掌握集合的两种表示方法—列举法
第2课:集合的表示方法

5、方程 的解集用列举法表示为________________;
用描述法表示为________________.
学法指导
预习内容
我的疑惑
(1)结合教材P3,掌握列举法和描述法的格式和适用的情形;
(2)参看教材P4,知道区间的含义,特别是开区间与闭区间的区别.
1、列举法
把集合中的元素出来,并用花括号“{}”括起来表示集合的方法叫做列举法.适用于元素较少的集合
2、描述法
(1)定义:用集合所含元素的表示集合的方法称为描述法.
(2)写法:在花括号内先写上表示这个集合元素的,再画一条竖线,在竖线后写出这个集合中元素所具有的
3、区间的定义、名称、符号及数轴表示
定义
名称
符号
数轴表示
{x|a≤x≤b}
闭区间
{x|a<x<b}
开区间
{x|a≤x<b}
半闭半开区间
{x|a<x≤b}
半开半闭区间
{x|x≥a}
{x|x>a}
{x|x≤a}
(1)方程x2-2=0的所有实数根组成的集合;
(2)由大于10小于20的所有整数组成的集合.
(1)本题在求解过程中,常因忽略讨论k是否为0而漏解.
(2)因kx2-8x+16=0是否为一元二次方程而分k=0和k≠0而展开讨论,从而做到不重不漏.
(3)解答与描述法有关的问题时,明确集合中代表元素及其共同特征是解题的切入点.
{x|x<a}
R
取遍数轴上所有的值
探究案【养成分析习惯初步掌握方法】
学法指导
探究问题
自我小结
对于元素个数较少的集合或元素个数不确定但元素间存在明显规律的集合,可采用列举法.应用列举法时要注意:①元素之间用“,”而不是用“、”隔开;②元素不能重复.
集合的表示方法

)
【解析】 大于 2 且小于 5 的自然数为 3 和 4,所以用列举法表示其组成的 集合为{3,4}.
【答案】 A
2 判断(正确的打“√”,错误的打“×”) (1)集合 0∈{x|x>1}.( ) ) )
(2)集合{x|x<5,x∈N}中有 5 个元素.(
(3)集合{(1,2)}和{x|x2-3x+2=0}表示同一个集合.(
• 纷繁的大千世界中存在着各式各样的家族, 集合就是数学的一个大家族.我们尽管已经 知道可以用大写英文字母来表示不同的集 合,但这并不能体现集合中的各个具体元素 是什么.表示一个集合关键是确定它包含哪 些具体元素,集合中的元素是我们研究的主 要对象.那么怎样表示不同的集合呢?它有 哪些其他具体的表示方法呢?这节我们将主 要研究集合的两种不同表示方法.
p(x)表示该集 合中的元素x 所具有的性 质
集合的意义:表示满足后面条件p(x)的代 表元素x的取值范围。
说明:用描述法表示集合时,要注意以下几点:
(1)写清楚该集合中元素的代表符号 (2)特征性质必须是明确的; (3)不能出现未被说明的字母 (4)多层描述时应当准确使用“且”、“或” (5)所有描述的内容都要写在花括号内, 语言力求简明、准确 (6)若元素范围为R,,“ R ”可以省略不写; (7)有的集合可以直接写出元素名称,并用{ } 括起来表示这类元素的全体,如{实数}
【变式训练5】 若集合A={y|y=x+1,x∈R},B={y|y=x2+1,x∈R}, 则由集合A与B的公共元素组成的集合为 . 解析:集合A表示函数y=x+1中变量y的取值构成的集合.因为 x∈R,所以y∈R,即A=R.同理,集合B表示函数y=x2+1中变量y的取 值构成的集合.因为x∈R,所以x2≥0,从而x2+1≥1,即y≥1.因此,集合 B={y|y≥1}.于是A和B的公共元素是所有大于或等于1的实数,即A 与B的公共元素组成的集合是{y|y≥1}. 答案:{y|y≥1}
集合的表示方法

(3)设由1~20以内的所有素数组成的集合为C,那么 C={2,3,5,7,11,13,17,19}
练习1
用列举法表示下列集合:
(1) 大于 3 小于 9 的自然数;
{ 4,5,6,7,8 }.
(2) 绝对值等于 1 的实数的全体;
{ -1,1 }.
(3) 一年中不满 31 天的月份;
{ 二月,四月,六月,九月,十一月 }.
例4:用描述法分别表示: (1)抛物线 y = ⑵抛物线 y = x 2上点的纵坐标.
{ y| y y
2 =x } 2 =x }
x2
上点的横坐标. {x|
(3)抛物线 y = x 2 上的点.
{(x,y)| y
2 =x }
(4)直角坐标系中坐标轴上的点.
( x, y) xy 0
例5:用列举法表示下列集合:
通过对元素规律的观察概括出特征性质
列举法
根据特征性质,找出具体元素
描述法
3、 图示法 画一条封闭曲线,用它的内部来表示一个集合. 常用于表示不需给具体元素的抽象集合.对已 给出了具体元素的集合也当然可以用图示法 来表示. (形象直观)
如: 集合{1,2,3,4,5}用图示法表示为:
A
1 2 3 4 5
b 4.若集合{a, ,1}={a2 ,a+b,0},求a2009 +b2010 a
课本第九页习题B:1,2
(1) A x N 0 x 5 (2) A x x 5 x 6 0
2
பைடு நூலகம்
练习1:用描述法表示下列集合
11,1 2 大于3的全体偶数构成的集合 3 在平面内,线段AB的垂直平分线
《集合的表示方法》

集合的表示方法
精选课件
1
列举法
集合由三种表示方法
描述法
区间及其表示
精选课件
2
列举法
(1)把集合中的元素一一列举出来(相邻元素之间用逗号分隔),并写 在大括号内,以此来表示集合的方法。如: 由两个元素0、1组成的集合可用列举法表示为{0,1}; 24的所有正因数组成的集合可用列举法表示为: {1,2,3,4,6,8, 12,24}。 (2)如果元素较多或者无穷多个,且能按照一定规律排列,那么在不发 生误解的情况下,可以按照规律列出几个元素作为代表,其他元素用省 略号表示,如: 不大于100的自然数组成的集合{0,1,2,3,……,100}; 自然数集N={0,1,2,3,…,n,…}。
(1)[-1,3]; (2)(0,1]; (3)[2,5); (4)(0,2); (5)(-∞,3); (6)[2,+∞);
(2){x|0<x≤1}; (4){x|0<x<2}; (6){x|x≥2};
精选课件
Байду номын сангаас
11
小结
(1)列举法表示集合; (2)描述法表示集合; (3)运用区间表示集合;
精选课件
精选课件
8
区间及其表示1
(1)如果 a<b,则集合{x|a≤x≤b}可以简写为[a,b],并成为闭区间;
(2)如果 a<b,则集合{x|a<x<b}可以简写为(a,b),并成为开区间;
(3)如果a<b,则集合{x|a≤x<b}可以简写为[a,b),并成为左闭右开 区间;
(4)如果a<b,则集合{x|a<x≤b}可以简写为(a,b],并成为左开右闭 区间;
集合以及集合的两种表示方法_列举法和描述法.ppt

(2) 对称:对任意 a,b A,若有(a,b) ,则必须有(b,a)
(3) 反对称:对任意 a,b A,当a≠b时,(a,b)和(b,a)不
能同时出现在 中。
(4) 可传递:对任意三个元素a,b,cA,若(a,b),(b,c)出现
总结
11
第二章 关系
1. 有序n元组和n个集合的笛卡尔积
重点是有序二元组(a,b)和两个集合的笛卡尔积A×B。 这两个概念是二元关系这一概念建立的基础。
2. 二元关系(简称“关系”)的定义
(1) 集合A到集合B的关系:定义为 A B
(2) 关系的定义域和值域
(3) 集合A上的关系:定义为 A A
总结
20
第三章 函数
1. 函数的概念和分类 (1)由集合A到集合B的函数f:A→B的定义;
(2)函数定义域和值域;
(3)函数的相等。
2.几种特殊的函数 (1)内射: 当ai≠aj 时,有f(ai)≠f(aj)。 (2)满射: 对任意b∈B,必存在a∈A,使f(a)=b。
(3)双射:既是内射又是满射。
总结
22
第三章 函数
3. 函数的运算
(1)求逆函数的运算:任何函数都有逆关系,但只有双射函数才 有逆函数。
(2)求复合函数的运算:两函数的复合函数实际上就是这两个函 数的复合关系。
区别在于此时的复合关系也是一个函数。因此称为复合函数。
总结
23
第三章 函数
4. 逆函数和复合函数的有关性质 (1)关于逆函数
dom(1 2) {1,2,3,4} ran(1 2) {2,3,4}
最新人教版高中数学必修第一册第1章集合与常用逻辑用语1.1 第2课时 集合的表示

提示:能.{-1,0,1}.
2.“大于-2且小于2的实数”组成的集合,能用列举法表示吗?为
什么?
提示:不能.因为大于-2且小于2的实数有无数多个,用列举法
是列举不完的,所以不能用列举法表示.
?
3.设x为“大于-2且小于2的实数”组成的集合的元素,x有何特
征?
提示:x∈R,且-2<x<2.
x= 或
x=-2,所求集合为
-,
.
(1)方程组
的解集;
+ =
(2)绝对值不大于 3 的所有实数组成的集合;
(3)反比例函数
y=-的自变量组成的集合;
(4)抛物线 y=x2-2x 与 x 轴的交点组成的集合.
?
=得
= -,
+ = ,
故该集合用列举法表示为{(4,-2)}.
(3)集合的代表元素是x,共同特征是x是三角形,故该集合用描
述法表示为{x|x是三角形}.
?
思 想 方 法
?
分类讨论思想在集合表示中的应用
【典例】 若集合A={x|kx2-8x+16=0}中只有一个元素,试求实
数k的值,并用列举法表示集合A.
审题视角:集合A中只有一个元素,说明关于x的方程kx28x+16=0只有一个或两个相等的实数根,此方程不确定为一元
怎样表示?
解:小于10的正偶数有2,4,6,8,用式子表示为x=2k,1≤k<5,且
k∈Z,所求集合用描述法表示为{x|x=2k,1≤k<5,且k∈Z}.
2.把本例(3)换成在平面直角坐标系中,第一、第三象限的点
组成的集合,如何求解?
【导学案】第2课时 集合的表示(解析版)
1.1 集合的概念第2课时 集合的表示 学习目标知识梳理知识点一 列举法把集合的所有元素一一列举出来,并用花括号“{}〞括起来表示集合的方法叫做列举法. 知识点二 描述法一般地,设A 是一个集合,把集合A 中所有具有共同特征P (x )的元素x 所组成的集合表示为{x ∈A |P (x )},这种表示集合的方法称为描述法.名师导学知识点1用列举法表示集合【例】用列举法表示以下集合:(1)满足-2≤x ≤2且x ∈Z 的元素组成的集合A ;(2)方程(x -2)2(x -3)=0的解组成的集合M ;(3)方程组⎩⎪⎨⎪⎧2x +y =8,x -y =1的解组成的集合B ; (4)15的正约数组成的集合N .【解】 (1)因为-2≤x ≤2,x ∈Z ,所以x =-2,-1,0,1,2,所以A ={-2,-1,0,1,2}.(2)因为2和3是方程的根,所以M ={2,3}.(3)解方程组⎩⎪⎨⎪⎧2x +y =8,x -y =1,得⎩⎪⎨⎪⎧x =3,y =2,所以B ={(3,2)}.(4)因为15的正约数有1,3,5,15四个数字,所以N ={1,3,5,15}.反思感悟变式训练用列举法表示以下集合:(1)不大于10的非负偶数组成的集合;(2)方程x 2=2x 的所有实数解组成的集合;(3)直线y =2x +1与y 轴的交点所组成的集合;(4)由所有正整数构成的集合.解 (1)因为不大于10是指小于或等于10,非负是大于或等于0的意思,所以不大于10的非负偶数集是 {0,2,4,6,8,10}.(2)方程x2=2x的解是x=0或x=2,所以方程的解组成的集合为{0,2}.(3)将x=0代入y=2x+1,得y=1,即交点是(0,1),故交点组成的集合是{(0,1)}.(4)正整数有1,2,3,…,所求集合为{1,2,3,…}.知识点2用描述法表示集合【例】用描述法表示以下集合:(1)正偶数集;(2)被3除余2的正整数集合;(3)平面直角坐标系中坐标轴上的点组成的集合.解(1)偶数可用式子x=2n,n∈Z表示,但此题要求为正偶数,故限定n∈N*,所以正偶数集可表示为{x|x =2n,n∈N*}.(2)设被3除余2的数为x,那么x=3n+2,n∈Z,但元素为正整数,故n∈N,所以被3除余2的正整数集合可表示为{x|x=3n+2,n∈N}.(3)坐标轴上的点(x,y)的特点是横、纵坐标中至少有一个为0,即xy=0,故平面直角坐标系中坐标轴上的点的集合可表示为{(x,y)|xy=0}.反思感悟变式训练试分别用描述法和列举法表示以下集合:(1)由方程x(x2-2x-3)=0的所有实数根组成的集合;(2)大于2小于7的整数.解:(1)用描述法表示为{x∈R|x(x2-2x-3)=0},用列举法表示为{0,-1,3}.(2)用描述法表示为{x∈Z|2<x<7},用列举法表示为{3,4,5,6}.知识点3集合表示法的综合应用【例】集合A={x|kx2-8x+16=0},假设集合A中只有一个元素,求实数k的值组成的集合.解(1)当k=0时,方程kx2-8x+16=0变为-8x+16=0,解得x=2,满足题意;(2)当k≠0时,要使集合A={x|kx2-8x+16=0}中只有一个元素,那么方程kx2-8x+16=0有两个相等的实数根,所以Δ=64-64k=0,解得k=1,此时集合A={4},满足题意.综上所述,k=0或k=1,故实数k的值组成的集合为{0,1}.延伸探究1.本例假设将条件“只有一个元素〞改为“有两个元素〞,其他条件不变,求实数k的值组成的集合.解由题意可知,方程kx2-8x+16=0有两个不等实根,故k≠0,且Δ=64-64k>0,即k<1,且k≠0.所以实数k组成的集合为{k|k<1,且k≠0}.2.本例假设将条件“只有一个元素〞改为“至少有一个元素〞,其他条件不变,求实数k的取值范围.解由题意可知,方程kx2-8x+16=0至少有一个实数根.①当k=0时,由-8x+16=0得x=2,符合题意;②当k≠0时,要使方程kx2-8x+16=0至少有一个实数根,那么Δ=64-64k≥0,即k≤1,且k≠0.综合①②可知,实数k的取值范围为{k|k≤1}.反思感悟变式训练集合A={x|x2+px+q=x},B={x|(x-1)2+p(x-1)+q=x+3},当A={2}时,集合B=()A.{1}B.{1,2}C.{2,5}D.{1,5}解析:选D.由A={x|x2+px+q=x}={2}知,22+2p+q=2,且Δ=(p-1)2-4q=0.计算得出p=-3,q=4.那么(x-1)2+p(x-1)+q=x+3可化为(x-1)2-3(x-1)+4=x+3;即(x-1)2-4(x-1)=0;那么x-1=0或x-1=4,计算得出x=1或x=5.所以集合B={1,5}.当堂测评1.集合A ={x |-1<x <3,x ∈Z },那么一定有( )A .-1∈A B.12∈A C .0∈A D .1∉A解析:选C.因为-1<0<3,且0∈Z ,所以0∈A .2.以下集合中表示同一集合的是( )A .M ={(3,2)},N ={(2,3)}B .M ={2,3},N ={3,2}C .M ={(x ,y )|x +y =1},N ={y |x +y =1}D .M ={2,3},N ={(2,3)}解析:选B.选项A 中的集合M 是由点(3,2)组成的点集,集合N 是由点(2,3)组成的点集,故集合M 与N 不是同一个集合.选项C 中的集合M 是由一次函数y =1-x 图象上的所有点组成的集合,集合N 是由一次函数y =1-x 图象上的所有点的纵坐标组成的集合,即N ={y |x +y =1}=R ,故集合M 与N 不是同一个集合.选项D 中的集合M 是数集,而集合N 是点集,故集合M 与N 不是同一个集合.对于选项B ,由集合中元素的无序性,可知M ,N 表示同一个集合.3.集合⎩⎨⎧⎭⎬⎫3,52,73,94,…用描述法可表示为( ) A.⎩⎨⎧⎭⎬⎫x ⎪⎪x =2n +12n ,n ∈N * B.⎩⎨⎧⎭⎬⎫x ⎪⎪x =2n +3n ,n ∈N * C.⎩⎨⎧⎭⎬⎫x ⎪⎪x =2n -1n ,n ∈N * D.⎩⎨⎧⎭⎬⎫x ⎪⎪x =2n +1n ,n ∈N *解析:选D.通过观察发现规律,从而得到3,52,73,94,…中的第n 项的分母为n ,分子为2n +1,所以集合⎩⎨⎧⎭⎬⎫3,52,73,94,…用描述法可表示为{x |x =2n +1n ,n ∈N *}.应选D. 4.将集合⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫〔x ,y 〕⎪⎪⎪⎩⎪⎨⎪⎧x +y =5,2x -y =1用列举法表示,正确的选项是( ) A .{2,3}B .{(2,3)}C .{x =2,y =3}D .(2,3)解析:选B.解方程组⎩⎪⎨⎪⎧x +y =5,2x -y =1 得⎩⎪⎨⎪⎧x =2,y =3,所以集合⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫〔x ,y 〕⎪⎪⎪⎪⎩⎪⎨⎪⎧x +y =5,2x -y =1 ={(2,3)}.5.设A ={4,a },B ={2,ab },假设A 与B 的元素相同,那么a +b =______. 解析:因为A 与B 的元素相同,所以⎩⎪⎨⎪⎧a =2,ab =4,即a =2,b =2.故a +b =4.答案:4。
1..1..1-2集合的含义及其表示
1. 1.1 集合的含义及其表示方法<2)教案【教学目标】1、集合和元素的表示法;2、掌握一些常用的数集及其记法3、掌握集合两种表示法:列举法、描述法。
【教学重难点】集合的两种表示法:列举法和描述法。
【教学过程】一、导入新课复习提问:集合元素的特征有哪些?怎样理解,试举例说明,集合与元素关系是什么?如何用数不符号表示?那么给定一个具体的集合,我们如何表示它呢?这就是今天我们学习的内容—集合的表示 (板书课题>我们可以用自然语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合二、新课讲授<1)、列举法:把集合中的元素一一列举出来,写在大括号内表示集合的方法。
例:“中国的直辖市”构成的集合,写成{北京,天津,上海,重庆}由“maths中的字母” 构成的集合,写成{m,a,t,h,s}由“book中的字母” 构成的集合,写成{b,o,k}注:<1)有些集合亦可如下表示:从51到100的所有整数组成的集合:{51,52,53,…,100}所有正奇数组成的集合:{1,3,5,7,…}<2) a与{a}不同:a表示一个元素,{a}表示一个集合,该集合只有一个元素。
<3)集合中的元素具有无序性,所以用列举法表示集合时不必考虑元素的顺序。
学生自主完成P4 例题1<2)、描述法:用确定的条件表示某些对象是否属于这个集合,并把这个条件写在大括号内表示集合的方法。
格式:{x∈A| P<x)}含义:在集合A中满足条件P<x)的x的集合。
例:不等式的解集可以表示为:或“中国的直辖市”构成的集合,写成{为中国的直辖市};“方程x2+5x-6=0的实数解” {x∈R| x2+5x-6=0}={-6,1}学生自主完成P5例题2三、例题讲解例题1.用列举法表示下列集合:(1>小于5的正奇数组成的集合;(2>能被3整除且大于4小于15的自然数组成的集合;(3>方程x2-9=0的解组成的集合;(4>{15以内的质数};(5>{x|∈Z,x∈Z}.分析:教师指导学生思考列举法的书写格式,并讨论各个集合中的元素,明确各个集合中的元素,写在大括号内即可9JKPT7zyjQ 提示学生注意:(2>中满足条件的数按从小到大排列时,从第二个数起,每个数比前一个数大3;(4>中除去1和本身外没有其他的约数的正整数是质数;(5>中3-x是6的约数,6的约数有±1, ±2, ±3, ±6.解: (1>满足题设条件小于5的正奇数有1,3,故用列举法表示为{1,3};(2>能被3整除且大于4小于15的自然数有6,9,12,故用列举法表示为{6,9,12};(3>方程x2-9=0的解为-3,3,故用列举法表示为{-3,3};(4>15以内的质数有2,3,5,7,11,13,故该集合用列举法表示为{2,3,5,7,11,13}9JKPT7zyjQ(5>满足的x有3-x=±1, ±2, ±3, ±6.解之,得x=2,4,1,5,0,6,-3,9,故用列举法表示为{2,4,1,5,0,6,-3,9}9JKPT7zyjQ变式训练1用列举法表示下列集合:(1>x2-4的一次因式组成的集合;(2>{y|y=-x2-2x+3,x∈R,y∈N};(3>方程x2+6x+9=0的解集;(4>{20以内的质数};(5>{(x,y>|x2+y2=1,x∈Z,y∈Z};(6>{大于0小于3的整数};(7>{x∈R|x2+5x-14=0};(8>{(x,y>|x∈N且1≤x<4,y-2x=0};(9>{(x,y>|x+y=6,x∈N,y∈N}.分析:让学生思考用描述法的形式如何表示平面直角坐标系中的点?如何表示数轴上的点?如何表示不等式的解?学生板书,教师在其他学生中间巡视,及时帮助思维遇到障碍的同学.必要时,教师可提示学生:9JKPT7zyjQ(1>集合中的元素是点,它是坐标平面内的点,集合元素代表符号用有序实数对(x,y>来表示,其特征是满足y=x2;9JKPT7zyjQ(2>集合中元素是点,而数轴上的点可以用其坐标表示,其坐标是一个实数,集合元素代表符号用x来表示,其特征是对应的实数绝对值大于6;9JKPT7zyjQ(3>集合中的元素是实数,集合元素代表符号用x来表示,把不等式化为x<a的形式,则这些实数的特征是满足x<a.9JKPT7zyjQ 解:(1>二次函数y=x2上的点(x,y>的坐标满足y=x2,则二次函数y=x2图象上的点组成的集合表示为{(x,y>|y=x2};(2>数轴上离原点的距离大于6的点组成的集合等于绝对值大于6的实数组成的集合,则数轴上离原点的距离大于6的点组成的集合表示为{x∈R||x|>6};(3>不等式x-7<3的解是x<10,则不等式x-7<3的解集表示为{x|x<10}.点评:本题主要考查集合的描述法表示.描述法适用于元素个数是有限个并且较多或无限个的集合.用描述法表示集合时,集合元素的代表符号不能随便设,点集的元素代表符号是(x,y>,数集的元素代表符号常用x.集合中元素的公共特征属性可以用文字直接表述,最好用数学符号表示,必须抓住其实质.9JKPT7zyjQ变式训练2用描述法表示下列集合:(1>方程2x+y=5的解集;(2>小于10的所有非负整数的集合;(3>方程ax+by=0(ab≠0>的解;(4>数轴上离开原点的距离大于3的点的集合;(5>平面直角坐标系中第Ⅱ、Ⅳ象限点的集合;(6>方程组的解的集合;(7>{1,3,5,7,…};(8>x轴上所有点的集合;(9>非负偶数;(10>能被3整除的整数.答案:(1>、{(x,y>|2x+y=5};(2>、{x|0≤x<10,x∈Z};(3>、{(x,y>|ax+by=0(ab≠0>};(4>、{x||x|>3};(5>、{(x,y>|xy<0};(6>、{(x,y>|};(7>、{x|x=2k-1,k∈N*};(8>、{(x,y>|x∈R,y=0};(9>、{x|x=2k,k∈N};(10>、{x|x=3k,k∈Z}.四、课堂小结1.描述法表示集合应注意集合的代表元素{(x,y>|y= x2+3x+2}与 {y|y= x2+3x+2}不同,只要不引起误解,集合的代表元素也可省略,例如:{整数},即代表整数集Z。
新教材2020-2021学年1.1集合的概念 1.1.2集合的表示 教案
第一章集合与常用逻辑用语1.1集合的概念1.1.2 集合的表示[目标] 1.掌握集合的两种表示方法(列举法和描述法);2.能够运用集合的两种表示方法表示一些简单集合.[重点]集合的两种表示方法及其运用.[难点] 对描述法表示集合的理解.知识点一列举法[填一填]把集合的所有元素出来,并用花括号“ ”括起来表示集合的方法叫做列举法.{}表示“所有”的含义,不能省略,元素之间用“,”隔开,而不能用“、”;书写时不需要考虑元素的顺序.[答一答]1.实数集也可以写成{实数},那么能写成{实数集}或{全体实数}吗?提示:不能,因为花括号“{}”表示“所有、全部”的意思.2.列举法能表示元素个数很少的有限集,那么可以用列举法表示无限集吗?提示:对于所含元素有规律的无限集也可以用列举法表示,如正自然数集可以用列举法表示为{1,2,3,4,5,…}.3.集合{(1,2)}与{(2,1)}是否为相等集合?提示:不是.知识点二描述法[填一填]1.一般地,设A是一个集合,我们把集合A中所有具有共同特征P(x)的元素x所组成的集合表示为{x∈A|P(x)},这种表示集合的方法称为描述法.2.具体方法在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.[答一答]3.集合{x|x>3}与集合{t|t>3}表示同一个集合吗?提示:是同一个集合.虽然两个集合的代表元素的符号(字母)不同,但实质上它们均表示大于3的所有实数,故表示同一个集合.类型一 用列举法表示集合[例1] (1)若集合A ={(1,2),(3,4)},则集合A 中元素的个数是( B ) A .1 B .2 C .3D .4(2)用列举法表示下列集合.①不大于10的非负偶数组成的集合; ②方程x 2=x 的所有实数解组成的集合; ③直线y =2x +1与y 轴的交点所组成的集合;④方程组⎩⎪⎨⎪⎧x +y =1,x -y =-1的解.[解析] (1)集合A ={(1,2),(3,4)}中有两个元素(1,2)和(3,4).(2)解:①因为不大于10是指小于或等于10,非负是大于或等于0的意思,所以不大于10的非负偶数集是{0,2,4,6,8,10}.②方程x 2=x 的解是x =0或x =1,所以方程的解组成的集合为{0,1}.③将x =0代入y =2x +1,得y =1,即交点是(0,1),故两直线的交点组成的集合是{(0,1)}.④解方程组⎩⎪⎨⎪⎧ x +y =1,x -y =-1,得⎩⎪⎨⎪⎧x =0,y =1.∴用列举法表示方程组⎩⎪⎨⎪⎧x +y =1,x -y =-1的解集为{(0,1)}.用列举法表示集合应注意的三点:(1)应先弄清集合中的元素是什么,是数还是点,还是其他元素; (2)集合中的元素一定要写全,但不能重复;(3)若集合中的元素是点时,则应将有序实数对用小括号括起来表示一个元素. [变式训练1]用列举法表示下列集合: (1)15的正约数组成的集合; (2)所有正整数组成的集合;(3)直线y =x 与y =2x -1的交点组成的集合. 解:(1){1,3,5,15}.(2)正整数有1,2,3,…,所求集合用列举法表示为{1,2,3,…}.(3)方程组⎩⎪⎨⎪⎧ y =x ,y =2x -1的解是⎩⎪⎨⎪⎧x =1,y =1,所求集合用列举法表示为{(1,1)}.类型二 用描述法表示集合[例2] 用描述法表示下列集合: (1)不等式2x -7<3的解集A ;(2)二次函数y =x 2+1的函数值组成的集合B ; (3)被3除余2的正整数的集合C ;(4)平面直角坐标系内坐标轴上的点组成的集合D .[分析] 先确定集合元素的符号,再把元素的共同特征通过提炼加工后写在竖线后面. [解] (1)解2x -7<3得x <5,所以A ={x |x <5}.(2)函数值组成的集合就是y 的取值集合,所以B ={y |y =x 2+1,x ∈R }.(3)被3除余2的正整数可以表示为3n +2(n ∈N ),所以集合C ={x |x =3n +2,n ∈N }. (4)平面直角坐标系中坐标轴上的点的共同特征是至少有一个坐标为0, 所以D ={(x ,y )|x ·y =0,x ∈R ,y ∈R }.(1)用描述法表示集合,应先弄清集合的属性,是数集、点集还是其他的类型.一般地,数集用一个字母代表其元素,而点集则用一个有序实数对来代表其元素.(2)若描述部分出现元素记号以外的字母时,要对新字母说明其含义或指出其取值范围. [变式训练2] 用描述法表示下列集合: (1)函数y =-x 的图象上所有点组成的集合; (2)方程x 2+22x +121=0的解集;(3)数轴上离原点的距离大于3的点组成的集合;(4)⎩⎨⎧⎭⎬⎫13,12,35,23,57,…. 解:(1){(x ,y )|y =-x ,x ∈R ,y ∈R }. (2){x |x =-11}.(3)数轴上离原点的距离大于3的点组成的集合等于绝对值大于3的实数组成的集合,则数轴上离原点的距离大于3的点组成的集合可表示为{x ∈R ||x |>3}.(4)先统一形式13,24,35,46,57,…,找出规律,集合表示为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪x =n n +2,n ∈N *. 类型三 两种方法的灵活应用[例3] 用适当的方法表示下列集合:(1)方程组⎩⎪⎨⎪⎧2x -3y =14,3x +2y =8的解组成的集合;(2)1 000以内被3除余2的正整数组成的集合; (3)所有的正方形组成的集合;(4)抛物线y =x 2上的所有点组成的集合.[分析] (1)中的元素个数很少,用列举法表示;(2)是有限集,但个数较多,用描述法;(3)(4)是无限集,用描述法表示.[解] (1)解方程组⎩⎪⎨⎪⎧ 2x -3y =14,3x +2y =8,得⎩⎪⎨⎪⎧x =4,y =-2,故该集合用列举法可表示为{(4,-2)}.(2)设集合的代表元素是x ,则该集合用描述法可表示为{x |x =3k +2,k ∈N ,且k ≤332}. (3)集合用描述法表示为{x |x 是正方形}或{正方形}. (4)集合用描述法表示为{(x ,y )|y =x 2}.当集合的元素个数很少(很容易写出全部元素)时,常用列举法表示集合;当集合的元素个数较多(不易写出全部元素)时,常用描述法表示集合.对一些元素有规律的无限集,也可用列举法表示.如正奇数集也可写为{1,3,5,7,9,…}.但值得注意的是,并不是每一个集合都可以用两种方法表示出来.)[变式训练3] 用适当的方法表示下列集合: (1)大于2且小于5的有理数组成的集合; (2)24的所有正因数组成的集合;(3)平面直角坐标系内与坐标轴距离相等的点的集合. 解:(1)用描述法表示为{x |2<x <5,且x ∈Q }. (2)用列举法表示为{1,2,3,4,6,8,12,24}.(3)在平面直角坐标系内,点(x ,y )到x 轴的距离为|y |,到y 轴的距离为|x |,所以该集合用描述法表示为{(x ,y )||y |=|x |}.1.集合{x ∈N |x <5}的另一种表示方法是( A ) A .{0,1,2,3,4} B .{1,2,3,4} C .{0,1,2,3,4,5}D .{1,2,3,4,5}解析:∵x ∈N ,且x <5,∴x 的值为0,1,2,3,4,用列举法表示为{0,1,2,3,4}.2.方程组⎩⎪⎨⎪⎧x +y =2,x -2y =-1的解集是( C )A .{x =1,y =1}B .{1}C .{(1,1)}D .{(x ,y )|(1,1)}解析:方程组的解集中元素应是有序数对形式,排除A ,B ,而D 中的条件是点(1,1),不含x ,y ,排除D.3.集合{x |x =a ,a <36,x ∈N },用列举法表示为{0,1,2,3,4,5}.解析:由a <36,可得a <6,即x <6,又x ∈N ,故x 只能取0,1,2,3,4,5.4.能被2整除的正整数的集合,用描述法可表示为{x |x =2n ,n ∈N +}.解析:正整数中所有的偶数均能被2整除. 5.用适当的方法表示下列集合:(1)已知集合P ={x |x =2n,0≤n ≤2,且n ∈N }; (2)能被3整除且大于4小于15的自然数组成的集合; (3)x 2-4的一次因式组成的集合;(4)由方程组⎩⎪⎨⎪⎧ x +y =3,x -y =-1的解所组成的集合.解:(1)用列举法表示为P ={0,2,4}.(2)可用列举法表示为{6,9,12};也可用描述法表示为{x |x =3n,4<x <15,且n ∈N }. (3)用列举法表示为{x +2,x -2}.(4)解方程组⎩⎪⎨⎪⎧x +y =3,x -y =-1得⎩⎪⎨⎪⎧x =1,y =2,故可用列举法表示为{(1,2)},也可用描述法表示为{(x ,y )|x =1,y =2}.——本课须掌握的两大问题1.表示集合的要求:(1)根据要表示的集合元素的特点,选择适当方法表示集合,一般要符合最简原则.(2)一般情况下,元素个数无限的集合不宜用列举法表示,描述法既可以表示元素个数无限的集合,也可以表示元素个数有限的集合.2.在用描述法表示集合时应注意:(1)弄清元素所具有的形式(即代表元素是什么),是数、还是有序实数对(点)、还是集合或其他形式. (2)元素具有怎样的属性.当题目中用了其他字母来描述元素所具有的属性时,要去伪存真,而不能被表面的字母形式所迷惑.第一章 1.1 第2课时A 组·素养自测一、选择题1.用列举法表示集合{x |x 2-3x +2=0}为( C ) A .{(1,2)} B .{(2,1)} C .{1,2}D .{x 2-3x +2=0}[解析] 解方程x 2-3x +2=0得x =1或x =2.用列举法表示为{1,2}. 2.直线y =2x +1与y 轴的交点所组成的集合为( B ) A .{0,1}B .{(0,1)}C .⎩⎨⎧⎭⎬⎫-12,0D .⎩⎨⎧⎭⎬⎫⎝⎛⎭⎫-12,0 [解析] 解方程组⎩⎪⎨⎪⎧ y =2x +1,x =0,得⎩⎪⎨⎪⎧x =0,y =1.故该集合为{(0,1)}.3.已知x ∈N ,则方程x 2+x -2=0的解集为( C ) A .{x |x =2}B .{x |x =1或x =-2}C .{x |x =1}D .{1,-2}[解析] 方程x 2+x -2=0的解为x =1或x =-2.由于x ∈N ,所以x =-2舍去.故选C . 4.若A ={-1,3},则可用列举法将集合{(x ,y )|x ∈A ,y ∈A }表示为( D ) A .{(-1,3)} B .{-1,3}C .{(-1,3),(3,-1)}D .{(-1,3),(3,3),(-1,-1),(3,-1)}[解析] 因为集合{(x ,y )|x ∈A ,y ∈A }是点集或数对构成的集合,其中x ,y 均属于集合A ,所以用列举法可表示为{(-1,3),(3,3),(-1,-1),(3,-1)}.5.下列集合中,不同于另外三个集合的是( B ) A .{x |x =1} B .{x |x 2=1} C .{1}D .{y |(y -1)2=0}[解析] 因为{x |x =1}={1},{x |x 2=1}={-1,1},{y |(y -1)2=0}={1},所以B 选项的集合不同于另外三个集合.6.下列说法:①集合{x ∈N |x 3=x }用列举法可表示为{-1,0,1};②实数集可以表示为{x |x 为所有实数}或{R };③方程组⎩⎪⎨⎪⎧x +y =3,x -y =-1的解集为{x =1,y =2}.其中说法正确的个数为( D )A .3B .2C .1D .0[解析] 由x 3=x ,得x (x -1)(x +1)=0,解得x =0或x =1或x =-1.因为-1∉N ,故集合{x ∈N |x 3=x }用列举法可表示为{0,1},故①不正确.集合表示中的“{}”已包含“所有”“全体”等含义,而“R ”表示所有的实数组成的集合,故实数集正确表示应为{x |x 为实数}或R ,故②不正确.方程组⎩⎪⎨⎪⎧x +y =3,x -y =-1的解是有序实数对,其解集应为⎩⎨⎧⎭⎬⎫(x ,y )⎪⎪⎪⎩⎪⎨⎪⎧ x =1y =2,故③不正确. 二、填空题7.已知A ={(x ,y )|x +y =6,x ∈N ,y ∈N },用列举法表示A 为__{(0,6),(1,5),(2,4),(3,3),(4,2),(5,1),(6,0)}__.[解析] ∵x +y =6,x ∈N ,y ∈N , ∴x =6-y ∈N ,∴⎩⎪⎨⎪⎧x =0,y =6,⎩⎪⎨⎪⎧x =1,y =5,⎩⎪⎨⎪⎧x =2,y =4,⎩⎪⎨⎪⎧x =3,y =3,⎩⎪⎨⎪⎧x =4,y =2,⎩⎪⎨⎪⎧x =5,y =1,⎩⎪⎨⎪⎧x =6,y =0. ∴A ={(0,6),(1,5),(2,4),(3,3),(4,2),(5,1),(6,0)}.8.集合{1,2,3,2,5,…}用描述法表示为[解析] 注意到集合中的元素的特征为n ,且n ∈N *,所以用描述法可表示为{x |x =n ,n ∈N *}. 9.已知集合A ={x |2x +a >0},且1∉A ,则实数a 的取值范围是__a ≤-2__. [解析] 因为1∉A ,则应有2×1+a ≤0,所以a ≤-2. 三、解答题10.用列举法表示下列集合: (1)⎩⎨⎧x ⎪⎪⎭⎬⎫62-x ∈Z ,x ∈Z ;(2){(x ,y )|y =3x ,x ∈N 且1≤x <5}.[解析] (1)因为62-x ∈Z ,所以|2-x |是6的因数,则|2-x |=1,2,3,6,即x =1,3,4,0,-1,5,-4,8. 所以原集合可用列举法表示为{-4,-1,0,1,3,4,5,8}. (2)因为x ∈N 且1≤x <5,所以x =1,2,3,4, 其对应的y 的值分别为3,6,9,12.所以原集合可用列举法表示为{(1,3),(2,6),(3,9),(4,12)}. 11.用描述法表示下列集合.(1){2,4,6,8,10,12}; (2){13,24,35,46,57};(3)被5除余1的正整数集合;(4)平面直角坐标系中第二、四象限内的点的集合;(5)方程组⎩⎪⎨⎪⎧x +y =2x -y =2的解组成的集合.[解析] (1){x |x =2n ,n ∈N *,n ≤6}. (2){x |x =nn +2,n ∈N *,n ≤5}. (3){x |x =5n +1,n ∈N }. (4){(x ,y )|xy <0}.(5)⎩⎨⎧⎭⎬⎫(x ,y )⎪⎪⎪⎩⎪⎨⎪⎧ x +y =2x -y =2或⎩⎨⎧⎭⎬⎫(x ,y )⎪⎪⎪⎩⎪⎨⎪⎧ x =2y =0. B 组·素养提升一、选择题1.方程组⎩⎪⎨⎪⎧x -y =2,x +2y =-1的解集是( C )A .{x =1,y =-1}B .{1}C .{(1,-1)}D .{(x ,y )|(1,-1)}[解析] 方程组的解集中元素应是有序数对形式,排除A ,B ,而D 的集合表示方法有误,排除D . 2.用列举法可将集合{(x ,y )|x ∈{1,2},y ∈{1,2}}表示为( D ) A .{1,2} B .{(1,2)} C .{(1,1),(2,2)}D .{(1,1),(1,2),(2,1),(2,2)}[解析] x =1,y =1;x =1,y =2;x =2,y =1;x =2,y =2.∴集合{(x ,y )|x ∈{1,2},y ∈{1,2}}表示为{(1,1),(1,2),(2,1),(2,2)},故选D . 3.(多选题)大于4的所有奇数构成的集合可用描述法表示为( BD ) A .{x |x =2k -1,k ∈N } B .{x |x =2k +1,k ∈N ,k ≥2} C .{x |x =2k +3,k ∈N } D .{x |x =2k +5,k ∈N }[解析] 选项A ,C 中,集合内的最小奇数不大于4. 4.(多选题)下列各组中M ,P 表示不同集合的是( ABD )A .M ={3,-1},P ={(3,-1)}B .M ={(3,1)},P ={(1,3)}C .M ={y |y =x 2+1,x ∈R },P ={x |x =t 2+1,t ∈R }D .M ={y |y =x 2-1,x ∈R },P ={(x ,y )|y =x 2-1,x ∈R }[解析] 选项A 中,M 是由3,-1两个元素构成的集合,而集合P 是由点(3,-1)构成的集合;选项B 中,(3,1)与(1,3)表示不同的点,故M ≠P ;选项D 中,M 是二次函数y =x 2-1,x ∈R 的所有因变量组成的集合,而集合P 是二次函数y =x 2-1,x ∈R 图象上所有点组成的集合.故选ABD .二、填空题5.若集合A ={x |ax 2+2x +1=0,a ∈R }中只有一个元素,则实数a 的值是__0或1__.[解析] 集合A 中只有一个元素,有两种情况:当a ≠0时,由Δ=0,解得a =1,此时A ={-1},满足题意;当a =0时,x =-12,此时A ={-12},满足题意.故集合A 中只有一个元素时,a 的值是0或1.6.用列举法写出集合⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫⎪⎪33-x ∈Z x ∈Z =__{-3,-1,1,3}__.[解析] ∵33-x ∈Z ,x ∈Z ,∴3-x 为3的因数. ∴3-x =±1,或3-x =±3. ∴33-x =±3,或33-x=±1. ∴-3,-1,1,3满足题意.7.设A ,B 为两个实数集,定义集合A +B ={x |x =x 1+x 2,x 1∈A ,x 2∈B },若A ={1,2,3},B ={2,3},则集合A +B 中元素的个数为__4__.[解析] 当x 1=1时,x 1+x 2=1+2=3或x 1+x 2=1+3=4;当x 1=2时,x 1+x 2=2+2=4或x 1+x 2=2+3=5;当x 1=3时,x 1+x 2=3+2=5或x 1+x 2=3+3=6.∴A +B ={3,4,5,6},共4个元素.三、解答题8.集合A ={x |kx 2-8x +16=0},若集合A 只有一个元素,试求实数k 的值,并用列举法表示集合A . [解析] (1)当k =0时,原方程为16-8x =0, 所以x =2,此时A ={2}.(2)当k ≠0时,因为集合A 中只有一个元素, 所以方程kx 2-8x +16=0有两个相等的实根. 则Δ=64-64k =0,即k =1. 从而x 1=x 2=4,所以集合A ={4},综上所述,实数k 的值为0或1.当k =0时,A ={2};当k =1时,A ={4}. 9.已知集合A ={x |ax 2-3x +2=0}.(1)若A 中只有一个元素,求集合A ;(2)若A 中至少有一个元素,求a 的取值范围.[解析] (1)因为集合A 是方程ax 2-3x +2=0的解集,则当a =0时,A ={23},符合题意;当a ≠0时,方程ax 2-3x +2=0应有两个相等的实数根, 则Δ=9-8a =0,解得a =98,此时A ={43},符合题意.综上所述,当a =0时,A ={23},当a =98时,A ={43}.(2)由(1)可知,当a =0时,A ={23}符合题意;当a ≠0时,要使方程ax 2-3x +2=0有实数根, 则Δ=9-8a ≥0,解得a ≤98且a ≠0.综上所述,若集合A 中至少有一个元素,则a ≤98.。
用列举法表示集合
用列举法表示集合集合是数学中的一个基本概念,用于表示具有共同特征或满足特定条件的对象的整体。
在数学中,我们常常使用列举法来表示集合。
列举法是一种直观且简单的表示方法,通过列举集合中的元素来描述集合的内容。
下面我将用中文来描述一些常见的集合,并使用列举法来表示它们。
1. 自然数集合(N):自然数集合是由所有正整数组成的集合。
它可以用列举法表示为:N={1, 2, 3, 4, 5, ...},其中省略号表示集合中的元素是无穷多的。
2. 整数集合(Z):整数集合是由所有整数组成的集合。
它可以用列举法表示为:Z={..., -3, -2, -1, 0, 1, 2, 3, ...},其中省略号表示负无穷到正无穷的整数。
3. 有理数集合(Q):有理数集合是由所有可以表示为两个整数的比值的数构成的集合。
它可以用列举法表示为:Q={1/2, 3/4, -2/5, 0, ...},其中的分数表示所有整数之间的比值。
4. 实数集合(R):实数集合是由所有可以用小数或分数表示的数构成的集合。
它包括了整数和有理数集合,以及那些无理数(如π、√2)和无限不循环小数(如1.23456789...)等。
由于实数是无穷多的,所以不能通过列举法来表示实数集合。
5. 空集合(∅):空集合是一个不包含任何元素的集合。
它可以用列举法表示为:∅={}。
6. 单元素集合:单元素集合是指只包含一个元素的集合。
例如,{1}表示包含元素1的集合。
7. 两个元素的集合:两个元素的集合可以有多种情况。
例如,{1, 2}表示包含元素1和2的集合;{a, b}表示包含元素a和b的集合。
8. 多个元素的集合:多个元素的集合可以列举其中的一部分元素,然后用省略号表示省略的部分。
例如,{1, 2, 3, ...}表示包含所有自然数的集合。
9. 等差数列集合:等差数列是由一个初值和公差确定的数列。
例如,{1, 3, 5, 7, ...}表示以初值1,公差为2的等差数列。