组求解;第二问中则运用了错位相减法进行求解;第三问是运用函数的单调性建立不等式进行求解.解范围这类问题的常规思路是要建立函数或建立不等式,灵活运用数学思想和方法进行转化与化归.17.已知数列的前项和.(1)求数列的通项公式;(2)若数列是等比数列,公比为且,求数列的前项和.【答案】(1);(2).【解析】(1)根据的关系并结合对的讨论就可得到数列的通项公式;(2)根据(1)的结论,首先求出数列首项以及公比的值,进而得到数列的通项公式,再根据等比数列的求前项和公式就可求出数列的前项和.试题解析:(1)因为数列的前项和,所以当时,,又当时,,满足上式,(2)由(1)可知,又,所以.又数列是公比为正数等比数列,所以,又,所以所以数列的前项和【考点】1、等差数列、等比数列;2、数列的通项公式;3、数列的前项和公式.18.数列的前项和为,已知数列是首项和公比都是的等比数列,则的通项公式.【答案】【解析】由题意可知,所以当时,当时,由于不适合所以的通项公式.【考点】等比数列的通项公式及数列求和.19.设等差数列的前项和为,且.(1)求数列的通项公式;(2)设,求数列的前项和.【答案】(1);(2).【解析】(1)在等差数列中,将转化成进而转化为从而求得公差,便可求得通项公式;(2)将代入,便可求得,即为等比数列,利用公式便可求得.试题解析:(1)假设数列的公差为,则即(2),即数列为等比数列所以.【考点】数列的通项与前前项.20.在等差数列中,,数列是等比数列,且,则的值为()A.2B.4C.8D.16【答案】D【解析】由题意得,在等比数列中,可得,在等差数列,可得,所以,又,所以,故选D.【考点】等差、等比数列的性质.21.已知等比数列的各项均为正数,,,则 .【答案】【解析】由题意,即,,所以.【考点】等比数列的通项公式.22.设是公比不为1的等比数列,且成等差数列.(1)求数列的公比;(2)若,求的取值范围.【答案】(1);(2).【解析】(1)由等比数列的通项公式出发,数列的公比为(),由成等差数列,得,即,可解得;(2)把已知用表示为,可求得范围.试题解析:(1)设数列的公比为(),由成等差数列,得,即.由得,解得(舍去).∴.(2)【考点】等比数列的通项公式.23.在等差数列中,=1,又a,,成公比不为1的等比数列.1(Ⅰ)求数列的公差;(Ⅱ)设,求数列的前n项和.【答案】(I);(Ⅱ).【解析】(Ⅰ)设等差数列的公差为,由等差数列的通项公式求出,由等比中项的性质列出方程,求出的值;(Ⅱ)由(Ⅰ)求出,代入化简,由裂项相消法求出数列的前项和.试题解析:(I)设等差数列的公差为d,因为,所以又成公比不为的等比数列,则所以,计算得出或(舍去)(Ⅱ)由(Ⅰ)得,,所以则【考点】(1)等差数列通项公式;(2)数列求和.24.已知数列中,前项和为,且点在一次函数上的图象上,则=()A.B.C.D.【答案】D【解析】点在一次函数上的图象上,,数列为等差数列,其中首项为,公差为,,数列的前项和,,.故选D.【考点】1、等差数列;2、数列求和.25.已知为等比数列,若,,则公比的值为()A.B.C.D.【答案】B【解析】设等比数列的公比为,则,即,两式相除得.故选B.【考点】等比数列的通项公式.26.已知等差数列的前项之和为,前项和为,则它的前项的和为()A.B.C.D.【答案】C【解析】由于等差数列中也成等差数列,即成等差数列,所以,故选C.【考点】等差数列前项和的性质.27.在正项等比数列中成等差数列,则等于( )A.3或﹣1B.9或1C.1D.9【答案】D【解析】设数列的公比为q(q>0),依题意,,整理得:q2-2q-3=0,解得:q=3或q=-1(舍),, 故选:D.【考点】等比数列通项公式28.已知函数,数列满足:,,数列满足:(1)求证数列是等比数列,并求数列的通项公式;(2)求数列的通项公式和它的前项和.【答案】(1)证明见解析,;(2)【解析】(1)首先探求数列的递推关系,由知,即,结合要证结论,此式可变形为,计算,因此有是等比数列,由等比数列通项公式可得;(2)由(1)得,此式相当于已知数列的前项和,求通项的问题,因此只要再写出时,用代入后得,两式相减可得,由于可以看作是一个等差数列与等比数列相乘所得,因此其前项和采用错位相减法求得.试题解析:(1)是以2为首项,以2为公比的等比数列,(2),,,,符合上式,,,所以,所以【考点】等比数列的判断,已知求通项,错位相减法.【名师】(1)证明一个数列为等比数列常用定义法与等比中项法,其他方法只用于选择、填空题中的判定;若证明某数列不是等比数列,则只要证明存在连续三项不成等比数列即可.(2)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和即可用此法来求,如等比数列的前n项和就是用此法推导的.29.已知数列的前n项和为,且(1)求的通项公式;(2)设,若集合恰有5个元素,求实数的取值范围.【答案】(1);(2).【解析】(1)将变形得,从而可知数列是等比数列,求出的通项,进而求出;(2)先根据的通项公式利用错位相减法法求出,根据求出,再判断数列的单调性,从而确定实数的取值范围.试题解析:(1)由已知得,其中,所以,数列是公比为的等比数列,首项的等比数列,,(2)由(1)知,,,,,,,所以,当,即,,即,因为,要使得集合有5个元素,实数的取值范围为.【考点】1、数列通公式的求法;2、等比数列的定义;3、数列求和.【方法点睛】利用错位相减法求数列前项和的一般步骤:第一步:将数列写成两个数列的积的形式,其中为等差数列,为等比数列;第二步:写出数列的前项的和;第三步:将的两边都乘以得;第四步:两式错位相减得;第五步:两式两边都除以得.本题主要考查了由数列的递推关系求通项,等比关系的确定以及错位相减法求和法的应用,同时考查了分析问题与解决问题的能力,属于中档题.30.设等比数列的公比为,其前项之积为,并且满足条件:,.给出下列结论:(1);(2)(3)的值是中最大的;(4)使成立的最大自然数等于4030.其中正确的结论为( )A.(1),(3)B.(2),(3)C.(2),(4)D.(1),(4)【答案】C【解析】由已知推得a2015<1或a2016<1.然后分析若a2015<1,那么a2016>1,若a2015<0,则q<0结合等比数列的通项公式可得q>0.再由等比数列的性质逐一核对四个命题得答案.可知:a2015<1或a2016<1.如果a2015<1,那么a2016>1,若a2015<0,则q<0;又∵a2016=a1q2015,∴a2016应与a1异号,即a2016<0,这假设矛盾,故q>0.若q≥1,则a2015>1且a2016>1,与推出的结论矛盾,故0<q<1,故(1)正确;又a2015a2017=a20162<1,故(2)错误;由结论(1)可知a2015>1,a2016<1,故数列从2016项开始小于1,则T2015最大,故(3)错误;由结论(1)可知数列从2016项开始小于1,而Tn =a1a2a3…an,故当Tn=(a2015)2时,求得Tn>>1对应的自然数为4030,故(4)正确.故选:C.【考点】等比数列性质【方法点睛】等比数列的性质可以分为三类:①通项公式的变形,②等比中项的变形,③前n项和公式的变形.根据题目条件,认真分析,发现具体的变化特征即可找出解决问题的突破口31.已知数列{an }是等差数列,满足a1=3,a4=12,数列{bn}满足b1=4,b4=20,且{bn-an}为等比数列.(Ⅰ)求数列{an }和{bn}的通项公式;(Ⅱ)求数列{bn}的前n项和.【答案】(Ⅰ),;(Ⅱ).【解析】(Ⅰ)先由,求出数列的公差,再求出的通项公式,由已知条件求出数列的通项公式, 再求出的通项公式;(Ⅱ)把分成两组,分别求出通项公式来.试题解析:(Ⅰ)设等差数列{an}的公差为d,由题意得d===3.所以an =a1+(n-1)d=3n(n=1,2,…).设等比数列{bn -an}的公比为q,由题意得q3===8,解得q=2.所以bn -an=(b1-a1)q n-1=2n-1,从而bn=3n+2n-1(n=1,2,…).(Ⅱ)由(1)知bn=3n+2n-1(n=1,2,…).数列{3n}的前n项和为n(n+1),数列{2n-1}的前n项和为1×=2n-1.所以,数列{bn}的前n项和为n(n+1)+2n-1.【考点】1.等差等比数列的通项公式;2.数列求和中的分组求和.32.在等差数列中,,且前10项和,则的最大值是()A.3B.6C.9D.36【答案】C【解析】,解得,根据基本不等式,等号成立的条件是,所以的最大值是9,故选C.【考点】1.等差数列;2.基本不等式.33.已知数列,…则是它的第______项.A.21B.22C.23D.24【答案】C【解析】原数列可化为,即通项公式为,,.故本题答案应选C.【考点】数列的通项公式.34.已知数列满足,(1)求证:数列是等比数列,并求其通项公式;(2)设,求数列的前项和;【答案】(1)(2)【解析】(1)由,,变形为,利用等比数列的定义及其通项公式即可得出.(2)由,可得.当n≤8时,<0,当n≥9时,>0.对n分类讨论,去掉绝对值符号,利用等差数列的求和公式即可得出试题解析:(1),,为等比数列(2),当时,,当时, 。

相关文档
最新文档