压缩感知原理
压缩感知

压缩感知,又称压缩采样,压缩传感。
它作为一个新的采样理论,它通过开发信号的稀疏特性,在远小于Nyquist 采样率的条件下,用随机采样获取信号的离散样本,然后通过非线性重建算法完美的重建信号[1]。
压缩感知理论一经提出,就引起学术界和工业界的广泛关注。
他在信息论、图像处理、地球科学、光学/微波成像、模式识别、无线通信、大气、地质等领域受到高度关注,[2]并被美国科技评论评为2007年度十大科技进展。
编辑本段基本知识现代信号处理的一个关键基础是Shannon 采样理论:一个信号可以无失真重建所要求的离散样本数由其带宽决定。
但是Shannon 采样定理是一个信号重建的充分非必要条件。
在过去的几年内,压缩感知作为一个新的采样理论,它可以在远小于Nyquist 采样率的条件下获取信号的离散样本,保证信号的无失真重建。
压缩感知理论一经提出,就引起学术界和工业的界的广泛关注。
[3]压缩感知理论的核心思想主要包括两点。
第一个是信号的稀疏结构。
传统的Shannon 信号表示方法只开发利用了最少的被采样信号的先验信息,即信号的带宽。
但是,现实生活中很多广受关注的信号本身具有一些结构特点。
相对于带宽信息的自由度,这些结构特点是由信号的更小的一部分自由度所决定。
换句话说,在很少的信息损失情况下,这种信号可以用很少的数字编码表示。
所以,在这种意义上,这种信号是稀疏信号(或者近似稀疏信号、可压缩信号)。
另外一点是不相关特性。
稀疏信号的有用信息的获取可以通过一个非自适应的采样方法将信号压缩成较小的样本数据来完成。
理论证明压缩感知的采样方法只是一个简单的将信号与一组确定的波形进行相关的操作。
这些波形要求是与信号所在的稀疏空间不相关的。
压缩感知方法抛弃了当前信号采样中的冗余信息。
它直接从连续时间信号变换得到压缩样本,然后在数字信号处理中采用优化方法处理压缩样本。
这里恢复信号所需的优化算法常常是一个已知信号稀疏的欠定线性逆问题。
压缩感知简介

压缩感知简介 压缩感知(也称为压缩感知、压缩采样或稀疏采样)是⼀种信号处理技术,通过寻找⽋定线性系统的解决⽅案来有效地获取和重构信号。
这是基于这样的原理,即通过优化,可以利⽤信号的稀疏性从⽐Nyquist-Shannon 采样定理所需的样本少得多的样本中恢复它。
有两种情况可以恢复。
第⼀个是稀疏的,这要求信号在某些域中是稀疏的。
第⼆个是不相⼲性,它通过等距属性应⽤,这对于稀疏信号来说已经⾜够了。
概述 信号处理⼯程领域的⼀个共同⽬标是从⼀系列采样测量中重建信号。
⼀般来说,这项任务是不可能的,因为在未测量信号的时间内⽆法重建信号。
然⽽,通过对信号的先验知识或假设,可以从⼀系列测量中完美地重建信号(获取这⼀系列测量称为采样)。
随着时间的推移,⼯程师们对哪些假设是实⽤的以及如何推⼴它们的理解有所提⾼。
信号处理的早期突破是奈奎斯特-⾹农采样定理。
它指出,如果真实信号的最⾼频率⼩于采样率的⼀半,则可以通过sinc 插值完美地重构信号。
主要思想是,利⽤关于信号频率约束的先验知识,重构信号所需的样本更少。
⼤约在 2004 年,Emmanuel Candès、Justin Romberg、Terence Tao和David Donoho证明,在了解信号稀疏性的情况下,可以使⽤⽐采样定理所需更少的样本来重建信号。
这个想法是压缩感知的基础。
历史 压缩传感依赖于其他⼏个科学领域在历史上使⽤过的技术。
在统计学中,最⼩⼆乘法由L1-norm,由Laplace引⼊。
随着线性规划和Dantzig单纯形算法的介绍,L1-norm ⽤于计算统计。
在统计理论中,L1-norm 被George W. Brown和后来的作者⽤于中值⽆偏估计量。
它被Peter J. Huber 和其他从事稳健统计⼯作的⼈使⽤。
L1-norm 也⽤于信号处理,例如,在 1970 年代,地震学家根据似乎不满⾜Nyquist-Shannon 标准的数据构建了地球内反射层的图像。
数字信号处理技术中的压缩感知方法

数字信号处理技术中的压缩感知方法数字信号处理是当今科技领域中不可或缺的一部分。
压缩感知是数字信号处理中一个最近流行的技术,能够在保留信号原有质量的前提下,将其压缩到更小的空间中存储和传输。
压缩感知技术的背景数字信号处理中,压缩是非常重要和常见的一个工作。
在传输、存储、处理等各方面,数字信号的压缩都起到了至关重要的作用。
压缩的方法有很多种,比如H.264、MPEG等压缩标准,它们采用了各种像块、深度拷贝、编码、变换等各种算法。
尽管这些算法都能获得不同的压缩比,但它们无法保证压缩后的信号仍然能准确地反映出原信号中的信息,尤其是在处理低质量、高噪声数据时。
压缩感知技术就是在这样一个背景下出现的。
它是一种崭新的压缩方法,它能够在最小数的采样数的情况下,快速地从原始信号中恢复出全部的信息,并保证重建后的信号保持原有的质量。
这个方法得到许多领域的关注,包括传感器网络、图像和视频处理、通信以及其他各种科学领域。
压缩感知的工作原理压缩感知技术的工作原理是基于未知的稀疏信号的先验知识。
所谓稀疏信号,是指信号中的大部分数据都是零(或接近于零)的情况。
当这种情况出现时,我们可以通过采样部分数据,然后利用稀疏的性质快速恢复全部的信息。
这个过程需要使用基变换来将信号从时域(或空域)转换到另一种表示形式。
常见的基变换有傅立叶变换、小波变换和Karhunen-Loeve变换。
压缩感知技术的过程可以分为三个基本步骤:测量、稀疏表示和重建。
测量在测量阶段,通过采样或传感器读数来获取信号的测量值。
测量通常不是在信号完整的采样域上进行的,而是在测量域上进行的。
理论上,该测量域越小,则重构信号所需采样数量也就越少。
通常使用随机测量方法,如高斯、Bernoulli、RIP等等。
稀疏表示在稀疏表示阶段,信号通过基变换通过压缩感知算法转换为另一种形式,这里应用的是稀疏表示和压缩感知最常用的技术是小波变换(Wavelet Transform)。
信号重构与压缩感知理论

信号重构与压缩感知理论信号重构与压缩感知理论是数字信号处理和通信领域中的重要概念和技术。
它们对于信号的采集、传输和存储具有重要意义,能够提高系统的效率和性能。
本文将深入探讨信号重构与压缩感知理论的原理、应用以及未来发展方向。
一、信号重构理论信号重构是指根据已知的部分信号信息,通过合适的算法和技术手段来估计和恢复出完整的信号。
常见的信号重构方法包括插值法、采样定理、多项式拟合等。
而信号重构理论则是为了解决信号重构问题而产生的一系列数学理论和方法。
信号重构理论的核心思想是利用信号的稀疏性或者低维结构进行信号重构。
在信号的采集和传输过程中,信号往往存在冗余或者冗杂信息,通过剔除这些冗余信息,可以减少信号的存储空间和传输数据量。
常见的信号重构算法有最小二乘法、压缩感知算法、稀疏表示算法等。
在实际应用中,信号重构理论被广泛应用于图像压缩、音频处理、视频编码等领域。
通过信号重构技术,可以实现对图像、音频、视频等信号的高效压缩和传输,以及信号的快速恢复和重建。
二、压缩感知理论压缩感知是一种通过较少的采样和测量来获取信号的方法,它与传统的采样理论和信号处理方法有着本质的区别。
压缩感知理论的核心概念是稀疏表示和非局部性。
在传统的采样理论中,信号必须按照一定的采样定理进行采样,然后通过重建算法来获取完整信号。
而压缩感知理论则认为,信号在某个稀疏基下可以用更少的采样数进行表示,从而在一定程度上减少了传统采样过程中的冗余信息。
压缩感知理论的基本步骤包括稀疏表示、测量矩阵设计和重构算法。
通过适当的测量矩阵和重构算法,可以从少量采样数据中恢复出完整信号。
在信号稀疏性较高的情况下,压缩感知理论具有较好的重构性能。
压缩感知理论广泛应用于信号采集、图像处理、雷达成像等领域。
它不仅可以降低传感器的采样率,减少数据存储和传输成本,还可以提高系统的抗噪性能和恢复效果。
三、信号重构与压缩感知的应用信号重构与压缩感知理论在各个领域都有广泛的应用。
模式识别-压缩感知

压缩感知理论综述摘要压缩感知,又称压缩采样,压缩传感。
它作为一个新的采样理论,它通过开发信号的稀疏特性,在远小于Nyquist 采样率的条件下,用随机采样获取信号的离散样本,然后通过非线性重建算法完美的重建信号。
压缩感知理论一经提出,就引起学术界和工业界的广泛关注。
他在信息论、图像处理、地球科学、光学/微波成像、模式识别、无线通信、大气、地质等领域受到高度关注,并被美国科技评论评为2007年度十大科技进展。
本文基于压缩感知技术的研究背景以及应用进行了文献综述,首先进行了压缩感知技术理论介绍,对压缩感知技术的产生以及发展做了简单说明,然后分析了压缩感知应用的领域,最后对压缩感知技术的相关研究现状做了介绍。
关键词压缩感知,稀疏表示,稀疏信号1、引言数字图像处理技术的发展,拓宽了人类获取信息的视野范围,研究表明,人眼视觉特性决定了我们只能看到电磁波谱中的可见光部分,其余的红外波段等波谱信息对人眼来说都是不可见的。
而数字图像处理技术可以利用红外、微波等波谱信息进行数字成像,从而将人眼视觉不可感知的信息转变为可视化的图形图像信息。
数字图像处理技术现如今己经深入应用于人们生活的各个领域:经过数字技术加工处理的航空遥感和卫星遥感图像主要用于地形地质、矿藏探查,自然灾害预测预报等领域。
而目前广泛应用于临床诊断和治疗的各种成像技术,如超声波诊断、CT、核磁共振等都用到图像处理技术。
对产品及部件进行无损检测成为数字图像处理技术在工业生产方面的重要应用。
指纹识别系统在公共安全领域得到了广泛使用。
与文字信息不同,图像信息的数据量非常庞大,如果将原始图像直接存储和传输,将会给存储器的容量和通信线路的传输带宽带来巨大的压力,而一味地扩大存储器容量和通信线路带宽也是不现实的,必须采用有效的压缩手段将图像信号进行压缩,因此,图像压缩算法成为了近年来一个非常热点的研究领域。
图1 传统的信号编解码流程现代信号处理的一个关键基础是Shannon 采样理论:一个信号可以无失真重建所要求的离散样本数由其带宽决定。
奈奎斯特采样和压缩感知

奈奎斯特采样和压缩感知奈奎斯特采样和压缩感知:从理论到应用的探究引言在信息处理领域,信号的采样和压缩是两个关键的概念。
奈奎斯特采样理论和压缩感知是两种常用的方法,它们在传感器网络、通信系统、图像处理等领域都得到了广泛的应用。
本文将深入探讨奈奎斯特采样和压缩感知的原理、应用以及个人观点。
1. 奈奎斯特采样的原理和应用奈奎斯特采样是用于从连续时间信号中获取离散时间采样的方法,它基于奈奎斯特——香农采样定理。
根据这个定理,为了完全恢复原始信号,采样频率必须大于信号的最高频率的两倍。
奈奎斯特采样的原理可以简化为“至少两倍采样频率”。
采样频率低于此阈值会导致信号失真,无法完全还原。
奈奎斯特采样在实际应用中有着广泛的用途。
在通信系统中,奈奎斯特采样保证了信号的信息不会丢失。
在图像处理中,奈奎斯特采样确保图像的每个像素都得到准确的采样。
这种采样方法在模拟信号转换为数字信号时起着至关重要的作用。
2. 压缩感知的原理和应用压缩感知是一种通过从稀疏信号中获取少量线性投影来重构信号的技术。
相比于传统的采样方法,压缩感知可以实现更高效的信号采样和信号重构,从而极大地减少数据传输和存储的需求。
压缩感知的原理基于两个重要的概念:稀疏表示和随机投影。
稀疏表示指的是信号可以用较少的非零系数表示。
随机投影是指通过在信号上进行线性投影来得到一组稀疏的测量结果。
通过这种方式,压缩感知能够仅使用较少的测量结果来还原信号,从而实现高效的信号处理。
压缩感知在许多领域都有重要的应用。
在无线传感器网络中,压缩感知可以减少传感器数据的传输量,延长网络寿命。
在医学影像处理中,压缩感知能够减少医学影像数据的存储需求,提高图像传输速度。
3. 个人观点和理解奈奎斯特采样和压缩感知作为信号处理领域的两个重要概念,具有各自的优势和应用场景。
奈奎斯特采样保证了信号的完整性和准确性,适用于连续时间信号的离散化处理。
而压缩感知则通过提取信号的稀疏表示,实现高效的信号采样和处理,适用于稀疏信号的重构和压缩。
压缩感知的原理和应用

高斯矩阵、小波基、正(余)弦基、Curvelet基等。
2、超完备库下的稀疏表示:
用超完备的冗余函数库来取代基函数 目的是从冗余字典中找到具有最佳线性组合的K项原子来逼近
表示一个信号 称作信号的稀疏逼近或高度非线性逼近。
min T x
0
s.t.
Y T x
2.2 压缩感知流程介绍
对于0-范数问题的求解是个NP问题,需要列出所有非零项位 置的种组合的线性组合才能得到最优解,在多项式时间内难 以求解,而且也无法验证其可靠性。 Chen,Donoho和Saunders指出求解一个优化问题会产生同 等的解。于是问题转化为:
min T x
1
s.t.
Y T x
Candes等指出,要精确重构k稀疏信号x,测量次数M(必须 满足M=O(k · logN) ,并且矩阵Φ必须满足约束等距性条件 (Restricted Isometry Principle)。 求解该最优化问题,得到稀疏域的系数,然后反变换即可以 得到时域信号。
采样速率需达到信号带宽的两倍以上才能精确重构信带宽增加采样速率和处理速率增加弊端采样硬件成本昂贵获取效率低下对宽带信号处理的困难日益加剧12信号的压缩和传输12信号的压缩和传输为了降低成本将采样的数经压缩后以较少的比特数表示信号很多非重要的数据被抛弃缺点这种高速采样再压缩的方式浪费了大量的采样资源一旦压缩数据中的某个或某几个丢失可能将造成信号恢复的错误13亟待解决的问题13亟待解决的问题问题1
3.2 动态CT图像重建
• Reconstruct dynamic CT image sequences
压缩感知在图像去噪中的应用研究

压缩感知在图像去噪中的应用研究摘要:随着数字图像的广泛应用,图像质量的提升成为研究的热点之一。
图像去噪是其中的一个重要环节。
近年来,压缩感知技术在图像去噪中得到广泛应用。
本文通过对压缩感知在图像去噪中的应用研究进行综述,探讨了其原理、方法和优势,并分析了存在的问题及解决方案。
关键词:压缩感知、图像去噪、原理、方法、优势、问题、解决方案一、引言随着图像获取设备的普及及图像传输技术的飞速发展,我们每天都会面对大量的数字图像。
然而,这些图像中常常受到噪声的污染,影响了图像质量。
图像去噪是提高图像质量的重要手段之一,因此引起了广泛的研究兴趣。
二、压缩感知技术原理压缩感知是一种新兴的信号处理技术,它通过对信号进行采样和重构,能够在较少的采样点数下实现高质量的信号重构。
压缩感知的核心思想是利用信号的稀疏性,通过稀疏表示和重建算法来实现信号的高效压缩和重构。
三、压缩感知在图像去噪中的方法压缩感知在图像去噪中的方法主要包括以下几个步骤:首先,对含有噪声的图像进行稀疏表示,通常使用离散余弦变换或小波变换等方法;然后,利用压缩感知算法对稀疏表示的系数进行采样,得到采样数据;最后,通过重建算法对采样数据进行重构,得到去噪后的图像。
四、压缩感知在图像去噪中的优势相比传统的图像去噪方法,压缩感知在图像去噪中具有以下优势:首先,由于采样点数较少,可以大大减少数据传输和存储的开销;其次,通过稀疏表示和重建算法,能够更好地保留图像的细节信息;此外,压缩感知还能够有效抑制噪声的传播,提高图像去噪的效果。
五、存在的问题及解决方案尽管压缩感知在图像去噪中具有诸多优势,但仍然存在一些问题,如重构误差较大、计算复杂度较高等。
针对这些问题,研究人员提出了一系列解决方案,如改进重构算法、优化采样策略等。
六、结论本文综述了压缩感知在图像去噪中的应用研究,探讨了其原理、方法和优势,并分析了存在的问题及解决方案。
压缩感知技术在图像去噪中具有广阔的应用前景,相信通过进一步的研究和改进,将能够更好地提高图像质量,满。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
压缩感知原理 1压缩感知引论 传统方式下的信号处理,是按照奈奎斯特采样定理对信号进行采样,得到大量的采样数据,需要先获取整个信号再进行压缩,其压缩过程如图2.1。
图2.1 传统的信号压缩过程 在此过程中,大部分采样数据将会被抛弃,即高速采样后再压缩的过程浪费了大量的采样资源,这就极大地增加了存储和传输的代价。
由于带宽的限制,许多信号只包含少量的重要频率的信息。所以大部分信号是稀疏的或是可压缩的,对于这种类型的信号,既然传统方法采样的多数数据会被抛弃,那么,为什么还要获取全部数据而不直接获取需要保留的数据呢?Candes和Donoho等人于2004年提出了压缩感知理论。该理论可以理解为将模拟数据节约地转换成压缩数字形式,避免了资源的浪费。即,在采样信号的同时就对数据进行适当的压缩,相当于在采样过程中寻找最少的系数来表示信号,并能用适当的重构算法从压缩数据中恢复出原始信号。压缩感知的主要目标是从少量的非适应线性测量中精确有效地重构信号。核心概念在于试图从原理上降低对一个信号进行测量的成本。压缩感知包含了许多重要的数学理论,具有广泛的应用前景,最近几年引起广泛的关注,得到了蓬勃的发展。 2压缩感知原理
压缩感知,也被称为压缩传感或压缩采样,是一种利用稀疏的或可压缩的信号进行信号重构的技术。或者可以说是信号在采样的同时被压缩,从而在很大程度上降低了采样率。压缩感知跳过了采集N个样本这一步骤,直接获得压缩的信号的表示。CS理论利用到了许多自然信号在特定的基上具有紧凑的表示。即这些信号是“稀疏”的或“可压缩”的。由于这一特性,压缩感知理论的信号编解码框架和传统的压缩过程大不一样,主要包括信号的稀疏表示、编码测量和重构算法等三个方面。
可压缩信号 高速采样 压缩 重构信号 变换 对于一个实值的有限长一维离散时间信号X,可以看作为一个NR空间N×1的维的列向量,元素为n,n,=1,2,…N。NR空间的任何信号都可以用N×1维的基向量1iNi的线性组合表示。为简化问题,假定这些基是规范正交的。把向量1iNi
作为列向量形成NN的基矩阵:=[12,, ⋯ ,N],于是任意信号X都
可以表示为:
X (2.1) 其中是投影系数=,iiX构成的N×1的列向量。显然,X和是同一个信号的等价表示,X是信号在时域的表示,则是信号在域的表示。如果的非零个数比N小很多,则表明该信号是可压缩的。一般而言,可压缩信号是指可以用K个大系数很好地逼近的信号,即它在某个正交基下的展开的系数按一定量级呈现指数衰减,具有非常少的大系数和许多小系数。这种通过变换实现压缩的方法称为变换编码。在数据采样系统中,采样速率高但信号是可压缩的,采样得到N
点采样信号X;通过TX变换后计算出完整的变换系数集合i;确定K个大系数的位置,然后扔掉NK个小系数;对K个大系数的值和位置进行编码,从而达到压缩的目的。 由Candes、Romberg、Tao和Donoho等人在2004年提出的压缩感知理论表明,可以在不丢失逼近原信号所需信息的情况下,用最少的观测次数来采样信号,实现信号的降维处理,即直接对信号进行较少采样得到信号的压缩表示,且不经过进行N
次采样的中间阶段,从而在节约采样和传输成本的情况下,达到了在采样的同时进行压缩的目的。Candes证明了只要信号在某一个正交空间具有稀疏性,就能以较低的频率MN采样信号,而且可以以高概率重构该信号。即,设定设长度为N的信号X在某正交基或框架上的变换系数是稀疏的,如果我们可以用一个与变换基不相关的观测基 :MNMN对系数向量进行线性变换,并得到观测集合:1YM。那么就可以利用优化求解方法从观测集合中精确或高概率地重构原始信号X。 图2.2是基于压缩感知理论的信号重构过程框图。 图2.2 基于压缩感知理论的信号重构过程 基于压缩感知的信号重构主要包含了信号的稀疏表示、编码测量和重构算法三个步骤。第一步,如果信号X∈NR在某个正交基或紧框架上是可压缩的,求出变换系数TX,是的等价或逼近的稀疏表示;第二步,设计一个平稳的、与变换基不相关的MN维的观测矩阵,对进行观测得到观测集合TYX,该过程也可以表示为信号X通过矩阵CSA进行非自适应观测:
CSYA (其中CSTA),CSA称为CS信息算子;第三步,利用0-范数意义下的优
化问题求解X的精确或近似逼近ˆX:
0minTX s.t. CSTAXXY (2.2) 求得的向量X在基上的表示最稀疏。 针对上述的三个步骤,下面将一一解决其中的三个问题。 2.1 信号的稀疏表示 压缩感知的第一步即,对于信号X∈NR,如何找到某个正交基或紧框架,使其在上的表示是稀疏的,即信号的稀疏表示问题。 所谓的稀疏,就是指信号X在正交基下的变换系数向量为TX,假如对于02p和0R,这些系数满足: 1/PP
iP
i
R
(2.3)
则说明系数向量在某种意义下是稀疏的。如何找到信号最佳的稀疏域?这是压缩感知理论应用的基础和前提,只有选择合适的基表示信号才能保证信号的稀疏度,从而保证信号的恢复精度。在研究信号的稀疏表示时,可以通过变换系数衰减速度来衡量变换基的稀疏表示能力。Candes和Tao研究表明,满足具有幂次速度衰减的信号,可利用压缩感知理论得到恢复,并且重构误差满足:
可压缩信号 稀疏变换 TX 观测得到的M维向量Y 重构信号 0minTX满足CSAXY 62ˆ(/log)rrEXXCKN (2.4)
其中r=1/p – 1/2,0文献[8]指出光滑信号的Fourier系数、小波系数、有界变差函数的全变差范数、振荡信号的Gabor系数及具有不连续边缘的图像信号的Curvelet系数等都具有足够的稀疏性,可以通过压缩感知理论恢复信号。如何找到或构造适合一类信号的正交基,以求得信号的最稀疏表示,这是一个有待进一步研究的问题。Peyre把变换基是正交基的条件扩展到了由多个正交基构成的正交基字典。即在某个正交基字典里,自适应地寻找可以逼近某一种信号特征的最优正交基,根据不同的信号寻找最适合信号特性的一个正交基,对信号进行变换以得到最稀疏的信号表示。 对稀疏表示研究的另一个热点是信号在冗余字典下的稀疏分解。这是一种全新的信号表示理论:用超完备的冗余函数库取代基函数,称之为冗余字典,字典中的元素被称为原子。字典的选择应尽可能好地符合被逼近信号的结构,其构成可以没有任何限制。从冗余字典中找到具有最佳线性组合的K项原子来表示一个信号,称作信号的稀疏逼近或高度非线性逼近。从非线性逼近角度来讲,信号的稀疏逼近包含两个层面:一是根据目标函数从一个给定的基库中挑选好的或最好的基;二是从这个好的基中挑选最佳的K项组合。因此,目前信号在冗余字典下的稀疏表示的研究集中在两个方面:(1)如何构造一个适合某一类信号的冗余字典;(2)如何设计快速有效的稀疏分解算法。 在构造冗余字典方面,文献[16]中提出使用局部Cosine基来刻画声音信号的局部频域特性;利用bandlet基来刻画图像中的几何边缘;还可以把其它的具有不同形状的基函数归入字典,如适合刻画纹理的Gabor基、适合刻画轮廓的Curvelet基等等。在稀疏分解算法的设计方面,基于贪婪迭代思想的MP(Matching Pursuit)算法表现出极大的优越性,但不是全局最优解。Donoho等人之后提出了基追踪(basis pursuit,BP)算法。BP算法具有全局最优的优点,但计算复杂度极高。之后又出现了一系列同样基于贪婪迭代思想的改进算法,如正交匹配追踪算法(OMP),分段匹配追踪(StOMP)算法等。 2.2 测量矩阵的选取 如何设计一个平稳的、与变换基不相关的MN维的观测矩阵,保证稀疏向量从N维降到M维时重要信息不遭破坏,是第二步要解决的问题,也就是信号低速采样问题。 压缩感知理论中,通过变换得到信号的稀疏系数向量TX后,需要设计压缩采样系统的观测部分,它围绕观测矩阵展开.观测器的设计目的是如何采样得到M个观测值,并保证从中能重构出长度为N的信号X或者基下等价的稀疏系数向量。显然,如果观测过程破坏了X中的信息,重构是不可能的。观测过程实际就是利用MN观测矩阵的M个行向量1Mjj对稀疏系数向量进行投影,即计
算和各个观测向量1Mjj之间的内积,得到M个观测值,1,2,Mjjyj…,,记观测向量12(,,y)MYyy…,,即
TCSYXAX (2.5)
这里,采样过程是非自适应的,也就是说,无须根据信号X而变化,观测的不再是信号的点采样而是信号的更一般的K线性泛函。 对于给定的Y从式(2.5)中求出是一个线性规划问题,但由于MN,即方程的个数少于未知数的个数,这是一个欠定问题,一般来讲无确定解。然而,如果
具有K- 项稀疏性(KM),则该问题有望求出确定解。此时,只要设法确定出
中的K个非零系数i的合适位置,由于观测向量Y是这些非零系数i对应 的K个列向量的线性组合,从而可以形成一个MK的线性方程组来求解这些非零项的具体值。对此,有限等距性质给出了存在确定解的充要条件。这个充要条件和Candes、Tao等人提出的稀疏信号在观测矩阵作用下必须保持的几何性质相一致。即,要想使信号完全重构,必须保证观测矩阵不会把两个不同的K-项稀疏信号映射到同一个采样集合中,这就要求从观测矩阵中抽取的每M个列向量构成的矩阵是非奇异的。从中可以看出,问题的关键是如何确定非零系数的位置来构造出一个可解的MK线性方程组。
然而,判断给定的CSA是否具有RIP性质是一个组合复杂度问题。为了降低问题的复杂度,能否找到一种易于实现RIP条件的替代方法成为构造观测矩阵的关键。 文献[10]指出如果保证观测矩阵和稀疏基不相干,则CSA在很大概率上满足RIP性质。不相干是指向量j不能用i稀疏表示。不相干性越强,互相表示