蜗轮蜗杆传动设计

蜗轮蜗杆传动设计
蜗轮蜗杆传动设计

7 蜗杆传动

应用和类型

传动的特点和应用

成:蜗杆、蜗轮(一般蜗杆为主动件,蜗轮为从动件)

用:传递空间交错的两轴之间的运动和动力。通常Σ=90°

用:用在机床、汽车、仪器、起重运输机械、冶金机械以及其他机械制造工业中。最大传递功率为750Kw,通常用在50Kw以下。

、传动比大。单级时i=5~80,一般为i=15~50,分度传动时i可达到1000,结构紧凑。

、传动平稳、噪声小。

、自锁性,当蜗杆导程角小于齿轮间的当量摩擦角时,可实现自锁。

、蜗杆传动效率较低,其齿面间相对滑动速度大,齿面磨损严重。

、蜗轮的造价较高。为降低摩擦,减小磨损,提高齿面抗胶合能力,蜗轮常用贵重的铜合金制造。

.1.2 蜗杆传动的类型

状不同分为:圆柱蜗杆传动(a)、环面蜗杆传动(b)、锥面蜗杆传动(c)。

(a)圆柱蜗杆传动

(c)锥面蜗杆传动

图7-1 蜗杆传动的类型

、圆柱蜗杆传动

右旋之分。螺杆的常用齿数(头数)z1=1~4,头数越多,传动效率越高。蜗杆加工由于安装位置不同,产生的螺旋面在相对剖面内的齿廓曲线形状不同。)、阿基米德蜗杆(ZA蜗杆)

米德蜗杆是齿面为阿基米德螺旋面的圆柱蜗杆。通常是在车床上用刃角α0=20°的车刀车制而成,切削刃平面通过蜗杆曲线,端面齿廓为阿基米德螺旋线

、缺点:蜗杆车制简单,精度和表面质量不高,传动精度和传动效率低。头数不宜过多。

用:头数较少,载荷较小,低速或不太重要的场合。

图7-2 阿基米德蜗杆

2)、法向直廓蜗杆(ZN蜗杆)

杆加工时,常将车刀的切削刃置于齿槽中线(或

法向剖面内,端面齿廓为延伸渐开线。

点:常用端铣刀或小直径盘铣刀切制,加工简便,利于加工多头蜗杆,可以用砂轮磨齿,加工精度和表面质量较高。:用于机场的多头精密蜗杆传动。

)、渐开线蜗杆(ZI蜗杆)

杆是齿面为渐开线螺旋面的圆柱蜗杆。用车刀加工时,刀具切削刃平面与基圆相切,端面齿廓为渐开线。

缺点:可以用单面砂轮磨齿,制造精度、表面质量、传动精度及传动效率较高。

用:用于成批生产和大功率、高速、精密传动,故最常用。

、环面蜗杆传动特点:

(1)、齿轮表面有较好的油膜形成条件,抗胶合的承载能力和效率都较高;

(2)、同时接触的齿数较多,承载能力为圆柱蜗杆传动的1.5~4倍;

(3)、制造和安装较复杂,对精度要求高;

(4)、需要考虑冷却的方式。

、锥面蜗杆传动

数多,重合度大,传动平稳,承载能力强;

(2)、蜗轮用淬火钢制造,节约有色金属。

图7-6 锥面蜗

图7-7 蜗轮

动的主要参数和几何尺寸

蜗杆轴线的平面,称为中间平面。在中间平面内蜗杆与蜗轮的啮合就相当于渐开线齿条与齿轮的啮合。在蜗杆传动的设计计算中,均以中间平面上的基本参参数

1、模数m和压力角a

杆与蜗轮啮合时,蜗杆的轴向模数mx1、压力角αx1应与蜗轮的端面模数、

mx1= mt2 = m

=αt2=α=20°

的螺旋角,γ:螺杆的导程角。

表7-1 圆柱蜗杆的基本尺寸和参数

2、螺杆导程角γ

杆轴向齿距,px1=πm(mm);γ为导程角(°)。导程角越大,传动效率越高,γ=3.5°~55°。传动效率高时,常取γ=15°~30°,采用多头蜗杆。

3、蜗杆分度圆直径d1

杆尺寸相同的蜗轮滚刀配对加工而成的,为了限制滚刀的数目,国家标准对每一标准模数规定了一定数目的标准蜗杆分度圆直径d1。

大,其传动效率高,但会使蜗杆的强度、刚度降低。在蜗杆刚度允许的情况下,设计蜗杆传动时,要求传动效率高时,d1可以选小值,当要求强度和刚度

4、蜗杆的头数z1、蜗轮齿数z2和传动比 i

头数(如:单头蜗杆)可以实现较大的传动比,但传动效率较低,可以实现自锁;蜗杆头数越多,传动效率越高,但蜗杆头数过多时不易加工。通常蜗杆要取决于传动比,即z2= i z1 。 z2不宜太小(如z2<28),否则将使传动平稳性变差。 z2也不宜太大,否则在模数一定时,蜗轮尺寸越大,刚度越小0,常取32~80。z1、z2之间最好互质,利于磨损均匀。

(7.1)

5,7.5,10*,12.5,15,20*,25,30,40*,50,60,70,80*。带*的为基本传动比,优先选用。

5、中心距:(7.2)

减少箱体类型,有利于标准化、系列化,国标中对一般圆柱蜗杆减速装置的中心距推荐为:40,50,63,80,100,125,160,(180),200,(225),500。

传动何尺寸

表7-2 蜗杆传动何尺寸

动的失效形式、材料和精度

.3.1蜗杆传动的失效形式及设计准则

1、失效形式

疲劳点蚀、胶合、磨损及轮齿折断。

间相对滑动速度vs:(7.3)

及散热不良时,闭式传动易出现胶合,但由于蜗轮的材料通常

合时,蜗轮表面金属粘到蜗杆的螺旋面上,使、

。蜗轮轮齿的磨损严重,尤其在开式传动和润滑油不清洁的闭式传动中。

2、计算准则

式蜗轮传动,通常按齿面接触疲劳强度来设计,并校核齿根弯曲疲劳强度。

传动时载荷变动较大,或蜗轮齿数z2大于90时,通常只须按齿根弯曲疲劳强度进行设计。

重、发热大、效率低,对闭式蜗杆传动还必须作热平衡计算,以免发生胶合失效。

蜗轮常用材料及热处理

和蜗杆材料要有一定的强度,还要有良好的减摩性、耐摩性和抗胶合能力。蜗杆传动常用青铜(低速时用铸铁)做蜗轮齿圈,与淬硬并磨制的钢制蜗杆相

1、蜗杆材料及热处理

一般不重要的蜗杆用45钢调质处理;

高速、重载但载荷平稳时用碳钢、合金钢,表面淬火处理;

高速、重载且载荷变化大时,可采用合金钢渗碳淬火处理。

表7-3蜗杆材料及热处理

2、蜗轮材料及许用应力

摩性、耐磨性好,抗胶合能力强,但价格高,用于相对滑动速度vs≤25m/s的高速重要蜗杆传动中;冲击而且价格便宜,但抗胶合能力和耐磨性不如锡青铜,一般用于vs ≤10m/s的蜗杆传动中;

s的低速、轻载、不重要的蜗杆传动中。

表7-3 锡青铜蜗轮的许用应力

表7-4 铝铁青铜及铸铁蜗轮的许用应力

传动的精度等级

B 10089-88对普通圆柱蜗杆传动规定了1~12个精度等级

级依次降低,12级为最低,6~9级精度应用最多,6级精度传动一般用于中等精度的机床传动机构,蜗轮圆周速度v2>5m/s,7级精度用于中等精度的运输/s,8级精度一般用于一般的动力传动中,蜗轮圆周速度v2<3m/s,9级精度一般用于不重要的低速传动机构或手动机构,蜗轮圆周速度v2<1.5m/s。动的强度计算

.4.1蜗杆传动的受力分析

力分析与斜齿圆柱齿轮相似,轮齿在受到法向载荷Fn的情况下,可分解出径向载荷Fr、周向载荷Ft、轴向

下关系:

图7-8 蜗杆传动的受力分析

传动的强度计算

、蜗轮齿面接触疲劳强度计算

触疲劳强度的校核公式为:

(7.4)

蜗杆对青铜或铸铁蜗轮(齿圈)配对

度的设计公式为:

(7.5)

、蜗轮齿根弯曲疲劳强度计算

核公式为:(7.6)

设计公式为:

(7.7)

动的效率、润滑和热平衡计算

.5.1 蜗杆传动的效率

(7.8)

轮齿啮合齿面间摩擦损失的效率;

——考虑油的搅动和飞溅损耗时的效率;

——考虑轴承摩擦损失时的效率;

大的因素,可由下式确定:

(7.9)

程角;jv——当量摩擦角。

(7.10)

关系为:

1 124

0.65 ~0.75 0.75~0.82 0.82~0.92

<0.5

z1=1、2时η=0.60~0.70

传动的润滑

润滑的主要目的在于减摩与散热。具体润滑方法与齿轮传动的润滑相近。润滑油:润滑油的种类很多,需根据蜗杆、蜗轮配对材料和运转条件选用。润滑载荷类型进行选择。给油方法包括:油池润滑、喷油润滑等,若采用喷油润滑,喷油嘴要对准蜗杆啮入端,而且要控制一定的油压。

润滑油量:润滑油量的选择既要考虑充分的润滑,又不致产生过大的搅油损耗。对于下置蜗杆或侧置蜗杆传动,浸油深度应为蜗杆的一个齿高;当蜗杆上

传动的热平衡计算

传动效率较低,对于长期运转的蜗杆传动,会产生较大的热量。如果产生的热量不能及时散去,则系统的热平衡温度将过高,就会破坏润滑状态,从而导

因摩擦功耗产生的热量为:(7.11)

冷却从箱壁散去的热量为:(7.12)

面的散热系数,自然通风良好时:K =(14~17.5)W/(m2?℃);在没有循环空气流动的场所: K =(8.7~10.5)W/(m2?℃);

的可散热面积(m2);A=A1+0.5A2,A1指箱体外壁与空气接触而内壁能被油飞溅到的箱壳面积,A2指箱体的散热片面积。

油的工作温度(℃);t2——环境温度(℃),一般取20 ℃ 。

(7.13)

热平衡验算,一般t1≤90℃

度t1超过了[t1],则首先考虑在不增大箱体尺寸的前提下,设法增加散热面积。如不能满足要求可用下列强制措施解决。

1)在蜗杆轴端装设风扇;

2)采用循环压力喷油冷却;

3)在箱体油池内装蛇形官。

蜗轮的结构

.6.1 蜗杆的结构

蜗杆螺旋部分的直径不大,所以常和轴做成一个整体。当蜗杆螺旋部分的直径较大时,可以将轴与蜗杆分开制作。无退刀槽,加工螺旋部分时只螺旋部分可用车制,也可用铣制加工,但该结构的刚度较前一种差,如图7-10所示。

图7-9 无退刀槽时螺旋部分的加

图7-10 有退刀槽时螺旋部分的加工

的结构

为了减摩的需要,蜗轮通常要用青铜制作。为了节省铜材,当蜗轮直径较大时,采用组合式蜗轮结构,齿圈用青铜,轮芯用铸铁或碳素钢。常用蜗轮的

图7-11 蜗轮的结构

机械设计课程设计蜗轮蜗杆传动

目录 第一章总论......................................................... - 2 - 一、机械设计课程设计的容......................................... - 2 - 二、设计任务..................................................... - 2 - 三、设计要求..................................................... - 3 - 第二章机械传动装置总体设计......................................... - 3 - 一、电动机的选择................................................. - 4 - 二、传动比及其分配............................................... - 4 - 三、校核转速..................................................... - 5 - 四、传动装置各参数的计算......................................... - 5 - 第三章传动零件—蜗杆蜗轮传动的设计计算............................. - 5 - 一、蜗轮蜗杆材料及类型选择....................................... - 6 - 二、设计计算..................................................... - 6 - 第四章轴的结构设计及计算.......................................... - 10 - 一、安装蜗轮的轴设计计算........................................ - 10 - 二、蜗杆轴设计计算.............................................. - 15 - 第五章滚动轴承计算................................................ - 17 - 一、安装蜗轮的轴的轴承计算...................................... - 18 - 二、蜗杆轴轴承的校核............................................ - 18 - 第六章键的选择计算................................................ - 19 - 第七章联轴器...................................................... - 20 - 第八章润滑及密封说明.............................................. - 20 - 第九章拆装和调整的说明............................................ - 20 - 第十章减速箱体的附件说明.......................................... - 20 - 课程设计小结........................................................ - 21 - 参考文献............................................................ - 22 -

蜗轮蜗杆设计

蜗轮蜗杆传动 蜗杆传动是用来传递空间交错轴之间的运动和动力的。最常用的是轴交角∑=90°的减速传动。蜗杆传动能得到很大的单级传动比,在传递动力时,传动比一般为5~80,常用15~50;在分度机构中传动比可达300,若只传递运动,传动比可达1000。蜗轮蜗杆传动工作平稳无噪音。蜗杆反行程能自锁。 重点学习内容 本章中阿基米德蜗杆传动的失效形式、设计参数、受力分析、材料选择、强度计算、传动效率等为重点学习内容。对热平衡计算、润滑方法、蜗杆蜗轮结构等也应 一、蜗杆传动的类型 与上述各类蜗杆配对的蜗轮齿廓,完全随蜗杆的齿廓而异。蜗轮一般是在滚齿机上用滚刀或飞刀加工的。为了保证蜗杆和蜗轮能正确啮合,切削蜗轮的滚刀齿廓,应与蜗杆的齿廓一致;深切时的中心距,也应与蜗杆传动的中心距相同。 圆柱蜗杆传动 1、通圆柱蜗杆传动 (1)阿基米德蜗杆 这种蜗杆,在垂直于蜗杆轴线的平面(即端面)上,齿廓为阿基米德螺旋线,在包含轴线的平面上的齿廓(即轴向齿廓)为直线,其齿形角α0=20°。它可在车床上用直线刀刃的单刀(当导程角γ≤3°时)或双刀(当γ>3°时)车削加工。安装刀具时,切削刃的顶面必须通过蜗杆的轴线。这种蜗杆磨削困难,当导程角较大时加工不便。

(2)渐开线蜗杆 渐开线蜗杆(ZI蜗杆)蜗杆齿面为渐开螺旋面,端面齿廓为渐开线。加工时,车刀刀刃平面与基圆相切。可以磨削,易保证加工精度。一般用于蜗杆头数较多,转速较高和较精密的传动。

(3)法向直廓蜗杆 这种蜗杆的端面齿廓为延伸渐开线,法面(N-N)齿廓为直线。ZN蜗杆也是用直线刀刃的单刀或双刀在车床上车削加工。车削时车刀刀刃平面置于螺旋线的法面上,加工简单,可用砂轮磨削,常用于多头精密蜗杆传动。 (4)锥面包络蜗杆 这是一种非线性螺旋曲面蜗杆。它不能在车床上加工,只能在铣床上铣制并在磨床上磨削。加工时,盘状铣刀或砂轮放置在蜗杆齿槽的法向面内,除工件作螺旋运动外,刀具同时绕其自身的轴线作回转运动。这时,铣刀(或砂轮)回转曲面的包络面即为蜗杆的螺旋齿面,在I-I及N-N截面上的齿廓均为曲线。这种蜗杆便于磨削,蜗杆的精度较高,应用日渐广泛。

蜗轮蜗杆设计参数选择

圆柱蜗轮、蜗杆设计参数选择 蜗轮和蜗杆通常用于垂直交叉的两轴之间的传动(图1)。蜗轮和蜗杆的齿向是螺旋形的,蜗轮的轮齿顶面常制成环面。在蜗轮蜗杆传动中,蜗杆是主动件,蜗轮是从动件。蜗杆轴向剖面类是梯形螺纹的轴向剖面,有单头和多头之分。若为单头,则蜗杆转一圈蜗轮只转一个齿,因此可以得到较高速比。计算速比(i)的公式如下: i=蜗杆转速n1 蜗轮转速n2 = 蜗轮齿数z2 蜗杆头数z1 1、蜗轮蜗杆主要参数与尺寸计算 主要参数有:模数(m)、蜗杆分度圆直径(d1)、导程角(r)、中心距(a)、蜗杆头数(或线数z1)、蜗轮齿数(z2)等,根据上述参数可决定蜗杆与蜗轮的基本尺寸,其中z1、z2由传动要求选定。 (1)模数m 为设计和加工方便,规定以蜗杆轴项目数mx和蜗轮的断面模数mt 为标准模数。对啮合的蜗轮蜗杆,其模数应相等,及标准模数m=mx=mt。 标准模数可有表A查的,需要注意的是,蜗轮蜗杆的标准模数值与齿轮的标准模数值并不相同。 表A

图1 图2 (2)蜗杆分度圆直径d1 再制造蜗轮时,最理想的是用尺寸、形状与蜗杆完全相同的蜗轮滚刀来进行切削加工。但由于同一模数蜗杆,其直径可以各不相同,这就要求每一种模数对应有相当数量直径不同的滚刀,才能满足蜗轮加工需求。为了减少蜗轮滚刀数目,在规定标准模数的同时,对蜗杆分度圆直径亦实行了标准化,且与m 有一定的匹配。蜗杆分度圆直径d1与轴向模数mx之比为一标准值,称蜗杆的直径系数。即

q= 蜗杆分度圆直径 模数 = d1 m d1=mq 有关标准模数m与标准分度圆直径d1的搭配值及对应的蜗杆直径系数参照表A (3)蜗杆导程角r 当蜗杆的q和z1选定后,在蜗杆圆柱上的导程角即被确定。为导程角、导程和分度圆直径的关系。 tan r= 导程 分度圆周长 = 蜗杆头数x轴向齿距 分度圆周长 = z1px d1π = z1πm πm q = z1 q 相互啮合的蜗轮蜗杆,其导程角的大小与方向应相同。 (4)中心距a 蜗轮与蜗杆两轴中心距a与模数m、蜗杆直径系数q以及蜗轮齿数z2间的关系式如下: a=d1+d2 2 = m q (q+z2) 蜗杆各部尺寸如表B 蜗轮各部尺寸如表C 2、蜗轮蜗杆的画法 (1) 蜗杆的规定画法参照图1图2 (2)蜗轮的规定画法参照图1图2 (3)蜗轮蜗杆啮合画法参照图1图 2.

(有全套图纸)蜗轮蜗杆传动减速器设计

目录 一、课程设计任务书 (2) 二、传动方案 (3) 三、选择电动机 (3) 四、计算传动装置的总传动比及其分配各级传动比 (5) 五、传动装置的运动和动力参数 (5) 六、确定蜗杆的尺寸 (6) 七、减速器轴的设计计算 (9) 八、键联接的选择与验算 (17) 九、密封和润滑 (18) 十、铸铁减速器箱主要结构尺寸 (18) 十一、减速器附件的设计 (20) 十二、小结 (23) 十三、参考文献 (23)

一、课程设计任务书 2007—2008学年第 1 学期 机械工程学院(系、部)材料成型及控制工程专业 05-1 班级课程名称:机械设计 设计题目:蜗轮蜗杆传动减速器的设计 完成期限:自 2007年 12 月 31 日至 2008年 1 月 13 日共 2 周 指导教师(签字):年月日 系(教研室)主任(签字):年月日

二、传动方案 我选择蜗轮蜗杆传动作为转动装置,传动方案装置如下: 三、选择电动机 1、电动机的类型和结构形式 按工作要求和工作条件,选用选用笼型异步电动机,封闭式结构,电压380v, Y型。 2、电动机容量 工作机所需功率 w p KW Fv p w w 30 .1 96 .0 1000 5.2 500 1000 = ? ? = = η 根据带式运输机工作机的类型,可取工作机效率96 .0 = w η。 电动机输出功率 d p η w d p p= 传动装置的总效率 4 3 3 2 2 1 η η η η η? ? ? = 式中, 2 1 η η、…为从电动机至卷筒之间的各传动机构和轴承的效率。由表10-2 KW P w 3.1 =

蜗轮蜗杆设计汇总

蜗轮蜗杆设计 摘要 蜗杆传动从属齿轮传动,在现代工业中应用非常广泛。蜗轮蜗杆包含两个部分:蜗杆和蜗轮,其齿形大多数由直线、平面或者平面上的曲线经过一次或两次展成运动形成。由于蜗轮蜗杆结构性特点,它用于传递空间两相错轴间的运动和动力。蜗杆传动机构多数情况下蜗杆为主动件,蜗轮为被动件。蜗杆传动具有传动比大、体积小、运转平稳、噪音小等特点。在机床制造业中,普通圆柱蜗杆传动的应用尤为普遍,并且几乎成了一般低速传动工作台和连续分度机构的唯一传动形式;冶金工业轧机压下机构都采用大型蜗杆传动;煤矿设备中的各种类型的绞车及采煤机组牵引传动;起重运输业中各种提升 设备及无轨电车等都采用蜗杆传动。其他,在精密仪器设备、军工、宇宙观测仪器中,蜗杆传动常用作分度机构、操纵机构、计算机构、测距机构等等,大型天文望远镜、雷达等也离不开蜗杆传动。 关键词:蜗轮蜗杆

目录 第一章蜗杆传动的类型和特点 (1) 1.1 蜗杆传动的类型 (1) 1.2 蜗杆传动的特点 (2) 第二章蜗轮传动的基本参数和几何尺寸计算 (3) 2.1 蜗杆传动的基本参数 (3) 2.2 蜗杆传动的几何尺寸计算 (6) 第三章蜗轮传动的失效形式、设计准则、材料和结构 (7) 3.1 蜗杆传动的失效形式和设计准则 (7) 3.2 蜗杆、蜗轮的材料和结构 (8) 第四章蜗轮传动的强度计算 (10) 4.1蜗杆传动的受力分析 (10) 4.2 蜗轮齿面接触疲劳强度计算 (11) 4.3 蜗轮轮齿的齿根弯曲疲劳强度计算 (12) 第五章蜗轮传动的效率、润滑和热平衡计算 (13) 5.1蜗杆传动的效率 (13) 5.2 蜗杆传动的润滑 (13) 5.3 蜗杆传动的热平衡计算 (15) 结论 (17) 致谢 (18) 参考文献 (19)

蜗轮蜗杆减速器课程设计模板总结

一、课程设计任务书 题目:设计某带式传输机中的蜗杆减速器 工作条件:工作时不逆转,载荷有轻微冲击;工作年限为10年,二班制。 已知条件:滚筒圆周力F=4400N;带速V=0.75m/s;滚筒直径D=450mm。 二、传动方案的拟定与分析 由于本课程设计传动方案已给:要求设计单级蜗杆下置式减速 器。它与蜗杆上置式减速器相比具有搅油损失小,润滑条件好等优 点,适用于传动V≤4-5 m/s,这正符合本课题的要求。 三、电动机的选择 1、电动机类型的选择 按工作要求和条件,选择全封闭自散冷式笼型三相异步电动机, 电压380V,型号选择Y系列三相异步电动机。 2、电动机功率选择 1)传动装置的总效率: 23 ηηηηη =??? 总蜗杆 联轴器轴承滚筒23 0.990.990.720.960.657 =???= 2)电机所需的功率: 0.657η= 总

2300 1.2 4.38100010000.657 FV P KW η?===?电机 总 3、确定电动机转速 计算滚筒工作转速: 601000601000 1.263.69/min 360V r D ηππ???===?滚筒 按《机械设计》教材推荐的传动比合理范围,取一级蜗杆减速器 传动比范围580i = 减速器,则总传动比合理范围为I 总=5~80。故电动机转速的可选范围为: (5~80)63.69318.45~5095.2/min n i n r =?=?=总电动机滚筒。符合这一范围的同步转速有750、1000、1500和3000r/min 。 根据容量和转速,由有关手册查出有四种适用的电动机型号,因此有四种传动比方案,综合考虑电动机和传动装置尺寸、重量、价格和带传动、减速器的传动比,可见第4方案比较适合,则选n=3000r/min 。 4、确定电动机型号 根据以上选用的电动机类型,所需的额定功率及同步转速,选定电动机型号为Y132S1-2。 其主要性能:额定功率5.5KW ;满载转速2920r/min ;额定转矩2.2。 四、计算总传动比及分配各级的传动比 1、总传动比 2920 45.8563.69 n i n = = =电动机总滚筒 五、动力学参数计算 1、计算各轴转速 002920/min 2920/min 2920 63.69/min 45.85 63.6963.69/min 1 n n r n n r n n r i n n r i I I II II III ====== == ==电动机减速器 2、计算各轴的功率 P 0=P 电机 =4.38 KW P Ⅰ=P 0×η联=4.336KW P Ⅱ=P Ⅰ×η轴承×η蜗杆=3.09KW 4.38P KW =电机 63.69/min n r =滚筒 860~ 10320/min n r =电动机 电动机型号: Y132S1-2 45.85i =总 02920/min 2920/min 63.69/min 63.69/min n r n r n r n r I II III ==== P 0=4.38KW P I =4.336KW P II =3.09KW P III =3.03KW

蜗轮蜗杆传动设计

7 蜗杆传动 应用和类型 传动的特点和应用 组成:蜗杆、蜗轮(一般蜗杆为主动件,蜗轮为从动件) 作用:传递空间交错的两轴之间的运动和动力。通常Σ=90° 应用:用在机床、汽车、仪器、起重运输机械、冶金机械以及其他机械制造工业中。最大传递功率为750Kw,通常用在50Kw以下。 1)、传动比大。单级时i=5~80,一般为i=15~50,分度传动时i可达到1000,结构紧凑。 2)、传动平稳、噪声小。 3)、自锁性,当蜗杆导程角小于齿轮间的当量摩擦角时,可实现自锁。 4)、蜗杆传动效率较低,其齿面间相对滑动速度大,齿面磨损严重。 5)、蜗轮的造价较高。为降低摩擦,减小磨损,提高齿面抗胶合能力,蜗轮常用贵重的铜合金制造。 7.1.2 蜗杆传动的类型 照蜗杆的形状不同分为:圆柱蜗杆传动(a)、环面蜗杆传动(b)、锥面蜗杆传动(c)。 (a)圆柱蜗杆传动 (c)锥面蜗杆传动 图7-1 蜗杆传动的类型 、圆柱蜗杆传动 右旋之分。螺杆的常用齿数(头数)z1=1~4,头数越多,传动效率越高。蜗杆加工由于安装位置不同,产生的螺旋面在相对剖面内的齿廓曲线形状不同。)、阿基米德蜗杆(ZA蜗杆) 米德蜗杆是齿面为阿基米德螺旋面的圆柱蜗杆。通常是在车床上用刃角α0=20°的车刀车制而成,切削刃平面通过蜗杆曲线,端面齿廓为阿基米德螺旋线 、缺点:蜗杆车制简单,精度和表面质量不高,传动精度和传动效率低。头数不宜过多。 用:头数较少,载荷较小,低速或不太重要的场合。

图7-2 阿基米德蜗杆 2)、法向直廓蜗杆(ZN蜗杆) 杆加工时,常将车刀的切削刃置于齿槽中线(或 法向剖面内,端面齿廓为延伸渐开线。 点:常用端铣刀或小直径盘铣刀切制,加工简便,利于加工多头蜗杆,可以用砂轮磨齿,加工精度和表面质量较高。:用于机场的多头精密蜗杆传动。 )、渐开线蜗杆(ZI蜗杆) 杆是齿面为渐开线螺旋面的圆柱蜗杆。用车刀加工时,刀具切削刃平面与基圆相切,端面齿廓为渐开线。 缺点:可以用单面砂轮磨齿,制造精度、表面质量、传动精度及传动效率较高。 用:用于成批生产和大功率、高速、精密传动,故最常用。 、环面蜗杆传动特点: (1)、齿轮表面有较好的油膜形成条件,抗胶合的承载能力和效率都较高; (2)、同时接触的齿数较多,承载能力为圆柱蜗杆传动的1.5~4倍; (3)、制造和安装较复杂,对精度要求高; (4)、需要考虑冷却的方式。 、锥面蜗杆传动 数多,重合度大,传动平稳,承载能力强; (2)、蜗轮用淬火钢制造,节约有色金属。

机械设计课程设计蜗轮蜗杆传动..

】 目录 第一章总论......................................................... - 2 - 一、机械设计课程设计的内容....................................... - 2 - 二、设计任务..................................................... - 2 - · 三、设计要求..................................................... - 3 - 第二章机械传动装置总体设计......................................... - 3 - 一、电动机的选择................................................. - 4 - 二、传动比及其分配............................................... - 4 - 三、校核转速..................................................... - 5 - 四、传动装置各参数的计算......................................... - 5 - 第三章传动零件—蜗杆蜗轮传动的设计计算............................. - 5 - 一、蜗轮蜗杆材料及类型选择....................................... - 6 - & 二、设计计算..................................................... - 6 - 第四章轴的结构设计及计算.......................................... - 10 - 一、安装蜗轮的轴设计计算........................................ - 10 - 二、蜗杆轴设计计算.............................................. - 15 - 第五章滚动轴承计算................................................ - 17 - 一、安装蜗轮的轴的轴承计算...................................... - 18 - 二、蜗杆轴轴承的校核............................................ - 18 - 第六章键的选择计算................................................ - 19 -. 第七章联轴器...................................................... - 20 -第八章润滑及密封说明.............................................. - 20 -第九章拆装和调整的说明............................................ - 20 -第十章减速箱体的附件说明.......................................... - 20 -课程设计小结........................................................ - 21 -参考文献............................................................ - 22 - ,

纺织机传动系统基于涡轮蜗杆传动

摘要 本设计说明主要参考沈阳纺织机械厂GD76X1型织机传动原理设计。该型纺织机主要有以下传动机构:主轴与打维机构、开口机构、绞边机构、送经机构、卷取机构。本设计主要对GD76X1型纺织机的送经机构进行设计。送经机构的传动部件主要有V带、直齿圆柱齿轮,变速箱、直齿锥齿轮,蜗轮蜗杆减速器。本说明书主要对直齿圆柱齿轮设计和校核,直齿锥齿轮设计和校核,蜗轮蜗杆进行设计和校核说明,还对减速器的轴进行设计和校核,V带的选型进行了设计说明。 关键字:直齿圆柱齿轮;锥齿轮;蜗轮蜗杆;V带;减速箱

ABSTRACT This design uses the principle design of Shenyang Textile Machinery Factory GD76X1 loom transmission as primary reference. This type of textile machines has mainly the following transmission mechanism: spindle with hit-dimensional bodies, opening agencies, the selvage institutions, off mechanism, winding mechanism. This design is mainly of GD76X1 textile machine off mechanism, which has the parts of V-belts, spur gear, gearbox, straight bevel gears, worm reducer. This manual mainly concludes not only the spur gear design and check, straight bevel gear design and verification, worm design and check instructions, but also the reducer shaft design and check the selection of V with the design specification. Key words:spur gear;straight bevel gears;Worm gear and worm;V-belts;reducer

蜗轮蜗杆的设计计算

蜗轮蜗杆的设计计算 1、根据GB/10085-1988推荐采用渐开线蜗杆(ZI )。 2、根据传动功率不大,速度中等,蜗杆45钢,因为希望效率高些,耐磨性好,故蜗杆螺旋 齿面要求淬火,硬度45-55HRC ,蜗轮用铸锡磷青铜ZCuSn10P1金属铸造,为节约贵重金的有色金属。仅齿圈用青铜制造,而轮芯用灰铸铁HT100铸造。 3、按持卖你接触疲劳强度进行设计 a ≥32H 2])] [(σP E z z KT (1)作用在蜗轮上的转矩2T (2) 按1Z =2 ,η= 2T =?610?2p 2n =?610??mm ?N 确定载荷系数K , 取A K = βK =1 v K = 所以得K= A K ? βK ?v K =?? (3)确定弹性影响系数E Z =16021MPa (铸锡青铜蜗轮与钢蜗杆相配) (4)确定接触系数p Z 假设a d 1= 从表11-18查得p Z = (5)确定接触应力[H σ] 根据材料ZCuSn10P1,蜗杆螺旋齿面硬度>45HRC ,从表11-7查得蜗轮许用应力 '][H σ=268MPa N=60j 2n h L =???20=?8 10 寿命系数HN K =8871074.110?=067则 [H σ] =HN K ?'][H σ=?= (6)计算中心距 a ≥32])56 .1799.2160(8625821.1??? = 取a=100.因为i-15 故从表11-15中取模数m=5 1d =50mm

这时 a d 1=100 50= 从图11-18,可查的接触系数'Z ρ=<,所以计算结果可用。 4、蜗杆蜗轮的主要参数 (1)蜗杆:轴向齿距Pa=得直径系数q=10 齿顶园直径a1d =60,齿根圆f1d =38,分度圆导角r=11 18 36 ,蜗杆轴向齿厚Sa=5π/2= (2)蜗轮 齿数2Z =31 变位系数2x = 验算传动比i=2Z /1Z =31/2= 误差为15 155.15-=%,在允许范围内,所以可行。 蜗轮分度圆直径2d =m ?2Z =5?31=155mm 蜗轮喉圆直径a2d =2d +2a2h =155+2?5=165mm 蜗轮齿根圆直径f2d =2d +2f2h =??=143mm 蜗轮喉母圆半径g2r =a-a2d 21=100-1552 1?= 5、校核齿根弯曲疲劳强度 F σ=m d d KT 53.12122Fa Y βY ≤][F σ 当量齿数v2Z = 31.11cos 2 Z =31/ = 根据2x = v2Z =从图11-19查得齿形系数2Fa Y = βY =1-r/140=140= F σ=][F σFN K ,2从11-8查得ZCuSn10P1制造蜗轮时许用弯曲应力][F σ=56MPa 寿命系数 FN K =98 61074.110?= F σ=5 501558625821.153.1??????,弯曲强度满足要求。 6、验算效率

机械设计课设设计涡轮蜗杆传动设计

目 录 1 电动机的选择和传动装置的运动、动力计算.......................................3 1.1选择电动机 ...........................................................................3 1.1.1选择电动机的类 .........................................................3 1.1.2选择电动机的容量 .........................................................3 1.1.3确定电动机转速 ............................................................3 1.2计算传动装置的传动比i .........................................................4 1.3计算传动装置各轴的运动和动力参数 (4) 1.3.1各轴的转速 ..................................................................4 1.3.2各轴的输入功率 ............................................................4 1.3.3各轴的输入转矩 ............................................................5 2 传动件设计 .................................................................................5 2.1选择材料、热处理方式 ............................................................5 2.2选择蜗杆头数1z 和涡轮齿数2z ...................................................6 2.3按齿面接触疲劳强度确定模数m 和蜗杆分度圆直径1d .....................6 2.4计算传动中心距a .....................................................................6 2.5验算涡轮圆周速度2v 、相对滑移速度s v 及传动效率 .....................6 2.6计算蜗杆与蜗轮的主要尺寸 ......................................................7 2.7热平衡计算 ...........................................................................8 2.8选取精度等级和侧隙种类 .........................................................9 2.9蜗杆和蜗轮的结构设计,绘制蜗杆和蜗轮的零件工作图 ..................9 3 确定减速器机体的结构方案并计算结构尺寸....................................9 4 蜗杆轴、轴承及键连接的校核计算 ...................................................11 4.1设计带式运输机中蜗杆轴轴系部件.............................................11 4.1.1选择轴的材料...............................................................12 4.1.2初算轴径m in 1d ,确定轴径1d .............................................12 4.1.3结构设计.....................................................................12 4.1.4轴的受力分析 (14)

机械设计专升本练习题(含答案)——蜗杆传动

第14章 蜗杆传动 【思考题】 14-1 蜗杆传动的特点及应用场合是什么? 14-2 为什么蜗轮的端面模数是标准值?蜗杆传动的正确啮合条件是什么? 14-3 蜗杆直径系数的含义是什么?为什么要引入蜗杆直径系数? 14-4 蜗杆传动的传动比计算公式是什么?它是否等于蜗杆和蜗轮的节圆直径之比? 14-5 如何进行蜗杆传动的受力分析?各力方向如何确定?与齿轮传动的受力有何不同? 14-6 蜗杆传动的主要失效形式是什么?相应的设计准则是什么? 14-7 在蜗杆传动的强度计算中,为什么只考虑蜗轮的强度?蜗杆的强度任何考虑?蜗杆的刚度在什么情况下才需要计算? 14-8 蜗杆传动的效率受哪些因素影响?为什么具有自锁特性的蜗杆传动,其啮合效率通常只有40%左右? 14-9 为什么蜗杆传动要进行热平衡的计算?采用什么原理进行计算?当热平衡不满足要求时,可以采取什么措施? A 级能力训练题 1. 与齿轮传动相比较,不能作为蜗杆传动的优点的是______。 (1)传动平稳,噪音小 (2)传动比可以很大 (3)在一定条件下能自锁 (4)传动效率高 2. 蜗杆与蜗轮正确啮合条件中,应除去______。 (1)21t a m m = (2)21t a αα= (3)21ββ= (4)螺旋方向相同 3. 蜗杆传动的主要失效形式是______。 (1)蜗杆断裂 (2)蜗轮轮齿折断 (3)蜗轮齿面产生胶合、疲劳点蚀及磨损 4. 蜗杆传动的失效形式与______因素关系不大。 (1)蜗杆传动副的材料 (2)蜗杆传动载荷性质 (3)蜗杆传动的滑动速度 (4)蜗杆传动的散热条件 5. 在润滑良好的情况下,减摩性最好的蜗轮材料是______。 (1)铸铁 (2)黄铜 (3)锡青铜 (4)无锡青铜

机械设计_蜗杆传动习题

蜗杆传动 一 选择题 (1) 对于传递动力的蜗杆传动,为了提高传动效率,在一定限速可采用 B 。 A. 较大的蜗杆直径系数 B. 较大的蜗杆分度圆导程角 C. 较小的模数 D. 较少的蜗杆头数 (2) 蜗杆传动中,是以蜗杆的 B 参数、蜗轮的 A 参数为标准值。 A. 端面 B. 轴向 C. 法向 (3) 蜗杆传动的正确啮合条件中,应除去 C 。 A. t21m m =a B. t21αα=a C. 21ββ= D. 21βγ=,螺旋相同 (4) 设计蜗杆传动时,通常选择蜗杆材料为 A ,蜗轮材料为 C ,以减小摩擦力。 A. 钢 B. 铸铁 C. 青铜 D. 非金属材料 (5) 闭式蜗杆传动失效的主要形式是 B 。 A. 点蚀 B. 胶合 C. 轮齿折断 D. 磨损 (6) 下列蜗杆副材料组合中,有 B 是错误或不恰当的。 序号 蜗杆 蜗轮 1 2 3 4 5 40Cr 表面淬火 18CrMnTi 渗碳淬火 45钢淬火 45钢调质 zCuSn5Pb5Zn5 ZCuA110Fe3 ZCuSn10Pb1 ZG340—640 HT250 HT150 A. 一组 B. 二组 C. 三组 D. 四组 E. 五组 (7) 在标准蜗轮传动中,蜗杆头数一定,加大蜗杆特性系数q 将使传动效率 B 。 A. 增加 B. 减小 C. 不变 D. 增加或减小 (8) 在蜗杆传动中,对于滑动速度s m v s /4≥的重要传动,应该采用 D 作为蜗轮齿圈的材料。 A. HT200 B. 18CrMnTi 渗碳淬火 C. 45钢调质 D. ZCuSnl0Pb1 (9) 在蜗杆传动中,轮齿承载能力计算,主要是针对 D 来进行的。 A. 蜗杆齿面接触强度和蜗轮齿根弯曲强度 B. 蜗轮齿面接触强度和蜗杆齿根弯曲强度

蜗轮蜗杆传动设计讲解学习

蜗轮蜗杆传动设计

7 蜗杆传动 应用和类型 传动的特点和应用 组成:蜗杆、蜗轮(一般蜗杆为主动件,蜗轮为从动件) 作用:传递空间交错的两轴之间的运动和动力。通常Σ=90° 应用:用在机床、汽车、仪器、起重运输机械、冶金机械以及其他机械制造工业中。最大传递功率为750Kw,通常用在50Kw以下。 1)、传动比大。单级时i=5~80,一般为i=15~50,分度传动时i可达到1000,结构紧凑。 2)、传动平稳、噪声小。 3)、自锁性,当蜗杆导程角小于齿轮间的当量摩擦角时,可实现自锁。 4)、蜗杆传动效率较低,其齿面间相对滑动速度大,齿面磨损严重。 5)、蜗轮的造价较高。为降低摩擦,减小磨损,提高齿面抗胶合能力,蜗轮常用贵重的铜合金制造。 7.1.2 蜗杆传动的类型 照蜗杆的形状不同分为:圆柱蜗杆传动(a)、环面蜗杆传动(b)、锥面蜗杆传动(c)。 (a)圆柱蜗杆传 (b)环面蜗杆传动(c)锥面蜗杆传动 图7-1 蜗杆传动的类型 、圆柱蜗杆传动 右旋之分。螺杆的常用齿数(头数)z1=1~4,头数越多,传动效率越高。蜗杆加工由于安装位置不同,产生的螺旋面在相对剖面内的齿廓曲线形状不同。)、阿基米德蜗杆(ZA蜗杆) 米德蜗杆是齿面为阿基米德螺旋面的圆柱蜗杆。通常是在车床上用刃角α0=20°的车刀车制而成,切削刃平面通过蜗杆曲线,端面齿廓为阿基米德螺旋线

、缺点:蜗杆车制简单,精度和表面质量不高,传动精度和传动效率低。头数不宜过多。 用:头数较少,载荷较小,低速或不太重要的场合。 图7-2 阿基米德蜗杆 2)、法向直廓蜗杆(ZN蜗杆) 杆加工时,常将车刀的切削刃置于齿槽中线(或 法向剖面内,端面齿廓为延伸渐开线。 点:常用端铣刀或小直径盘铣刀切制,加工简便,利于加工多头蜗杆,可以用砂轮磨齿,加工精度和表面质量较高。:用于机场的多头精密蜗杆传动。 )、渐开线蜗杆(ZI蜗杆) 杆是齿面为渐开线螺旋面的圆柱蜗杆。用车刀加工时,刀具切削刃平面与基圆相切,端面齿廓为渐开线。 缺点:可以用单面砂轮磨齿,制造精度、表面质量、传动精度及传动效率较高。 用:用于成批生产和大功率、高速、精密传动,故最常用。

28_北航机械设计答案—蜗杆传动

第28章 蜗杆传动 28-7 图28-17所示为斜齿轮-蜗杆减速器,小齿轮由电机驱动,转向如图。已知:蜗轮右旋;电机功率P=4.5kW ,转速n=1450r/min ;齿轮传动的传动比2.21=i ;蜗杆传动效率86.0=η,传动比182=i ,蜗杆头数23=z ,模数mm m 10=,分度圆直径mm d 803=,压力角 20=α,齿轮传动效率损失不计。试完成以下工作: (1)使中间轴上所受轴向力部分抵消,确定各轮的转向和回转方向。 (2)求蜗杆在啮合点的各分力的大小,在图上画出力的方向。 解:(1)各轮的转向和回转方向如图28-17所示。 (2)蜗杆在啮合点处各分力的方向如图28-17所示,大小如下: 圆周力N N d T F t 00.163080 20.6520002000333=?== 其中 m N m N n P T ?=???=?=02.6509 .6595.41055.91055.93333 min /09.659min /2 .2145013r r i n n === 径向力N N d T F F t r 96.204020tan 360 35.10092000tan 2000tan 4443=??=== αα

其中 min /62.38min /18 09.695234r r i n n === mm mm z mi mz d 360218103244=??=== m N m N i T T ?=???==35.100986.01820.65234η 轴向力N N d T F a 50.5607360 35.100920002000443=?== 28-8 图28-18所示为一斜齿轮-双头蜗杆传动的手摇起重装置。已知:手把半径R=100mm ,卷筒直径D=220mm ,齿轮传动的传动比21=i ,蜗杆的模数mm m 5=,直径特性系数10=q ,蜗杆传动的传动比482=i ,啮合表面的摩擦角14.0=e ρ,作用在手柄上的力N F 200=,如果强度足够,试分析:若手柄按图方向转动,重物匀速上升时,能提升的重物为多重?在升举后松开手时,重物能否自行下降?齿轮传动效率和轴承效率损失不计。 解:手把传递的转矩为: m N m N FR T ?=??==201.02000 蜗杆传递的转矩为: m N m N i T T ?=??==4022001 由2.010 2tan 1===q z γ可得蜗杆的导程角为

机械设计-蜗杆习题与参考答案

习题及参考答案 一、选择题 1 及齿轮传动相比较,不能作为蜗杆传动的优点。 A. 传动平稳,噪声小 B. 传动效率高 C. 可产生自锁 D. 传动比大 2 阿基米德圆柱蜗杆及蜗轮传动的模数,应符合标准值。 A. 法面 B. 端面 C. 中间平面 3 蜗杆直径系数q=。 A. q=d l/m B. q=d l m C. q=a/d l D. q=a/m 4 在蜗杆传动中,当其他条件相同时,增加蜗杆直径系数q,将使传动效率。 A. 提高 B. 减小 C. 不变 D. 增大也可能减小 z,则传动效率。 5 在蜗杆传动中,当其他条件相同时,增加蜗杆头数 1 A. 提高 B. 降低 C. 不变 D. 提高,也可能降低 z,则滑动速度。 6 在蜗杆传动中,当其他条件相同时,增加蜗杆头数 1 A. 增大 B. 减小 C. 不变 D. 增大也可能减小 z,则。 7 在蜗杆传动中,当其他条件相同时,减少蜗杆头数 1 A. 有利于蜗杆加工 B. 有利于提高蜗杆刚度 C. 有利于实现自锁 D. 有利于提高传动效率 8 起吊重物用的手动蜗杆传动,宜采用的蜗杆。 A. 单头、小导程角 B. 单头、大导程角 C. 多头、小导程角 D. 多头、大导程角 9 蜗杆直径d1的标准化,是为了。 A. 有利于测量 B. 有利于蜗杆加工 C. 有利于实现自锁 D. 有利于蜗轮滚刀的标准化 10 蜗杆常用材料是。 A. 40Cr B. GCrl5 C. ZCuSnl0P1 D. L Y12 11 蜗轮常用材料是。 A. 40Cr B.GCrl5 C. ZCuSnl0P1 D. L Yl2 12 采用变位蜗杆传动时。 A. 仅对蜗杆进行变位 B. 仅对蜗轮进行变位

机械设计习题与答案19蜗杆传动

十九蜗杆传动习题与参考答案 一、选择题 1 与齿轮传动相比较,不能作为蜗杆传动的优点。 A. 传动平稳,噪声小 B. 传动效率高 C. 可产生自锁 D. 传动比大 2 阿基米德圆柱蜗杆与蜗轮传动的模数,应符合标准值。 A. 法面 B. 端面 C. 中间平面 3 蜗杆直径系数q=。 A. q=d l/m B. q=d l m C. q=a/d l D. q=a/m 4 在蜗杆传动中,当其他条件相同时,增加蜗杆直径系数q,将使传动效率。 A. 提高 B. 减小 C. 不变 D. 增大也可能减小 z,则传动效率。 5 在蜗杆传动中,当其他条件相同时,增加蜗杆头数 1 A. 提高 B. 降低 C. 不变 D. 提高,也可能降低 z,则滑动速度。 6 在蜗杆传动中,当其他条件相同时,增加蜗杆头数 1 A. 增大 B. 减小 C. 不变 D. 增大也可能减小 z,则。 7 在蜗杆传动中,当其他条件相同时,减少蜗杆头数 1 A. 有利于蜗杆加工 B. 有利于提高蜗杆刚度 C. 有利于实现自锁 D. 有利于提高传动效率 8 起吊重物用的手动蜗杆传动,宜采用的蜗杆。 A. 单头、小导程角 B. 单头、大导程角 C. 多头、小导程角 D. 多头、大导程角 9 蜗杆直径d1的标准化,是为了。 A. 有利于测量 B. 有利于蜗杆加工 C. 有利于实现自锁 D. 有利于蜗轮滚刀的标准化 10 蜗杆常用材料是。 A. 40Cr B. GCrl5 C. ZCuSnl0P1 D. LY12 11 蜗轮常用材料是。 A. 40Cr B.GCrl5 C. ZCuSnl0P1 D. LYl2 12 采用变位蜗杆传动时。 A. 仅对蜗杆进行变位 B. 仅对蜗轮进行变位

相关文档
最新文档