压缩感知理论

合集下载

压缩感知

压缩感知

7
2.2 观测和重建的简单数学推导②
1. 回顾
但如果信号在变换域中稀疏,即只有K(K<M)个系数不为零,则如 果我们知道是哪K个不为零,就可以从M个方程中解出K个不为零的 系数。 最直观的想法,可以将所有K个不为零的组合都求解一次,最后比 较哪一个是最优的,但是这样的方法太耗时。
Donoho提供了两个较为可行的最优化求解的方案: • 匹配追踪:找到一个其标记看上去与收集到的数据相关的小波; 在数据中去除这个标记的所有印迹;不断重复直到我们能用小波标 记“解释”收集到的所有数据。 • 基追踪(又名L1模最小化):在所有与录得数据匹配的小波组合 中,找到一个“最稀疏的”,也就是其中所有系数的绝对值总和越小 越好。(这种最小化的结果趋向于迫使绝大多数系数都消 失了。)这种最小化算法可以利用单纯形法之类的凸规划 算法,在合理的时间内计算出来。
10
3.2 成像过程的数学模型
2. 单像素相机原理
·图像经透镜1恰好照满DMD,DMD为p×q尺寸,设N=p×q,则此时DMD上的像为原始信号 · DMD上所有反射镜处于伪随机状态1,他们的状态构成了观测矩阵Φ的第一行(不是φ 1) h1(尺寸是N),则此时将要被反射回去的信号是X在h1反射下的值。 ·反射后信号在单点传感器上重合,即产生相加的效应,即本次观察得到的是y1=h1 ·X ·重复上面的步骤M次,则M次DMD状态构成了观测矩阵Φ ,M次结果构成观测值矩阵 Y= Φ X。实际上整个观测过程可以看成是只有一个像素的视频流。
1.压缩感知的概念
1.1 信号获取及压缩
1. 压缩感知概念
被拍摄物体
JPEG编码图像
被感知对象
未压缩信号
压缩信号
重建信号
RAW图像

压缩感知理论与应用

压缩感知理论与应用

压缩感知理论与应用传统的信号处理方法在信号采样、编码和重构过程中,都是通过对信号进行均匀采样,并利用采样的信息进行压缩和重构。

然而,随着传感器技术的发展和信号采样率的提高,传统方法所需的采样和编码复杂度也会增加,从而导致计算负担增大和存储空间的浪费。

压缩感知理论的提出,正是为了解决这一问题。

压缩感知理论的核心思想是,对于稀疏信号,可以使用少量的随机投影测量进行采样,然后通过最优化问题对信号进行重建。

具体来说,假设原始信号是一个N维的实向量x,通过采样矩阵Φ(大小为m×N)对信号进行采样得到观测向量y(大小为m×1)。

采样矩阵Φ的每一行可以看作是一个随机选择的投影向量,可以是高斯随机矩阵或伯努利随机矩阵。

通过求解以下最优化问题:min ,x',_0, s.t. y = Φx'其中,x',_0表示x'的L0范数(即非零元素的个数),通过稀疏表示的优化算法来求解x',从而实现信号的重构。

在压缩图像重建中,首先对图像进行随机投影测量,然后使用稀疏表示算法对采样图像进行重建。

常用的稀疏表示算法包括基于字典的方法,如稀疏表示算法(OMP)和迭代逐步阈值算法(ISTA),以及迭代最大稀疏系数算法(ITSP)和迭代收缩阈值算法(IST)等。

以ISTA算法为例,它是一种迭代算法,通过不断更新稀疏表示来逼近原始信号。

算法流程如下:1.初始化稀疏表示x为0向量;2.迭代更新稀疏表示:-计算残差r=y-Φx;-计算梯度g=Φ^Tr;-更新稀疏表示:x=x+μg;- 对稀疏表示进行阈值处理:x = S oftThreshold(x, λ/μ);-设置μ为一个合适的步长;3.返回最终稀疏表示x。

通过不断迭代更新稀疏表示,可以逐渐逼近原始信号,从而实现图像的重建。

总之,压缩感知理论是一种通过少量的随机投影测量和稀疏表示算法来压缩和重构信号的新型信号处理理论。

它在图像压缩、语音信号处理、视频编码和无线传感器网络等领域有着重要的应用价值,并且还有许多重建算法可以实现信号的高效重构。

分布式压缩感知理论研究综述及应用

分布式压缩感知理论研究综述及应用

分布式压缩感知理论研究综述及应用分布式压缩感知是一种集合了压缩感知和分布式信号处理技术的新型信号采样和重构方法。

它可以有效地降低采样数据的大小,减少数据传输和存储的成本,并且可以在分布式环境中实现对信号的准确重构。

本文就分布式压缩感知的理论研究和应用进行综述,通过对该领域的研究进展和应用前景进行分析,展示了分布式压缩感知在信号处理领域的重要意义和潜在价值。

一、分布式压缩感知的基本原理分布式压缩感知技术将压缩感知理论应用于分布式信号处理系统中,实现了在采样端进行压缩,并在重构端对信号进行准确还原。

它主要包括信号的采样、测量矩阵的设计、信号的重构这三个基本环节。

1. 信号的采样传统的信号采样通常是采用奈奎斯特采样定理,即采样频率要大于信号的最高频率成分。

而分布式压缩感知采用的是压缩采样,即采用远远小于奈奎斯特采样频率的采样率。

这样可以有效减少采样数据的大小,降低数据传输和存储的成本。

2. 测量矩阵的设计在分布式压缩感知中,测量矩阵的设计是非常关键的一步。

它决定了采样得到的投影数据,从而影响信号的重构效果。

常见的测量矩阵包括随机测量矩阵、稀疏测量矩阵等。

在分布式压缩感知中,信号的重构是指利用采样数据和测量矩阵来恢复原始信号。

常用的信号重构方法包括基于稀疏表示的重构算法、基于字典学习的重构算法等。

近年来,分布式压缩感知在信号处理领域取得了许多研究进展。

研究者们提出了许多新的理论方法和算法,丰富了分布式压缩感知的理论体系,推动了该领域的发展。

1. 分布式压缩感知的优化算法针对分布式压缩感知中的信号重构问题,研究者们提出了许多优化算法,如迭代硬阈值算法、基于二阶范数的重构算法等,这些算法在信号重构的准确性和计算效率上都取得了显著的进展。

分布式压缩感知不仅在通信和图像处理领域有着广泛的应用,还在生物医学、环境监测、无线传感器网络等领域展现了广阔的应用前景。

在医学影像处理中,可以利用分布式压缩感知技术对医学影像进行高效压缩和传输,从而节约了存储和传输成本。

压缩感知理论

压缩感知理论

压缩感知理论
压缩感知理论(Compressive Sensing Theory, CSP)是一种用来提高信号采集和处
理效率、使采集传输系统节省资源的研究方向。

它的基本思想是:若一个实际的信号可以
满足一定的限制条件,则其采样、处理和传输所需的资源会比完全采集处理和传输这个信
号所需资源少得多。

简言之,就是在一定的稀疏假设下,有效的采样、处理和传输数据不
仅具有可行性,而且这种方法能够加速传输效率,降低资源消耗。

压缩感知理论(CSP)把信号采集、传输单元称为“感知器(Sensor)”,它是一种
缺乏全部信息的单元,可以仅仅通过选择部分子采集到的信息来对整体信号进行局部估计。

压缩传感的实现的关键在于建立能够快速地准确地完成局部估计的估计方法。

即使是在相
对限制的采样数据和传输带宽的情况下,也可以采取最优或者次优的估计方法,实现高效
而精准的压缩传播。

压缩感知理论(CSP)已经在诸多领域中取得了很大成功。

例如,它可以用来提高影
像处理效率、优化无线通信采样和图像传输、进行脑磁共振图像分析和信号处理等。

同时,它也可以在多源数据合成、脑科学和科学的计算中发挥作用。

压缩感知理论(CSP)为科
学研究带来了各自领域的新途径,使采集、传输技术得以突破性发展,从而为实时信号采
集和处理带来了极大的方便。

压缩感知介绍PPT-

压缩感知介绍PPT-
基本都是非零值,
❖ 但将其变换到 域
时,非零值就只有3 个了,数目远小于 原来的非零数目,实 现了信号的稀疏表 示。
1 压缩感知理论分析
如何找到信号的最佳稀疏域呢?
❖ 这是压缩感知理论的基础和前提,也是信号精确重构的保证。 对稀疏表示研究的热点主要有两个方面:
❖ 1、基函数字典下的稀疏表示: ❖ 寻找一个正交基使得信号表示的稀疏系数尽可能的少。比较
2 压缩感知应用
2.4 CS雷达
❖ 在雷达目标探测中,目标相对于背景高度稀疏, 与复杂的雷达系统、海量数据呈现极度的不平 衡,这就为CS技术在雷达目标探测与识别的应 用提供了必要的条件。
❖ 3.4.1 CS与传统的高分辨雷达 ❖ 3.4.2 CS与MIMO雷达 ❖ 3.4.3 CS与雷达成像
2 压缩感知应用
2 压缩感知应用
分布式压缩感知(DCS)与MIMO雷达
(3) DCS-MIMO联合重构算法 求 解 欠 定 方 程 的 处 理 过 程 , 实 现 DCSMIMO雷达信号重构。 常采用的方法有贪婪算法、粒子群算法、 模拟退火算法等优化算法。
3 压缩感知应用
3.4.3 CS与雷达成像
基于CS的SAR成像需要解决的主要问题有:
系数越多。
1 压缩感知理论分析
第三步:信号重构
❖ 首先介绍下范数的概念。向量的p-范数为:
s p
1
s N
i 1
p i
p
当p=0时得到0-范数,它表示上式中非零项的个 数。
❖ 由于观测数量M N,不能直接求解,在信号 x
可压缩的前提下,求解病态方程组的问题转化 为最小0-范数问题:
min T x
稀疏信号的字典集 ,并且 与 是不相关的。利用这个

压缩感知理论及其在图像处理中的应用

压缩感知理论及其在图像处理中的应用

压缩感知理论及其在图像处理中的应用近年来,随着数字图像在我们日常生活中的普及和广泛应用,如何快速高效地实现对大量图像数据的处理成为了一个难题。

传统的数字图像处理技术需要高带宽高速率的数据传输,计算机高速缓存、内存等硬件设备的昂贵需求,而压缩感知理论(Compressive Sensing, CS)的出现,则为解决这一难题提供了新的思路。

一、压缩感知理论的提出压缩感知理论是由2006年图像处理领域的国际权威科学家Emmanuel J. Candès 率先提出的。

该理论认为,只有在信号的采样和重构过程中,才能更好地利用信号的特性和结构,减少无用信息和冗余信息,从而实现对信号的高效处理。

也就是说,我们可以对信息进行压缩处理,以更快更高效地存储和处理数据。

与传统的压缩技术相比,压缩感知理论具有以下优点:1. 压缩效率更高:传统的压缩技术往往只能压缩部分信号能量,而压缩感知理论则可以在采样过程中,直接压缩信号本身。

2. 重构精度更高:压缩感知理论采用某些稀疏变换方法,具有更高的重构精度。

同时,针对一些非常难处理的图像信号,在压缩感知理论的框架下,其重构精度可以得到进一步提升。

二、压缩感知理论在图像处理中的应用由于压缩感知理论具有较多的优点,使得其在大量图像处理领域中有广泛的应用。

1. 图像压缩图像压缩是对大量数字数据的压缩性能测试、可视化和度量等方面的技术。

对于大量数据,我们可以采用压缩感知理论来进行压缩,这样可以极大程度地减少数据存储的空间,加速数据读写和传输的速度。

压缩过的图像,可以减少对存储设备的空间占用,提高传输的速度等,是一种非常实用的技术。

2. 图像分类在机器学习中,需要大量分类样本进行模型训练。

需要对训练的样本进行压缩,得到表征样本的特征向量,然后通过学习的分类器对其进行分类。

在这个过程中,压缩感知理论可以很好地处理各种图像分类问题。

3. 图像处理图像处理是数字图像处理中一个非常重要的领域。

信号重构与压缩感知理论

信号重构与压缩感知理论

信号重构与压缩感知理论信号重构与压缩感知理论是数字信号处理和通信领域中的重要概念和技术。

它们对于信号的采集、传输和存储具有重要意义,能够提高系统的效率和性能。

本文将深入探讨信号重构与压缩感知理论的原理、应用以及未来发展方向。

一、信号重构理论信号重构是指根据已知的部分信号信息,通过合适的算法和技术手段来估计和恢复出完整的信号。

常见的信号重构方法包括插值法、采样定理、多项式拟合等。

而信号重构理论则是为了解决信号重构问题而产生的一系列数学理论和方法。

信号重构理论的核心思想是利用信号的稀疏性或者低维结构进行信号重构。

在信号的采集和传输过程中,信号往往存在冗余或者冗杂信息,通过剔除这些冗余信息,可以减少信号的存储空间和传输数据量。

常见的信号重构算法有最小二乘法、压缩感知算法、稀疏表示算法等。

在实际应用中,信号重构理论被广泛应用于图像压缩、音频处理、视频编码等领域。

通过信号重构技术,可以实现对图像、音频、视频等信号的高效压缩和传输,以及信号的快速恢复和重建。

二、压缩感知理论压缩感知是一种通过较少的采样和测量来获取信号的方法,它与传统的采样理论和信号处理方法有着本质的区别。

压缩感知理论的核心概念是稀疏表示和非局部性。

在传统的采样理论中,信号必须按照一定的采样定理进行采样,然后通过重建算法来获取完整信号。

而压缩感知理论则认为,信号在某个稀疏基下可以用更少的采样数进行表示,从而在一定程度上减少了传统采样过程中的冗余信息。

压缩感知理论的基本步骤包括稀疏表示、测量矩阵设计和重构算法。

通过适当的测量矩阵和重构算法,可以从少量采样数据中恢复出完整信号。

在信号稀疏性较高的情况下,压缩感知理论具有较好的重构性能。

压缩感知理论广泛应用于信号采集、图像处理、雷达成像等领域。

它不仅可以降低传感器的采样率,减少数据存储和传输成本,还可以提高系统的抗噪性能和恢复效果。

三、信号重构与压缩感知的应用信号重构与压缩感知理论在各个领域都有广泛的应用。

压缩感知理论简介

压缩感知理论简介
35结论结论33提出了基于压缩感知理论的电能质量扰动信号二维压缩提出了基于压缩感知理论的电能质量扰动信号二维压缩采样方法该方法对电能质量扰动信号的重构效果优于采样方法该方法对电能质量扰动信号的重构效果优于一维方法能实现单一扰动和多重扰动的准确重构重一维方法能实现单一扰动和多重扰动的准确重构重构信号能满足电能质量分析的要求
基本方法:信号在某一个正交空间具有稀疏性(即可压
缩性),就能以较低的频率(远低于奈奎斯特采样频率) 采样该信号,并可能以高概率重建该信号。
7
1.1 理论产生背景
2006《Robust Uncertainty Principles: Exact Signal Reconstruction from Highly Incomplete Frequency Information》 Terence Tao、Emmanuel Candès
10
1.2 研究现状
西安电子科技大学石光明教授,发表综述文章 燕山大学练秋生教授课题组,针对压缩感知的稀
疏重建算法进行研究 中科院电子所的方广有研究员等,探索了压缩感
知理论在探地雷达三维成像中的应用。 除此之外,还有很多国内学者在压缩感知方面做
了重要的工作,如清华大学、天津大学、国防科 技大学、厦门大学、湖南大学、西南交通大学、 南京邮电大学、华南理工大学、北京理工大学、 北京交通大学、北京化工大学等等单位。
13
2.2压缩感知基本步骤
找到某个正 交基Ψ ,信 号在该基上
稀疏
• 研究内容:
稀疏基 测量矩阵 重构算法
找到一个与 Ψ 不相关, 且满足一定 条件的观测
基Φ
以Φ观测真 实信号,得 到观测值Y
对Y采用最 优化重构, Ψ Φ均是其
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

压缩感知理论
一、压缩感知理论简介
压缩感知,又称压缩采样,压缩传感。

它作为一个新的采样理论,它通过开发信号的稀疏特性,在远小于Nyquist 采样率的条件下,用随机采样获取信号的离散样本,然后通过非线性重建算法完美的重建信号。

压缩感知理论一经提出,就引起学术界和工业界的广泛关注。

它在信息论、图像处理、地球科学、光学、微波成像、模式识别、无线通信、大气、地质等领域受到高度关注,并被美国科技评论评为2007年度十大科技进展。

二、压缩感知产生背景
信号采样是模拟的物理世界通向数字的信息世界之必备手段。

多年来,指导信号采样的理论基础一直是著名的Nyquist 采样定理。

定理指出,只有当采样速率达到信号带宽的两倍以上时,才能由采样信号精确重建原始信号。

可见,带宽是Nyquist 采样定理对采样的本质要求。

但是,对于超宽带通信和信号处理、核磁共振成像、雷达遥感成像、传感器网络等实际应用,信号的带宽变得越来越大,人们对信号的采样速率、传输速度和存储空间的要求也变得越来越高。

为了缓解对信号传输速度和存储空间的压力,当前常见的解决方案是信号压缩但是,信号压缩实际上是一种严重的资源浪费,因为大量采样数据在压缩过程中被丢弃了,它们对于信号来说是不重要的或者只是冗余信息。

故而就有人研究如何很好地利用采集到的信号,压缩感知是由 E. J. Candes 、J. Romberg 、T. T ao 和D. L. Donoho 等科学家于2004 年提出,压缩感知方法抛弃了当前信号采样中的冗余信息。

它直接从连续时间信号变换得到压缩样本,然后在数字信号处理中采用优化方法处理压缩样本。

这里恢复信号所需的优化算法常常是一个已知信号稀疏的欠定线性逆问题。

三、压缩感知理论
压缩感知理论主要涉及到三个方面,即信号的稀疏表示、测量矩阵的设计和重构算法的构造。

稀疏信号广义上可理解为信号中只有少数元素是非零的,或者信号在某一变换域内少数元素是非零的。

那么在我们如果只保留这些非零数据,丢弃其他的系数,则可以减小储存该信号需要的空间,达到了压缩(有损压缩)的目的,同时,这些系数可以重构原始信号,不过一般而言得到的是X 的一个逼近。

在实际生活中有很多数字信号都是稀疏信号或者在某一变换域内是稀疏的,这样压缩感知理论的第一个方面就可以得到满足。

如果信号N x R ∈在某变换域内是稀疏的,可以用一组正交基12[,,,]N ψψψψ= 线性组合表示:1
N i i i x s s ψ===ψ∑,其中式中,是对应于正交基的投影系数。

由稀疏性可知其内只含有少数不为零的数,感知信号y 可表示为:y x s s =Φ=Φψ=Θ,Φ就为测量矩阵,Ψ为稀疏表示矩阵,当测量矩阵与稀疏表示矩阵不相关时就可以从s 中不失真的恢复出原始信号x ,常用的测量矩阵有高斯随机阵等。

接下来是算法的重构,由于用少数信号恢复原来的大信号,这是一个欠定问题,一般用最优化方法来求解。

这就是压缩感知理论体系的基本理论。

四、对这一创新案例的分析
随着数字时代的发展,大数据是一种发展趋势,但是大数据就涉及到存储和处理的问题,而且有些信号不需要大数据也可以达到想要的处理效果,在这之前,将模拟信号进行数字化的时候都是用Nyquist采样定理,这就意味着越精细采样,为了真实的恢复原来信号,就必须增加采样率来保证其满足Nyquist采样率。

这就意味着要采集非常大的数据量,对于数据的储层和处理都很费时费力。

在这种情况下,压缩感知产生了。

压缩感知可以在远小于Nyquist采样率的条件下,用随机采样获取信号的离散样本,然后通过非线性重建算法完美的重建信号。

这就是其创新所在,打破Nyquist采样率的条件,利用矩阵论与最优化的方法可以说给信号数字处理这一领域带来了一场革命性巨变。

压缩感知之所以能发展并很快得到广泛应用,离不开计算机技术、矩阵论和最优化方法的发展。

其紧密结合时代特征,在数字信息时代留下浓墨重彩的一笔。

通过对这一案例的分析,可以发现创新无处不在,创新要敢于质疑权威,甚至是公理,但绝对不是盲目的质疑,要有相关的科学依据的支持,创新不是异想天开,而是立足实践,结合时代科学性、可行性科技活动。

早在压缩感知产生之前,这一理论的基本思想在信号处理界以及有了雏形,只是只限于局部领域内的应用,所以,创新是要紧跟科技发展前言,了解各行业发展动态,并结合自身的研究领域。

五、参考文献
[1]戴琼海,付长军,季向阳. 压缩感知研究[J]. 计算机学报,2011,03:3425-3434.
[2]焦李成,杨淑媛,刘芳,侯彪. 压缩感知回顾与展望[J]. 电子学报,2011,07:1651-1662.
[3]石光明,刘丹华,高大化,刘哲,林杰,王良君. 压缩感知理论及其研究进展[J]. 电子学报,2009,05:1070-1081.
[4]邵文泽,韦志辉. 压缩感知基本理论:回顾与展望[J]. 中国图象图形学报,2012,01:1-12。

相关文档
最新文档