【2016立体几何真题集锦【大题】】浙江高考数学【2004-2015】文科_

合集下载

近三年高考(2014-2016)数学(理)试题分项版:专题10 立体几何(大题)(版)资料

近三年高考(2014-2016)数学(理)试题分项版:专题10 立体几何(大题)(版)资料

三年高考(2014-2016)数学(理)试题分项版解析第十章 立体几何三、解答题12.【2015江苏高考,16】(本题满分14分)如图,在直三棱柱111C B A ABC -中,已知BC AC ⊥,1CC BC =,设1AB 的中点为D ,E BC C B =11 .求证:(1)C C AA DE 11//平面;(2)11AB BC ⊥.【答案】(1)详见解析(2)详见解析【解析】试题分析(1)由三棱锥性质知侧面11BB C C 为平行四边形,因此点E 为1B C 的中点,从而由三角形中位线性质得//DE AC ,再由线面平行判定定理得C C AA DE 11//平面(2)因为直三棱柱111C B A ABC -中1CC BC =,所以侧面11BB C C 为正方形,因此11BC B C ⊥,又BC AC ⊥,1AC CC ⊥(可由直三棱柱推导),因此由线面垂直判定定理得11AC BB C C ⊥平面,从而1AC BC ⊥,再由线面垂直判定定理得11BC AB C ⊥平面,进而可得11AB BC ⊥试题解析:(1)由题意知,E 为1C B 的中点,又D 为1AB 的中点,因此D //C E A .又因为D E ⊄平面11C C AA ,C A ⊂平面11C C AA ,所以D //E 平面11C C AA .ABC DE A 1B 1 C1(2)因为棱柱111C C AB -A B 是直三棱柱,所以1CC ⊥平面C AB .【考点定位】线面平行判定定理,线面垂直判定定理【名师点晴】不要忽视线面平行的判定定理中线在面外条件.证明直线与平面平行的关键是设法在平面内找到一条与已知直线平行的直线, 常利用几何体的特征,合理利用中位线定理、线面平行的性质,或者构造平行四边形、寻找比例式证明两直线平行. 证明线面垂直时,不要忽视面内两条线为相交线这一条件.证明直线与平面垂直的关键在于熟练把握空间垂直关系的判定与性质,注意平面图形中的一些线线垂直关系的灵活利用,这是证明空间垂直关系的基础.13. 【2016高考天津理数】(本小题满分13分)如图,正方形ABCD 的中心为O ,四边形OBEF 为矩形,平面OBEF ⊥平面ABCD ,点G 为AB 的中点,AB =BE =2.(I )求证:EG ∥平面ADF ;(II )求二面角O -EF -C 的正弦值;(III )设H 为线段AF 上的点,且AH =23HF ,求直线BH 和平面CEF 所成角的正弦值.【答案】(Ⅰ)详见解析(Ⅱ)3(Ⅲ)21 【解析】试题分析:(Ⅰ)利用空间向量证明线面平行,关键是求出面的法向量,利用法向量与直线方向向量垂直进行论证(Ⅱ)利用空间向量求二面角,关键是求出面的法向量,再利用向量数量积求出法向量夹角,最后根据向量夹角与二面角相等或互补关系求正弦值(Ⅲ)利用空间向量证明线面平行,关键是求出面的法向量,再利用向量数量积求出法向量夹角,最后根据向量夹角与线面角互余关系求正弦值试题解析:依题意,OF ABCD ⊥平面,如图,以O 为点,分别以,,AD BA OF 的方向为x 轴,y 轴、z 轴的正方向建立空间直角坐标系,依题意可得(0,0,0)O ,()1,1,0,(1,1,0),(1,1,0),(11,0),(1,1,2),(0,0,2),(1,0,0)A B C D E F G -------,.(I )证明:依题意,()(2,0,0),1,1,2AD AF ==-.设()1,,n x y z =为平面ADF 的法向量,则1100n AD n AF ⎧⋅=⎪⎨⋅=⎪⎩,即2020x x y z =⎧⎨-+=⎩ .不妨设1z =,可得()10,2,1n =,又()0,1,2EG =-,可得10EG n ⋅=,又因为直线EG ADF ⊄平面,所以//EG ADF 平面.(II )解:易证,()1,1,0OA =-为平面OEF 的一个法向量.依题意,()()1,1,0,1,1,2EF CF ==-.设()2,,n x y z =为平面CEF 的法向量,则2200n EF n CF ⎧⋅=⎪⎨⋅=⎪⎩,即020x y x y z +=⎧⎨-++=⎩.不妨设1x =,可得()21,1,1n =-.因此有222cos ,OA n OA n OA n ⋅<>==-⋅,于是23sin ,3OA n <>=,所以,二面角O EF C --考点:利用空间向量解决立体几何问题14. 【2014江苏,理16】如图在三棱锥-P ABC 中,,,D E F 分别为棱,,PC AC AB 的中点,已知,6,8,5PA AC PA BC DF ⊥===,求证(1)直线//PA 平面DEF ;(2)平面BDE ⊥平面ABC .【答案】证明见解析.【解析】试题解析:(1)由于,D E 分别是,PC AC 的中点,则有//PA DE ,又PA DEF ⊄平面,DE DEF ⊂平面,所以//PA DEF 平面.(2)由(1)//PA DE ,又PA A C ⊥,所以PE AC ⊥,又F 是AB 中点,所以132DE PA ==,142EF BC ==,又5DF =,所以222DE EF DF +=,所以DE EF ⊥,,EF AC 是平面ABC 内两条相交直线,所以DE ABC ⊥平面,又DE ⊂平面B D E ,所以平面BDE ⊥平面ABC .【考点定位】线面平行判定定理,面面垂直判定定理【名师点晴】不要忽视线面平行的判定定理中线在面外条件.证明直线与平面平行的关键是设法在平面内找到一条与已知直线平行的直线, 常利用几何体的特征,合理利用中位线定理、线面平行的性质,或者构造平行四边形、寻找比例式证明两直线平行. 由于“线线垂直”“线面垂直”“面面垂直”之间可以相互转化,因此整个证明过程围绕着线面垂直这个核心而展开,这是化解空间垂直关系难点的技巧所在.证明线面垂直时,不要忽视面内两条线为相交线这一条件.证明直线与平面垂直的关键在于熟练把握空间垂直关系的判定与性质,注意平面图形中的一些线线垂直关系的灵活利用,这是证明空间垂直关系的基础.15. 【2015江苏高考,22】(本小题满分10分)如图,在四棱锥P ABCD -中,已知PA ⊥平面ABCD ,且四边形ABCD 为直角梯 形,2ABC BAD π∠=∠=,2,1PA AD AB BC ====(1)求平面PAB 与平面PCD 所成二面角的余弦值;(2)点Q 是线段BP 上的动点,当直线CQ 与DP 所成角最小时,求线段BQ 的长【答案】(12【解析】(1)因为D A ⊥平面PAB ,所以D A 是平面PAB 的一个法向量,()D 0,2,0A =. 因为()C 1,1,2P =-,()D 0,2,2P =-.设平面CD P 的法向量为(),,m x y z =,则C 0m ⋅P =,D 0m ⋅P =,即20220x y z y z +-=⎧⎨-=⎩. 令1y =,解得1z =,1x =.所以()1,1,1m =是平面CD P 的一个法向量.从而D 3cos D,D mm m A ⋅A ==A ,所以平面PAB 与平面CD P (2)因为()1,0,2BP =-,设()Q ,0,2λλλB =BP =-(01λ≤≤),又()C 0,1,0B =-,则()CQ C Q ,1,2λλ=B +B =--,又()D 0,2,2P =-, 从而CQ D cos CQ,D CQ D 10⋅PP ==P .设12t λ+=,[]1,3t ∈,则2222229cos CQ,D 5109101520999t t t t P ==≤-+⎛⎫-+ ⎪⎝⎭. 当且仅当95t =,即25λ=时,cos CQ,D P 的最大值为. 因为cos y x =在0,2π⎛⎫⎪⎝⎭上是减函数,此时直线CQ 与D P 所成角取得最小值. 又因为BP =2Q 5B =BP =. 【考点定位】空间向量、二面角、异面直线所成角【名师点晴】1.求两异面直线a ,b 的夹角θ,须求出它们的方向向量a ,b 的夹角,则cos θ=|cos 〈a ,b 〉|.2.求直线l 与平面α所成的角θ可先求出平面α的法向量n 与直线l 的方向向量a 的夹角.则sin θ=|cos 〈n ,a 〉|.3.求二面角α -l -β的大小θ,可先求出两个平面的法向量n 1,n 2所成的角,则θ=〈n 1,n 2〉或π-〈n 1,n 2〉.16. 【2015高考山东,理17】如图,在三棱台DEF ABC -中,2,,AB DE G H =分别为,AC BC 的中点.(Ⅰ)求证://BD 平面FGH ;(Ⅱ)若CF ⊥平面ABC ,,AB BC CF DE ⊥= ,45BAC ∠= ,求平面FGH 与平面ACFD 所成的角(锐角)的大小.【答案】(I )详见解析;(II )60 【解析】试题分析:(I )思路一:连接,DG CD ,设CD GF O =,连接OH ,先证明//OH BD ,从而由直线与平面平行的判定定理得//BD 平面HDF ;思路二:先证明平面 //FGH 平面ABED ,再由平面与平面平行的定义得到//BD 平面HDF .(II )思路一:连接,DG CD ,设CD GF O =,连接OH ,证明,,GB GC GD 两两垂直, 以G 为坐标原点,建立如图所示的空间直角坐标系G xyz -,利用空量向量的夹角公式求解;思路二:作HM AC ⊥ 于点M ,作MN GF ⊥ 于点N ,连接NH ,证明MNH ∠ 即为所求的角,然后在三角形中求解.试题解析:证法二:在三棱台DEF ABC -中,由2,BC EF H =为BC 的中点可得 //,,BH EF BH EF =所以四边形BHFE 为平行四边形可得 //BE HF在 ABC ∆中, G 为AC 的中点, H 为BC 的中点,所以 //GH AB又 GH HF H =,所以平面 //FGH 平面 ABED 因为 BD ⊂平面 ABED所以 //BD 平面FGH(II )解法一:设2AB = ,则1CF =在三棱台DEF ABC -中,G 为AC 的中点 由12DF AC GC == , 可得四边形DGCF 为平行四边形,因此//DG CF又FC ⊥平面ABC所以DG ⊥平面ABC在ABC ∆中,由,45AB BC BAC ⊥∠= ,G 是AC 中点, 所以,AB BC GB GC =⊥因此,,GB GC GD 两两垂直,以G 为坐标原点,建立如图所示的空间直角坐标系G xyz -所以())()()0,0,0,,,0,0,1G B C D可得(),H F ⎫⎪⎪⎝⎭ 故()22,,0,0,2,1GH GF ⎛⎫== ⎪⎪⎝⎭ 设(),,n x y z = 是平面FGH 的一个法向量,则由0,0,n GH n GF ⎧⋅=⎪⎨⋅=⎪⎩可得00x y z +=⎧⎪+= 可得平面FGH的一个法向量(1,n =-因为GB 是平面ACFD 的一个法向量,()2,0,0GB = 所以21cos ,2||||22GB nGB n GB n ⋅<>===⋅ 所以平面与平面所成的解(锐角)的大小为60在BGC ∆ 中,1//,22MHBG MH BG == 由GNM ∆∽GCF ∆可得,MN GM FC GF= 从而6MN = 由MH ⊥平面,ACFD MN ⊂平面ACFD得,MH MN ⊥因此tan HMMNH MN∠==所以60MNH ∠=所以平面FGH 与平面ACFD 所成角(锐角)的大小为60 .【考点定位】1、空间直线与平面的位置关系;2、二面角的求法;3、空间向量在解决立体几何问题中的应用.【名师点睛】本题涉及到了立体几何中的线面平行与垂直的判定与性质,全面考查立几何中的证明与求解,意在考查学生的空间想象能力和逻辑推理能力;利用空间向量解决立体几何问题是一种成熟的方法,要注意建立适当的空间直角坐标系以及运算的准确性.17. 【2014山东.理17】(本小题满分12分)如图,在四棱柱1111ABCD A BC D -中,底面ABCD 是等腰梯形,60DAB ∠=,22AB CD ==,M 是线段AB 的中点.(Ⅰ)求证:111//C M A ADD ;(Ⅱ)若1CD 垂直于平面ABCD 且1CD =,求平面11C D M 和平面ABCD 所成的角(锐角)的余弦值.【答案】(I )证明:见解析;(II )平面11C D M 和平面ABCD 所成角(锐角)的余弦值为5. 【解析】试题分析:(I )由四边形ABCD 是等腰梯形,且2AB CD =, 可得//CD MA 且CD MA =.连接1AD ,可得1111//,C D MA C D MA =, 从而得到四边形11AMC D 为平行四边形, 进一步可得1//C M 平面11A ADD .思路二:按照“一作,二证,三计算”.过C 向AB 引垂线交AB 于N ,连接1D N ,由1CD ⊥平面ABCD ,可得1D N AB ⊥, 得到1D NC ∠为二面角1C AB C --的平面角,利用直角三角形中的边角关系计算平面11C D M 和平面ABCD 所成角(锐角)的余弦值.试题解析:(I )证明:因为四边形ABCD 是等腰梯形, 且2AB CD =,所以//AB CD ,又由M 是AB 的中点, 因此//CD MA 且CD MA =. 连接1AD ,在四棱柱1111ABCD A BC D -中, 因为1111//,CD C D CD C D =, 可得1111//,C D MA C D MA =, 所以,四边形11AMC D 为平行四边形, 因此11//C M D A ,又1C M ⊄平面11A ADD ,1D A ⊂平面11A ADD , 所以1//C M 平面11A ADD .所以1(0,1,0),A B D .因此1,0)2M ,所以11(2MD =--,111(,0)2D C MB ==-, 设平面11C D M 的一个法向量(,,)n x y z =,由11100n D C n MD ⎧∙=⎪⎨∙=⎪⎩,得00y y ⎧-=⎪+-=,可得平面11C D M 的一个法向量(1,3,1)n =. 又1CD =为平面ABCD 的一个法向量, 因此1115cos ,5||||CD n CD n CD n ∙<>==. 所以平面11C D M 和平面ABCD 所成角(锐角)的余弦值为5. 解法二:由(I )知,平面11DC M平面ABCD=AB ,过C 向AB 引垂线交AB 于N ,连接1D N , 由1CD ⊥平面ABCD ,可得1D N AB ⊥, 因此1D NC ∠为二面角1C AB C --的平面角, 在Rt BNC ∆中,01,60BCNBC =∠=,可得CN =, 所以1ND ==, 在1Rt D CN ∆中,11cos CND NC D N ∠===, 所以平面11C D M 和平面ABCD【名师点睛】本题考查了空间直线与直线、直线与平面、平面与平面的平行关系及空间的角.对于本题,可应用“几何法”和“空间向量方法”,体现了解题的灵活性.本题是一道能力题,属于中等题,对计算能力要求较高,在考查空间平行关系、空间的角等基础知识的同时,考查考生的计算能力、逻辑推理能力、空间想象能力、转化与化归思想及应用数学知识解决问题的能力.18. 【2016年高考北京理数】(本小题14分)如图,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,PA PD ⊥,PA PD =,AB AD ⊥,1AB =,2AD =,AC CD ==(1)求证:PD ⊥平面PAB ;(2)求直线PB 与平面PCD 所成角的正弦值;(3)在棱PA 上是否存在点M ,使得//BM 平面PCD ?若存在,求AMAP的值;若不存在,说明理由.【答案】(1)见解析;(2(3)存在,14AM AP = 【解析】试题分析:(1)由面面垂直性质定理知AB ⊥平面PAD ;根据线面垂直性质定理可知PD AB ⊥,再由线面垂直判定定理可知⊥PD 平面PAB ;(2)取AD 的中点O ,连结PO ,CO ,以O 为坐标原点建立空间直角坐标系O xyz -,利用向量法可求出直线PB 与平面PCD所成角的正弦值;(3)假设存在,根据A ,P ,M 三点共线,设AP AM λ=,根据//BM 平面PCD ,即0=⋅,求λ的值,即可求出AMAP的值.如图建立空间直角坐标系xyz O -,由题意得,)1,0,0(),0,1,0(),0,0,2(),0,1,1(),0,1,0(P D C B A -.设平面PCD 的法向量为),,(z y x =,则⎪⎩⎪⎨⎧=⋅=⋅,0,0即⎩⎨⎧=-=--,02,0z x z y 令2=z ,则2,1-==y x . 所以)2,2,1(-=n .又)1,1,1(-=,所以33,cos -=>=<. 所以直线PB 与平面PCD 所成角的正弦值为33.考点:1.空间垂直判定与性质;2.异面直线所成角的计算;3.空间向量的运用.【名师点睛】平面与平面垂直的性质的应用:当两个平面垂直时,常作的辅助线是在其中一个面内作交线的垂线,把面面垂直转化为线面垂直,进而可以证明线线垂直(必要时可以通过平面几何的知识证明垂直关系),构造(寻找)二面角的平面角或得到点到面的距离等.19. 【2015高考陕西,理18】(本小题满分12分)如图1,在直角梯形CD AB 中,D//C A B ,D 2π∠BA =,C 1AB =B =,D 2A =,E 是D A 的中点,O 是C A 与BE 的交点.将∆ABE沿BE 折起到1∆A BE 的位置,如图2.(I )证明:CD ⊥平面1C A O ;(II )若平面1A BE ⊥平面CD B E ,求平面1C A B 与平面1CD A 夹角的余弦值.【答案】(I )证明见解析;(II 【解析】试题分析:(I )先证1BE ⊥OA ,C BE ⊥O ,再可证BE ⊥平面1C A O ,进而可证CD ⊥平面1C A O ;(II )先建立空间直角坐标系,再算出平面1C A B 和平面1CD A 的法向量,进而可得平面1C A B 与平面1CD A 夹角的余弦值. 试题解析:(I )在图1中,因为C 1AB =B =,D 2A =,E 是D A 的中点,D 2π∠BA =,所以C BE ⊥A即在图2中,1BE ⊥OA ,C BE ⊥O 从而BE ⊥平面1AOC 又CD//BE ,所以CD ⊥平面1AOC .(II)由已知,平面1A BE ⊥平面CD B E ,又由(I )知,1OA BE ⊥,C BE ⊥O 所以1AOC ∠为二面角1--C A BE 的平面角,所以1OC 2A π∠=.如图,以O 为原点,建立空间直角坐标系,因为11B=E=BC=ED=1A A ,//BC ED所以1((0,0,),C(0,2222B -得2BC(22-12A C(0,)22-,CD BE (==-. 设平面1BC A 的法向量1111(,,)n x y z =,平面1CD A 的法向量2222(,,)n x y z =,平面1BC A与平面1CD A 夹角为θ,则11100n BC n A C ⎧⋅=⎪⎨⋅=⎪⎩,得111100x y y z -+=⎧⎨-=⎩,取1(1,1,1)n =,2210n CD n A C ⎧⋅=⎪⎨⋅=⎪⎩,得22200x y z =⎧⎨-=⎩,取2(0,1,1)n =,从而12cos |cos ,|3n n θ=〈〉== 即平面1BC A与平面1CD A 考点:1、线面垂直;2、二面角;3、空间直角坐标系;4、空间向量在立体几何中的应用. 【名师点晴】本题主要考查的是线面垂直、二面角、空间直角坐标系和空间向量在立体几何中的应用,属于中档题.解题时一定要注意二面角的平面角是锐角还是钝角,否则很容易出现错误.证明线面垂直的关键是证明线线垂直,证明线线垂直常用的方法是直角三角形、等腰三角形的“三线合一”和菱形、正方形的对角线.20. 【2016高考新课标3理数】如图,四棱锥P ABC -中,PA ⊥地面ABCD ,AD BC ,3AB AD AC ===,4PA BC ==,M 为线段AD 上一点,2AM MD =,N 为PC 的中点.(I )证明MN平面PAB ;(II )求直线AN 与平面PMN 所成角的正弦值. 【答案】(Ⅰ)见解析;(Ⅱ)25. 【解析】试题分析:(Ⅰ)取PB 的中点T ,然后结合条件中的数据证明四边形AMNT 为平行四边形,从而得到MNAT ,由此结合线面平行的判断定理可证;(Ⅱ)以A 为坐标原点,以,AD AP所在直线分别为,y z 轴建立空间直角坐标系,然后通过求直线AN 的方向向量与平面PMN 法向量的夹角来处理AN 与平面PMN 所成角.以A 为坐标原点,AE 的方向为x 轴正方向,建立如图所示的空间直角坐标系xyz A -, 由题意知,)4,0,0(P ,)0,2,0(M ,)0,2,5(C ,)2,1,25(N , (0,2,4)PM =-,)2,1,25(-=PN ,)2,1,25(=AN .设(,,)n x y z =为平面PMN 的法向量,则⎪⎩⎪⎨⎧=⋅=⋅00,即⎪⎩⎪⎨⎧=-+=-0225042z y x z x ,可取(0,2,1)n =,于是||85|cos ,|25||||n AN n AN n AN ⋅<>==.考点:1、空间直线与平面间的平行与垂直关系;2、棱锥的体积.【技巧点拨】(1)证明立体几何中的平行关系,常常是通过线线平行来实现,而线线平行常常利用三角形的中位线、平行四边形与梯形的平行关系来推证;(2)求解空间中的角和距离常常可通过建立空间直角坐标系,利用空间向量中的夹角与距离来处理.21. 【2014高考陕西版理第17题】四面体ABCD 及其三视图如图所示,过棱AB 的中点E作平行于AD ,BC 的平面分别交四面体的棱CADC BD ,,于点H G F ,,.221俯视图左视图 主视图ABCDEFGH(1)证明:四边形EFGH 是矩形;(2)求直线AB 与平面EFGH 夹角θ的正弦值. 【答案】(1)证明见解析;(2【解析】试题分析:(1)由该四面体的三视图可知:,,BD DC BD AD AD DC ⊥⊥⊥,2,1BD DC AD ===由题设,BC ∥面EFGH ,面EFGH面BDC FG =,面EFGH面ABC EH =,所以BC ∥FG ,BC ∥EH ,所以FG ∥EH ,同理可得EF ∥HG ,即得四边形EFGH 是平行四边形,同时可证EF FG ⊥,即证四边形EFGH 是矩形;试题解析:(1)由该四面体的三视图可知:,,BD DC BD AD AD DC ⊥⊥⊥,2,1BD DC AD ===由题设,BC ∥面EFGH 面EFGH 面BDC FG = 面EFGH面ABC EH =BC ∴∥FG ,BC ∥EH , FG ∴∥EH .同理EF ∥AD ,HG ∥AD , EF ∴∥HG .∴四边形EFGH 是平行四边形又,,BD AD AD DC BD DC D ⊥⊥=∴AD ⊥平面BDC AD BC ∴⊥BC ∥FG ,EF ∥AD EF FG ∴⊥∴四边形EFGH 是矩形(2)如图,以D 为坐标原点建立空间直角坐标系,则(0,0,0)D ,(0,0,1)A ,(2,0,0)B ,(0,2,0)C(0,0,1)DA =,(2,2,0)BC =-,(2,2,0)BC =-设平面EFGH 的一个法向量(,,)n x y z =BC ∥FG ,EF ∥AD0,0n DA n BC ∴⋅=⋅=即得z =0-2x+2y =0⎧⎨⎩,取(1,1,0)n =sin |cos ,|||||||5BA n BA n BA n θ⋅∴====⋅ 考点:面面平行的性质;线面角的求法.【名师点晴】本题主要考查的是三视图,面面平行的性质定理、线面角、空间直角坐标系和空间向量在立体几何中的应用,属于中档题.解题时一定要注意线面角的正弦值是直线的方向向量与平面的法向量的夹角的余弦值的绝对值,否则很容易出现错误.22. 【2014新课标,理18】(本小题满分12分)如图,四棱锥P-ABCD 中,底面ABCD为矩形,PA ⊥平面ABCD ,E为PD 的中点. (Ⅰ)证明:PB ∥平面AEC ;(Ⅱ)设二面角D-AE-C 为60°,AP=1,E-ACD 的体积.【解析】(Ⅰ)证明:设O 为AC 与BD 交点,连结OE ,则由矩形ABCD 知:O 为BD 的中点,因为E 是BD 的中点,所以OE ∥PB ,因为OE ⊂面AEC ,PB ⊄面AEC ,所以PB ∥平面AEC 。

专题05 立体几何(测试卷)-2016年高考文数二轮复习精品资料(新课标版)(解析版)

专题05 立体几何(测试卷)-2016年高考文数二轮复习精品资料(新课标版)(解析版)

【高效整合篇】专题五 立体几何(一) 选择题(12*5=60分)1. 【2016届福建省上杭县一中高三12月考】已知α、β是两个不同的平面,m 、n 是两条不同的直线,则下列命题中正确的是( ) A .若,mn m α⊂,则n α B .若,m n ααβ=,则m nC .若,m m αβ⊥⊥,则αβD .若,m βαβ⊥⊥,则m α【答案】C 【解析】A .若,mn m α⊂,则n α,缺少n α⊄,不正确; B .若,m n ααβ=,则,m n 平行、相交或异面,不正确;C .若,m m αβ⊥⊥,则αβ,正确; D .若,m βαβ⊥⊥,则m α,缺少条件m α⊄,不正确.2. 【2016届湖南省常德市一中高三上第五次月考】若某几何体的三视图(单位:cm )如图所示,则该几何体的体积等于( )A .310cmB .320cmC .330cmD .340cm 【答案】B3. 【2016届浙江省临海市台州中学高三上第三次统练】对于不重合的两平面βα,,给定下列条件: ①存在平面γ,使得,αβ都垂直于γ; ②存在平面γ,使得,αβ都平行于γ; ③存在直线m l m l //,,使得βα⊂⊂;④存在异面直线βαβα//,//,//,//,,m m l l m l 使得其中可以判定βα,平行的条件有( )A .1个B .2个C .3个D .4个 【答案】B4. 【2016届河北省邯郸市一中高三一轮收官考试一】在正方体1111CD C D AB -A B 中,P 为正方形1111C D A B 四边上的动点,O 为底面正方形CD AB 的中心,M ,N 分别为AB ,C B 中点,点Q 为平面CD AB 内一点,线段1D Q 与OP 互相平分,则满足Q λM =MN 的实数λ的值有( )A .0个B .1个C .2个D .3个 【答案】C【解析】因为线段1D Q 与OP 互相平分,所以四点1,,,O Q P D 共面,且四边形1OQPD 为平行四边形.若P 在线段11C D 上时,Q 一定在线段ON 上运动,只有当P 为11C D 的中点时,Q 与点M 重合,此时1λ=,符合题意;若P 在线段11C B 与线段11B A 上时,在平面ABCD 找不到符合条件的点Q ;若P 在线段11D A 上时,点Q 在直线OM 上运动,只有当P 为线段11D A 的中点时,点Q 与点M 重合,此时0λ=符合题意,所以符合条件的λ值有两个,故选C .5. 【2015高考山东】在梯形ABCD 中,2ABC π∠=,//,222AD BC BC AD AB === .将梯形ABCD绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为( ) (A )23π 错误!未找到引用源。

2016年-2019年立体几何大题全国卷高考真题

2016年-2019年立体几何大题全国卷高考真题

2016年-2019年立体几何大题全国卷高考真题1、(2015年1卷18题)如图,四边形ABCD为菱形,∠ABC=120°,E,F是平面ABCD同一侧的两点,BE⊥平面ABCD,DF⊥平面ABCD,BE=2DF,AE⊥EC.(Ⅰ)证明:平面AFC⊥平面AEC;(Ⅱ)求直线AE与直线CF所成有的余弦值。

(2016年1卷18题)如图,在以A,B,C,D,E,F为顶点的五面体中,面ABEF为正方形,AF=2FD, 2、90AFD ∠=o ,且二面角D -AF -E 与二面角C -BE -F 都是60o .(I )证明:平面ABEF ⊥平面EFDC ;(II )求二面角E -BC -A 的余弦值.3(2016年2卷19题)(本小题满分12分) CA BD EF如图,菱形ABCD 的对角线AC 与BD 交于点O ,5AB =,6AC =,点E ,F 分别在AD ,CD 上,54AE CF ==,EF 交BD 于点H .将△DEF 沿EF 折到△D EF'的位置10OD '=. (I )证明:D H '⊥平面ABCD ;(II )求二面角B D A C '--的正弦值.4、(2017年1卷18题)如图,在四棱锥P ABCD -中,AB CD ∥中,且90BAP CDP ∠=∠=?.(1)证明:平面PAB ⊥平面PAD ;(2)若PA PD AB DC ===,90APD ∠=?,求二面角A PB C --的余弦值.5.(2018年1卷18题)如图,四边形ABCD 为正方形,E ,F 分别为AD ,BC 的中点,以DF 为折痕把DFC △折起,使点C 到达点P 的位置,且PF BF ⊥.⑴证明:平面PEF ⊥平面ABFD ;⑵求DP与平面ABFD所成角的正弦值.6.(2018年新课标Ⅱ理)如图,在三棱锥P-ABC中,AB=BC=22,P A =PB=PC=AC=4,O为AC的中点.(1)求证:PO⊥平面ABC;(2)若点M在棱BC上,且二面角M-P A-C为30°,求PC与平面P AM所成角的正弦值.18.(2019年1卷18题)(12分)如图,直四棱柱ABCD﹣A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.(1)证明:MN∥平面C1DE;(2)求二面角A﹣MA1﹣N的正弦值.8.(12分)(2019年新课标Ⅱ理)如图,长方体ABCD–A1B1C1D1的底面ABCD是正方形,点E 在棱AA1上,BE⊥EC1.(1)证明:BE⊥平面EB1C1;(2)若AE=A1E,求二面角B–EC–C1的正弦值.。

专题06 立体几何-2016年高考+联考模拟理数试题分项版解析(解析版) 含解析

专题06 立体几何-2016年高考+联考模拟理数试题分项版解析(解析版) 含解析

第一部分 2016高考试题立体几何1. 【2016高考新课标1卷】如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是283π,则它的表面积是( ) (A )17π (B )18π (C )20π (D )28π【答案】A【解析】试题分析: 该几何体直观图如图所示:是一个球被切掉左上角的18,设球的半径为R ,则37428V R 833ππ=⨯=,解得R 2=,所以它的表面积是78的球面面积和三个扇形面积之和2271=42+32=1784S πππ⨯⨯⨯⨯故选A . 考点:三视图及球的表面积与体积【名师点睛】由于三视图能有效的考查学生的空间想象能力,所以以三视图为载体的立体几何题基本上是高考每年必考内容,高考试题中三视图一般常与几何体的表面积与体积交汇.由三视图还原出原几何体,是解决此类问题的关键.2.【2016高考新课标2理数】下图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )(A )20π (B )24π (C )28π (D )32π【答案】C考点: 三视图,空间几何体的体积.【名师点睛】由三视图还原几何体的方法:3.【2016年高考北京理数】某三棱锥的三视图如图所示,则该三棱锥的体积为()A.16B.13C.12D.1【答案】A【解析】试题分析:分析三视图可知,该几何体为一三棱锥P ABC -,其体积111111326V =⋅⋅⋅⋅=,故选A.考点:1.三视图;2.空间几何体体积计算.【名师点睛】解决此类问题的关键是根据几何体的三视图判断几何体的结构特征.常见的有以下几类:①三视图为三个三角形,对应的几何体为三棱锥;②三视图为两个三角形,一个四边形,对应的几何体为四棱锥;③三视图为两个三角形,一个圆,对应的几何体为圆锥;④三视图为一个三角形,两个四边形,对应的几何体为三棱柱;⑤三视图为三个四边形,对应的几何体为四棱柱;⑥三视图为两个四边形,一个圆,对应的几何体为圆柱.4.【2016高考新课标3理数】如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为( )(A )18+(B )54+(C )90 (D )81【答案】B【解析】试题分析:由三视图该几何体是以侧视图为底面的斜四棱柱,所以该几何体的表面积2362332354S=⨯⨯+⨯⨯+⨯⨯=+B.考点:空间几何体的三视图及表面积.【技巧点拨】求解多面体的表面积及体积问题,关键是找到其中的特征图形,如棱柱中的矩形,棱锥中的直角三角形,棱台中的直角梯形等,通过这些图形,找到几何元素间的关系,建立未知量与已知量间的关系,进行求解.5.【2016高考山东理数】一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为()(A)1233+π(B)133+π(C)136+π(D)16+π【答案】C考点:1.三视图;2.几何体的体积.【名师点睛】本题主要考查三视图及几何体的体积计算,本题涉及正四棱锥及球的体积计算,综合性较强,较全面的考查考生的视图用图能力、空间想象能力、数学基本计算能力等.6.【2016高考浙江理数】已知互相垂直的平面αβ,交于直线l .若直线m ,n 满足,m n αβ∥⊥, 则( )A .m ∥lB .m ∥nC .n ⊥lD .m ⊥n【答案】C【解析】试题分析:由题意知,l l αββ=∴⊂,,n n l β⊥∴⊥.故选C .考点:空间点、线、面的位置关系.【思路点睛】解决这类空间点、线、面的位置关系问题,一般是借助长方体(或正方体),能形象直观地看出空间点、线、面的位置关系.7.【2016年高考四川理数】已知三棱锥的四个面都是腰长为2的等腰三角形,该三棱锥的正视图如图所示,则该三棱锥的体积是.正视图33考点:三视图,几何体的体积.【名师点睛】本题考查三视图,考查几何体体积,考查学生的识图能力.解题时要求我们根据三视图想象出几何体的形状,由三视图得出几何体的尺寸,为此我们必须掌握基本几何体(柱、锥、台、球)的三视图以及各种组合体的三视图.8.【2016高考浙江理数】某几何体的三视图如图所示(单位:cm ),则该几何体的表面积是 cm 2,体积是 cm 3.【答案】72 32【解析】试题分析:几何体为两个相同长方体组合,长方体的长宽高分别为4,2,2,所以体积为2(224)32⨯⨯⨯=,由于两个长方体重叠部分为一个边长为2的正方形,所以表面积为2(222244)2(22)72⨯⨯+⨯⨯-⨯= 考点:1、三视图;2、空间几何体的表面积与体积.【方法点睛】解决由三视图求空间几何体的表面积与体积问题,一般是先根据三视图确定该几何体的结构特征,再准确利用几何体的表面积与体积公式计算该几何体的表面积与体积.9.【2016高考新课标2理数】 ,αβ是两个平面,,m n 是两条直线,有下列四个命题:(1)如果,,//m n m n αβ⊥⊥,那么αβ⊥.(2)如果,//m n αα⊥,那么m n ⊥.(3)如果//,m αβα⊂,那么//m β.(4)如果//,//m n αβ,那么m 与α所成的角和n 与β所成的角相等.其中正确的命题有 . (填写所有正确命题的编号)【答案】②③④【解析】试题分析:对于①,,,//m n m n αβ⊥⊥,则,αβ的位置关系无法确定,故错误;对于②,因为//n α,所以过直线n 作平面γ与平面β相交于直线c ,则//n c ,因为,,m m c m n α⊥∴⊥∴⊥,故②正确;对于③,由两个平面平行的性质可知正确;对于④,由线面所成角的定义和等角定理可知其正确,故正确的有②③④.考点: 空间中的线面关系.【名师点睛】求解本题应注意在空间中考虑线、面关系.10.【2016高考浙江理数】如图,在△ABC 中,AB =BC =2,∠ABC =120°.若平面ABC 外的点P 和线段AC 上的点D ,满足PD =DA ,PB =BA ,则四面体PBCD 的体积的最大值是.【答案】12故BD =在PBD ∆中,PD AD x ==,2PB BA ==.由余弦定理可得222cos 2PD PB BD BPD PD PB +-∠===⋅, 所以30BPD ∠=.EDC B A P过P 作直线BD 的垂线,垂足为O .设PO d = 则11sin 22PBD S BD d PD PB BPD ∆=⨯=⋅∠,12sin 302d x =⋅,解得d =而BCD ∆的面积111sin )2sin 30)222S CD BC BCD x x =⋅∠=⋅=. 设PO 与平面ABC 所成角为θ,则点P 到平面ABC 的距离sin h d θ=.故四面体PBCD的体积11111sin )33332BcD BcD BcD V S h S d S d x θ∆∆∆=⨯=≤⋅=⨯=.设t ==0x ≤≤12t ≤≤.则|x =(1)当0x ≤≤|x x =故x =此时,V = 21414()66t t t t-=⋅=-. 214()(1)6V t t'=--,因为12t ≤≤, 所以()0V t '<,函数()V t 在[1,2]上单调递减,故141()(1)(1)612V t V ≤=-=. (2x <≤|x x ==,故x =此时,V =21414()66t t t t-=⋅=-. 由(1)可知,函数()V t 在(1,2]单调递减,故141()(1)(1)612V t V <=-=. 综上,四面体PBCD 的体积的最大值为12. 考点:1、空间几何体的体积;2、用导数研究函数的最值.【思路点睛】先根据已知条件求出四面体的体积,再对x 的取值范围讨论,用导数研究函数的单调性,进而可得四面体的体积的最大值.11.【2016高考新课标1卷】平面α过正方体ABCD -A 1B 1C 1D 1的顶点A ,α//平面CB 1D 1,αI 平面ABCD =m ,αI 平面AB B 1A 1=n ,则m 、n 所成角的正弦值为(B (D)13【答案】A考点:平面的截面问题,面面平行的性质定理,异面直线所成的角.【名师点睛】求解本题的关键是作出异面直线所成角,求异面直线所成角的步骤是:平移定角、连线成形,解形求角、得钝求补.12.【2016高考新课标3理数】在封闭的直三棱柱111ABC A B C -内有一个体积为V 的球,若AB BC ⊥, 6AB =,8BC =,13AA =,则V 的最大值是( )(A )4π (B )92π (C )6π (D )323π 【答案】B【解析】试题分析:要使球的体积V 最大,必须球的半径R 最大.由题意知球的与直三棱柱的上下底面都相切时,球的半径取得最大值32,此时球的体积为334439()3322R πππ==,故选B . 考点:1、三棱柱的内切球;2、球的体积.【思维拓展】立体几何是的最值问题通常有三种思考方向:(1)根据几何体的结构特征,变动态为静态,直观判断在什么情况下取得最值;(2)将几何体平面化,如利用展开图,在平面几何图中直观求解;(3)建立函数,通过求函数的最值来求解.13.【2016高考天津理数】已知一个四棱锥的底面是平行四边形,该四棱锥的三视图如图所示(单位:m ), 则该四棱锥的体积为_______m 3.【答案】2考点:三视图【名师点睛】1.解答此类题目的关键是由多面体的三视图想象出空间几何体的形状并画出其直观图.2.三视图中“正侧一样高、正俯一样长、俯侧一样宽”,因此,可以根据三视图的形状及相关数据推断出原几何图形中的点、线、面之间的位置关系及相关数据.14.【2016高考新课标1卷】(本小题满分为12分)如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,面ABEF 为正方形,AF =2FD , 90AFD ∠=,且二面角D -AF -E 与二面角C -BE -F 都是60. (I )证明:平面ABEF ⊥平面EFDC ; (II )求二面角E -BC -A 的余弦值.【答案】(I )见解析(II ) 【解析】试题分析:(I )先证明F A ⊥平面FDC E ,结合F A ⊂平面F ABE ,可得平面F ABE ⊥平面FDC E .(II )建立空间坐标系,分别求出平面C B E 的法向量m 及平面C B E 的法向量n ,再利用cos ,n mn m n m⋅=求二面角.由已知,//F AB E ,所以//AB 平面FDC E . 又平面CDAB 平面FDC DC E =,故//CD AB ,CD//F E .由//F BE A ,可得BE ⊥平面FDC E ,所以C F ∠E 为二面角C F -BE -的平面角,C F 60∠E =.从而可得(C -.所以(C E =,()0,4,0EB =,(C 3,A =--,()4,0,0AB =-. 设(),,n x y z =是平面C B E 的法向量,则C 00n n ⎧⋅E =⎪⎨⋅EB =⎪⎩,即040x y ⎧=⎪⎨=⎪⎩,所以可取(3,0,n =.设m 是平面CD AB 的法向量,则C 00m m ⎧⋅A =⎪⎨⋅AB =⎪⎩,同理可取()0,3,4m =.则219cos ,n m n m n m ⋅==-故二面角C E-B -A 的余弦值为19-.考点:垂直问题的证明及空间向量的应用【名师点睛】立体几何解答题第一问通常考查线面位置关系的证明,空间中线面位置关系的证明主要包括线线、线面、面面三者的平行与垂直关系,其中推理论证的关键是结合空间想象能力进行推理,要防止步骤不完整或考虑不全致推理片面,该类题目难度不大,以中档题为主.第二问一般考查角度问题,多用空间向量解决. 15.【2016高考新课标2理数】如图,菱形ABCD 的对角线AC 与BD 交于点O ,5,6AB AC ==,点,E F 分别在,AD CD 上,54AE CF ==,EF交BD 于点H .将DEF ∆沿EF 折到D EF '∆位置,OD '=(Ⅰ)证明:D H '⊥平面ABCD ;(Ⅱ)求二面角B D A C '--的正弦值.【答案】(Ⅰ)详见解析;.【解析】试题分析:(Ⅰ)证//AC EF ,再证'D H OH ⊥,最后证'D H ABCD ⊥平面;(Ⅱ)用向量法求解.又D H EF '⊥,而OH EF H ⋂=, 所以D H ABCD '⊥平面.B(II )如图,以H 为坐标原点,HF 的方向为x 轴的正方向,建立空间直角坐标系H xyz -,则()0,0,0H ,()3,2,0A --,()0,5,0B -,()3,1,0C -,()0,0,3D ',(3,4,0)AB =-,()6,0,0AC =,()3,1,3AD '=.设()111,,m x y z =是平面ABD '的法向量,则00m AB m AD ⎧⋅=⎪⎨'⋅=⎪⎩,即11111340330x y x y z -=⎧⎨++=⎩, 所以可以取()4,3,5m =-.设()222,,n x y z =是平面'ACD 的法向量,则0n AC n AD ⎧⋅=⎪⎨'⋅=⎪⎩,即222260330x x y z =⎧⎨++=⎩,所以可以取()0,3,1n =-.于是cos ,||||50m n m n m n ⋅<>===⋅, 295sin ,m n <>=因此二面角B D A C '--. 考点:线面垂直的判定、二面角.【名师点睛】证明直线和平面垂直的常用方法有:①判定定理;②a ∥b ,a ⊥α⇒b ⊥α;③α∥β,a ⊥α⇒a ⊥β;④面面垂直的性质.线面垂直的性质,常用来证明线线垂直.求二面角最常用的方法就是分别求出二面角的两个面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角是锐角还是钝角.16.【2016高考山东理数】在如图所示的圆台中,AC 是下底面圆O 的直径,EF 是上底面圆O '的直径,FB 是圆台的一条母线.(I )已知G ,H 分别为EC ,FB 的中点,求证:GH ∥平面ABC ;(II )已知EF =FB =12AC =,AB =BC .求二面角F BC A --的余弦值.【答案】(Ⅰ)见解析;(Ⅱ)7【解析】试题分析:(Ⅰ)根据线线、面面平行可得与直线GH 与平面ABC 平行;(Ⅱ)立体几何中的角与距离的计算问题,往往可以利用几何法、空间向量方法求解,其中解法一建立空间直角坐标系求解;解法二则是找到FNM ∠为二面角F BC A --的平面角直接求解. 试题解析:(II )解法一:连接'OO ,则'OO ⊥平面ABC ,又,AB BC =且AC 是圆O 的直径,所以.BO AC ⊥ 以O 为坐标原点,建立如图所示的空间直角坐标系O xyz -,由题意得(0,B,(C -,过点F 作FM OB 垂直于点M ,所以3,FM =可得F故(23,23,0),(0,BC BF =--=-. 设(,,)m x y z =是平面BCF 的一个法向量.由0,0m BC mBF ⎧⋅=⎪⎨⋅=⎪⎩可得0,30z ⎧--=⎪⎨+=⎪⎩ 可得平面BCF的一个法向量(1,1,3m =- 因为平面ABC 的一个法向量(0,0,1),n =所以7cos ,||||m n m n m n⋅<>==. 所以二面角F BC A --的余弦值为7.解法二:连接'OO ,过点F 作FM OB ⊥于点M , 则有//'FM OO , 又'OO ⊥平面ABC , 所以FM ⊥平面ABC, 可得3,FM =过点M 作MN BC 垂直于点N ,连接FN , 可得FN BC ⊥,从而FNM ∠为二面角F BC A --的平面角. 又AB BC =,AC 是圆O 的直径, 所以6sin 45MN BM ==从而2FN =,可得cos FNM ∠=所以二面角F BC A --的余弦值为7. 考点:1.平行关系;2. 异面直线所成角的计算.【名师点睛】此类题目是立体几何中的常见问题.解答本题,关键在于能利用直线与直线、直线与平面、平面与平面关系的相互转化,通过严密推理,给出规范的证明.立体几何中的角与距离的计算问题,往往可以利用几何法、空间向量方法求解,应根据题目条件,灵活选择方法.本题能较好的考查考生的空间想象能力、逻辑推理能力\转化与化归思想及基本运算能力等. 17.【2016高考江苏卷】(本小题满分14分)如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为AB ,BC 的中点,点F 在侧棱B 1B 上,且11B D A F ⊥ ,1111A C A B ⊥.求证:(1)直线DE ∥平面A 1C 1F ;(2)平面B 1DE ⊥平面A 1C 1F .【答案】(1)详见解析(2)详见解析 【解析】试题分析:(1)利用线面平行判定定理证明线面平行,而线线平行的寻找往往结合平几知识,如中位线性质(2)利用面面垂直判定定理证明,即从线面垂直出发给予证明,而线面垂直的证明,往往需要多次利用线面垂直性质与判定定理,如将线线垂直1111A C A B ⊥先转化到线面垂直11AC ⊥平面11ABB A ,从而得到线线垂直111AC B D ⊥,再结合11B D A ⊥F ,转化到线面垂直111C F B D A ⊥平面 试题解析:证明:(1)在直三棱柱111ABC A B C -中,11//AC AC 在三角形ABC 中,因为D,E 分别为AB,BC 的中点.所以//DE AC ,于是11//DE AC又因为DE ⊄平面1111,AC F AC ⊂平面11AC F 所以直线DE//平面11AC F(2)在直三棱柱111ABC A B C -中,1111AA ⊥平面A B C 因为11AC ⊂平面111A B C ,所以111AA ⊥A C又因为111111*********,,AC A B AA ABB A A B ABB A A B AA A ⊥⊂⊂=,平面平面所以11AC ⊥平面11ABB A因为1B D ⊂平面11ABB A ,所以111AC B D ⊥又因为1111111111111C F,C F,B D A AC A A F A AC A F A ⊥⊂⊂=F ,平面平面所以111C F B D A ⊥平面因为直线11B D B DE ⊂平面,所以1B DE 平面11.AC F ⊥平面 考点:直线与直线、平面与平面位置关系【名师点睛】垂直、平行关系证明中应用转化与化归思想的常见类型. (1)证明线面、面面平行,需转化为证明线线平行. (2)证明线面垂直,需转化为证明线线垂直. (3)证明线线垂直,需转化为证明线面垂直.(4)证明面面垂直,需转化为证明线面垂直,进而转化为证明线线垂直. 18.【2016高考天津理数】(本小题满分13分)如图,正方形ABCD 的中心为O ,四边形OBEF 为矩形,平面OBEF ⊥平面ABCD ,点G 为AB 的中点,AB =BE =2.(I )求证:EG ∥平面ADF ; (II )求二面角O -EF -C 的正弦值; (III )设H 为线段AF 上的点,且AH =23HF ,求直线BH 和平面CEF 所成角的正弦值.【答案】【解析】试题解析:依题意,OF ABCD ⊥平面,如图,以O 为点,分别以,,AD BA OF 的方向为x 轴,y 轴、z 轴的正方向建立空间直角坐标系,依题意可得(0,0,0)O ,()1,1,0,(1,1,0),(1,1,0),(11,0),(1,1,2),(0,0,2),(1,0,0)A B C D E F G -------,.(I )证明:依题意,()(2,0,0),1,1,2AD AF ==-.设()1,,n x y z =为平面ADF 的法向量,则110n AD n AF ⎧⋅=⎪⎨⋅=⎪⎩,即2020x x y z =⎧⎨-+=⎩ .不妨设1z =,可得()10,2,1n =,又()0,1,2EG =-,可得10EG n ⋅=,又因为直线EG ADF ⊄平面,所以//EG ADF 平面.(II )解:易证,()1,1,0OA =-为平面OEF 的一个法向量.依题意,()()1,1,0,1,1,2EF CF ==-.设()2,,n x y z =为平面CEF 的法向量,则220n E F n C F ⎧⋅=⎪⎨⋅=⎪⎩,即020x y x y z +=⎧⎨-++=⎩.不妨设1x =,可得()21,1,1n =-.因此有222cos ,3OA n OA n OA n ⋅<>==-⋅,于是23sin ,3OA n <>=,所以,二面角O EF C --的正弦值(III )解:由23AH HF =,得25AH AF =.因为()1,1,2AF =-,所以2224,,5555AH AF ⎛⎫==- ⎪⎝⎭,进而有334,,555H ⎛⎫- ⎪⎝⎭,从而284,,555BH ⎛⎫= ⎪⎝⎭,因此222cos ,BH n BH n BH n⋅<>==-⋅.所以,直线BH 和平面CEF 所成角的正弦值为21. 考点:利用空间向量解决立体几何问题 19.【2016年高考北京理数】(本小题14分)如图,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,PA PD ⊥,PA PD =,AB AD ⊥,1AB =,2AD =,AC CD ==(1)求证:PD ⊥平面PAB ;(2)求直线PB 与平面PCD 所成角的正弦值;(3)在棱PA 上是否存在点M ,使得//BM 平面PCD ?若存在,求AM AP的值;若不存在,说明理由.【答案】(1)见解析;(2)3;(3)存在,14AM AP =试题解析:(1)因为平面PAD ⊥平面ABCD ,AB AD ⊥,所以⊥AB 平面PAD ,所以PD AB ⊥,又因为PD PA ⊥,所以⊥PD 平面PAB ;(2)取AD 的中点O ,连结PO ,CO ,因为PA PD =,所以AD PO ⊥.又因为⊂PO 平面PAD ,平面⊥PAD 平面ABCD ,所以⊥PO 平面ABCD .因为⊂CO 平面ABCD ,所以⊥PO CO .因为CD AC =,所以AD CO ⊥.如图建立空间直角坐标系xyz O -,由题意得,)1,0,0(),0,1,0(),0,0,2(),0,1,1(),0,1,0(P D C B A -.设平面PCD 的法向量为),,(z y x n =,则⎪⎩⎪⎨⎧=⋅=⋅,0,0即⎩⎨⎧=-=--,02,0z x z y 令2=z ,则2,1-==y x . 所以)2,2,1(-=n . 又)1,1,1(-=PB,所以33,cos -=>=<. 所以直线PB 与平面PCD 所成角的正弦值为33.(3)设M 是棱PA 上一点,则存在]1,0[∈λ使得AP AM λ=. 因此点),,1(),,1,0(λλλλ--=-BM M .因为⊄BM 平面PCD ,所以∥BM 平面PCD 当且仅当0=⋅n BM ,即0)2,2,1(),,1(=-⋅--λλ,解得41=λ. 所以在棱PA 上存在点M 使得BM ∥平面PCD ,此时41=AP AM . 考点:1.空间垂直判定与性质;2.异面直线所成角的计算;3.空间向量的运用.【名师点睛】平面与平面垂直的性质的应用:当两个平面垂直时,常作的辅助线是在其中一个面内作交线的垂线,把面面垂直转化为线面垂直,进而可以证明线线垂直(必要时可以通过平面几何的知识证明垂直关系),构造(寻找)二面角的平面角或得到点到面的距离等.20.【2016高考新课标3理数】如图,四棱锥P ABC -中,PA ⊥地面ABC D ,AD BC ,3AB AD AC ===,4PA BC ==,M 为线段AD 上一点,2AM MD =,N 为PC 的中点.(I )证明MN 平面PAB ;(II )求直线AN 与平面PMN 所成角的正弦值.【答案】(Ⅰ)见解析;(Ⅱ)25. 【解析】试题分析:(Ⅰ)取PB 的中点T ,然后结合条件中的数据证明四边形AMNT 为平行四边形,从而得到MN AT ,由此结合线面平行的判断定理可证;(Ⅱ)以A 为坐标原点,以,AD AP 所在直线分别为,y z 轴建立空间直角坐标系,然后通过求直线AN 的方向向量与平面PMN 法向量的夹角来处理AN 与平面PMN 所成角.试题解析:(Ⅰ)由已知得232==AD AM ,取BP 的中点T ,连接TN AT ,,由N 为PC 中点知BC TN //,221==BC TN . 又BC AD //,故TN AM ,四边形AMNT 为平行四边形,于是AT MN //.因为⊂AT 平面PAB ,⊄MN 平面PAB ,所以//MN 平面PAB .(Ⅱ)取BC 的中点E ,连结AE ,由AC AB =得BC AE ⊥,从而AD AE ⊥,且5)2(2222=-=-=BC AB BE AB AE . 以A 为坐标原点,AE 的方向为x 轴正方向,建立如图所示的空间直角坐标系xyz A -,由题意知,)4,0,0(P ,)0,2,0(M ,)0,2,5(C ,)2,1,25(N , (0,2,4)PM =-,)2,1,25(-=,)2,1,25(=. 设(,,)n x y z =为平面PMN 的法向量,则⎪⎩⎪⎨⎧=⋅=⋅00PM n ,即⎪⎩⎪⎨⎧=-+=-0225042z y x z x ,可取(0,2,1)n =, 于是||85|cos ,|25||||n AN n AN n AN ⋅<>==考点:1、空间直线与平面间的平行与垂直关系;2、棱锥的体积.【技巧点拨】(1)证明立体几何中的平行关系,常常是通过线线平行来实现,而线线平行常常利用三角形的中位线、平行四边形与梯形的平行关系来推证;(2)求解空间中的角和距离常常可通过建立空间直角坐标系,利用空间向量中的夹角与距离来处理.21.【2016高考浙江理数】(本题满分15分)如图,在三棱台ABC DEF -中,平面BCFE ⊥平面ABC ,=90ACB ∠,BE =EF =FC =1,BC =2,AC =3.(I)求证:EF⊥平面ACFD ;(II)求二面角B -AD -F 的平面角的余弦值.【答案】(I )证明见解析;(II )4. 【解析】试题分析:(I )先证F C B ⊥A ,再证F C B ⊥K ,进而可证F B ⊥平面CFD A ;(II )方法一:先找二面角D F B-A -的平面角,再在Rt QF ∆B 中计算,即可得二面角D F B-A -的平面角的余弦值;方法二:先建立空间直角坐标系,再计算平面C A K 和平面ABK 的法向量,进而可得二面角D F B-A -的平面角的余弦值.所以F B ⊥平面CFD A .(II )方法一:过点F 作FQ ⊥AK ,连结Q B .因为F B ⊥平面C A K ,所以F B ⊥AK ,则AK ⊥平面QF B ,所以Q B ⊥AK .所以,QF ∠B 是二面角D F B-A -的平面角.在Rt C ∆A K 中,C 3A =,C 2K =,得FQ =.在Rt QF ∆B 中,FQ =,F B =cos QF ∠B =所以,二面角D F B-A -的平面角的余弦值为4. 方法二:如图,延长D A ,BE ,CF 相交于一点K ,则C ∆B K 为等边三角形.取C B 的中点O ,则C KO ⊥B ,又平面CF B E ⊥平面C AB ,所以,KO ⊥平面C AB .以点O 为原点,分别以射线OB ,OK 的方向为x ,z 的正方向,建立空间直角坐标系xyz O .由题意得()1,0,0B ,()C 1,0,0-,(K ,()1,3,0A --,12⎛E ⎝⎭,1F 2⎛- ⎝⎭.因此, ()C 0,3,0A =,(AK =,()2,3,0AB =.设平面C A K 的法向量为()111,,m x y z =,平面ABK 的法向量为()222,,n x y z =. 由C 00m m ⎧A ⋅=⎪⎨AK ⋅=⎪⎩,得11113030y x y =⎧⎪⎨+=⎪⎩,取()3,0,1m =-; 由00n n ⎧AB⋅=⎪⎨AK ⋅=⎪⎩,得2222223030x y x y +=⎧⎪⎨++=⎪⎩,取(3,n =-. 于是,3cos ,m n m n m n ⋅==⋅. 所以,二面角D F B-A -考点:1、线面垂直;2、二面角.【方法点睛】解题时一定要注意二面角的平面角是锐角还是钝角,否则很容易出现错误.证明线面垂直的关键是证明线线垂直,证明线线垂直常用的方法是直角三角形、等腰三角形的“三线合一”和菱形、正方形的对角线.22.【2016年高考四川理数】(本小题满分12分)如图,在四棱锥P-ABCD中,AD∥BC,∠ADC=∠PAB=90°,BC=CD=12AD,E为边AD的中点,异面直线PA与CD所成的角为90°.(Ⅰ)在平面PAB内找一点M,使得直线CM∥平面PBE,并说明理由;(Ⅱ)若二面角P-CD-A的大小为45°,求直线PA与平面PCE所成角的正弦值.E D CB PA【答案】(Ⅰ)详见解析;(Ⅱ)1 3 .【解析】试题解析:(Ⅰ)在梯形ABCD中,AB与CD不平行.延长AB,DC,相交于点M(M∈平面P AB),点M即为所求的一个点.理由如下:由已知,BC∥ED,且BC=ED.所以四边形BCDE是平行四边形.,所以CD∥EB从而CM∥EB.又EB⊂平面PBE,CM⊄平面PBE,所以CM∥平面PBE.(说明:延长AP至点N,使得AP=PN,则所找的点可以是直线MN上任意一点)(Ⅱ)方法一:由已知,CD⊥PA,CD⊥AD,PA⋂AD=A,所以CD⊥平面PAD.从而CD⊥PD.所以∠PDA是二面角P-CD-A的平面角.所以∠PDA=45°.设BC=1,则在Rt△PAD中,PA=AD=2.过点A作AH⊥CE,交CE的延长线于点H,连接PH. 易知PA⊥平面ABCD,从而PA⊥CE.于是CE⊥平面PAH.所以平面PCE⊥平面PAH.过A作AQ⊥PH于Q,则AQ⊥平面PCE.所以∠APH是PA与平面PCE所成的角.在Rt△AEH中,∠AEH=45°,AE=1,所以AH=2.在Rt△PAH中,2,所以sin∠APH=AHPH=13.方法二:由已知,CD⊥PA,CD⊥AD,PA⋂AD=A,所以CD⊥平面PAD.于是CD⊥PD.从而∠PDA是二面角P-CD-A的平面角.所以∠PDA=45°.由PA⊥AB,可得PA⊥平面ABCD.设BC=1,则在Rt△PAD中,PA=AD=2.作Ay⊥AD,以A为原点,以AD,AP的方向分别为x轴,z轴的正方向,建立如图所示的空间直角坐标系A-xyz,则A(0,0,0),P(0,0,2),C(2,1,0),E(1,0,0),所以PE=(1,0,-2),EC=(1,1,0),AP=(0,0,2)设平面PCE的法向量为n=(x,y,z),由0,0,PEEC⎧⋅=⎪⎨⋅=⎪⎩nn得20,0,x zx y-=⎧⎨+=⎩设x=2,解得n=(2,-2,1).设直线PA与平面PCE所成角为α,则sinα=||||||n APn AP⋅⋅13=.所以直线PA与平面PCE所成角的正弦值为1 3.P考点:线线平行、线面平行、向量法.【名师点睛】本题考查线面平行、线线平行、向量法等基础知识,考查空间想象能力、分析问题的能力、计算能力.证明线面平行时,可根据判定定理的条件在平面内找一条平行线,而这条平行线一般是由过面外的直线的一个平面与此平面相交而得,证明时注意定理的另外两个条件(线在面内,线在面外)要写全,否则会被扣分,求线面角(以及其他角),一种方法可根据定义作出这个角(注意还要证明),然后通过解三角形求出这个角.另一种方法建立空间直角坐标系,用向量法求角,这种方法主要是计算,不需要“作角、证明”,关键是记住相应公式即可.23. 【2016高考上海理数】将边长为1的正方形11AAO O(及其内部)绕的1OO旋转一周形成圆柱,如图,AC 长为23π,11A B 长为3π,其中1B 与C 在平面11AAO O 的同侧。

【合集】浙江省2016届高三数学(文)专题复习检测:专题五 解析几何(真题体验+模拟演练+过关提升)

【合集】浙江省2016届高三数学(文)专题复习检测:专题五 解析几何(真题体验+模拟演练+过关提升)

y2 x2 12.(2015· 湖南高考)已知抛物线 C1:x =4y 的焦点 F 也是椭圆 C2:a2+b2=1(a
2
>b>0)的一个焦点,C1 与 C2 的公共弦的长为 2 6. (1)求 C2 的方程;
→ →

(2)过点 F 的直线 l 与 C1 相交于 A,B 两点,与 C2 相交于 C,D 两点,且AC与BD 同向. ①若|AC|=|BD|,求直线 l 的斜率; ②设 C1 在点 A 处的切线与 x 轴的交点为 M,证明:直线 l 绕点 F 旋转时, △MFD 总是钝角三角形.
4.(2015· 全国卷Ⅱ)已知 A,B 为双曲线 E 的左,右顶点,点 M 在 E 上,△ABM
1
为等腰三角形,且顶角为 120°,则 E 的离心率为( A. 5 C. 3 B.2 D. 2
)
5.(2015· 浙江高考)如图,设抛物线 y2=4x 的焦点为 F,不经过 焦点的直线上有三个不同的点 A,B,C,其中点 A,B 在抛物线 上,点 C 在 y 轴上,则△BCF 与△ACF 的面积之比是( |BF|-1 A. |AF|-1 |BF|+1 C. |AF|+1 |BF|2-1 B. |AF|2-1 |BF|2+1 D. |AF|2+1 )
真题体验· 引领卷
一、选择题 1.(2015· 广东高考)平行于直线 2x+y+1=0 且与圆 x2+y2=5 相切的直线的方程 是( )
A.2x-y+ 5=0 或 2x-y- 5=0 B.2x+y+ 5=0 或 2x+y- 5=0 C.2x-y+5=0 或 2x-y-5=0 D.2x+y+5=0 或 2x+y-5=0 x2 2.(2015· 全国卷Ⅰ)已知 M(x0,y0)是双曲线 C: 2 -y2=1 上的一点,F1,F2 是 C

【合集】浙江省2016届高三数学(理)专题复习:专题四 立体几何与空间向量

【合集】浙江省2016届高三数学(理)专题复习:专题四 立体几何与空间向量

【合集】浙江省2016届高三数学(理)专题复习检测(真题体验+模拟演练+过关提升) 专题四 立体几何与空间向量目录真题体验.引领卷........................................................................................................................ 1 经典模拟.演练卷........................................................................................................................ 5 专题过关.提升卷........................................................................................................................ 8 答案 (15)真题体验·引领卷一、选择题1.(2015·全国卷Ⅱ)一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为( )A.18B.17C.16D.152.(2015·全国卷Ⅰ)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )A.14斛B.22斛C.36斛D.66斛3.(2015·安徽高考)已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是()A.若α,β垂直于同一平面,则α与β平行B.若m,n平行于同一平面,则m与n平行C.若α,β不平行,则在α内不存在与β平行的直线D.若m,n不平行,则m与n不可能垂直于同一平面4.(2015·福建高考)若l,m是两条不同的直线,m垂直于平面α,则“l⊥m”是“l∥α”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件5.(2015·全国卷Ⅱ)已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点,若三棱锥O-ABC体积的最大值为36,则球O的表面积为() A.36πB.64πC.144πD.256π6.(2015·全国卷Ⅰ)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=()A.1 B.2C.4 D.8二、填空题7.(2015·江苏高考)现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2、高为8的圆柱各一个.若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥与圆柱各一个,则新的底面半径为________.8.(2015·重庆高考改编)某几何体的三视图如图所示,则该几何体的体积为________.9.(2015·四川高考)如图所示,四边形ABCD和ADPQ均为正方形,它们所在的平面互相垂直,动点M在线段PQ上,E、F分别为AB、BC的中点.设异面直线EM与AF所成的角为θ,则cosθ的最大值为________.三、解答题10.(2015·全国卷Ⅱ)如图,长方体ABCD-A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4.过点E,F的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由);(2)求直线AF与平面α所成角的正弦值.11.(2014·浙江高考)如图,在四棱锥A-BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED=90°,AB=CD=2,DE=BE=1,AC= 2.(1)证明:DE⊥平面ACD;(2)求二面角B-AD-E的大小.12.(2015·山东高考)如图,在三棱台DEF-ABC中,AB=2DE,G,H分别为AC,BC的中点.(1)求证:BD ∥平面FGH ;(2)若CF ⊥平面ABC ,AB ⊥BC ,CF =DE ,∠BAC =45°,求平面FGH 与平面ACFD 所成的角(锐角)的大小.专题四 立体几何与空间向量经典模拟·演练卷一、选择题1.(2015·济宁模拟)已知α,β表示两个不同的平面,m 为平面α内的一条直线,则“α⊥β”是“m ⊥β”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件2.(2015·潍坊三模)一个几何体的三视图如图所示,其中侧视图为直角三角形,则该几何体的体积为( )A.423 B.823 C.1623D .16 23.(2015·诸暨中学模拟)已知正三棱柱ABC -A 1B 1C 1的侧棱长与底面边长相等,则AB 1与侧面ACC 1A 1所成角的正弦值等于( )A.64B.104C.22D.324.(2015·河北质检)某几何体的三视图如图所示,且该几何体的体积是3,则正视图中的x 的值是( )A.92B.32 C .3 D .25.(2015·吉林实验中学模拟)已知E ,F 分别是矩形ABCD 的边BC 与AD 的中点,且BC =2AB =2,现沿EF 将平面ABEF 折起,使平面ABEF ⊥平面EFDC ,则三棱锥A -FEC 外接球的体积为( ) A.33π B.32π C.3πD .23π6.(2015·宁波联考)如图,棱长为1的正方体ABCD -A 1B 1C 1D 1中,P 为线段A 1B 上的动点,则下列结论错误的是( )A .DC 1⊥D 1PB .平面D 1A 1P ⊥平面A 1APC .∠APD 1的最大值为90° D .AP +PD 1的最小值为2+2二、填空题7.(2015·金华模拟)如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E 为棱DD 1上的点,F 为AB 的中点,则三棱锥B 1-BFE 的体积为________.8.(2015·保定调研)如图是一个空间几何体的三视图,则该几何体的表面积为________.9.(2015·杭州模拟)在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥平面ABCD,AB=PD=a,点E为侧棱PC的中点,又作DF⊥PB交PB于点F,则PB与平面EFD所成角为________.三、解答题10.(2015·杭州模拟)如图,四棱锥P-ABCD中,PD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=2,PD=2,M为棱PB的中点.(1)证明:DM⊥平面PBC;(2)求二面角A-DM-C的余弦值.11.(2015·浙江名校联考)如图,△ABC和△BCD所在平面互相垂直,且AB=BC =BD=2,∠ABC=∠DBC=120°,E,F分别为AC,DC的中点.(1)求证:EF⊥BC;(2)求二面角E-BF-C的正弦值.12.(2015·温州中学二模)如图,边长为2的正方形ADEF与梯形ABCD所在的平面互相垂直.已知AB∥CD,AB⊥BC,DC=BC=12AB=1,点M在线段EC上.(1)证明:平面BDM⊥平面ADEF;(2)判断点M的位置,使得平面BDM与平面ABF所成的锐二面角为π3.专题四立体几何与空间向量专题过关·提升卷第Ⅰ卷(选择题)一、选择题1.(2015·浙江高考)某几何体的三视图如图所示(单位:cm),则该几何体的体积是( )A .8 cm 3B .12 cm 3 C.323 cm 3 D.403 cm 32.设a ,b 是两条直线,α,β表示两个平面,如果a ⊂α,α∥β,那么“b ⊥β”是“a ⊥b ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分又不必要条件3.(2015·山东高考)在梯形ABCD 中,∠ABC =π2,AD ∥BC ,BC =2AD =2AB =2.将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )A.2π3B.4π3C.5π3 D .2π4.(2015·北京高考)某三棱锥的三视图如图所示,则该三棱锥的表面积是( )A .2+ 5B .4+ 5C .2+2 5D .55.(2015·北京朝阳区质检)在空间直角坐标系O-xyz中,已知A(2,0,0),B(2,2,0),C(0,2,0),D(1,1,2),若S1,S2,S3分别表示三棱锥D-ABC在xOy,yOz,zOx坐标平面上的正投影图形的面积,则()A.S1=S2=S3B.S1=S2且S3≠S1C.S1=S3且S3≠S2D.S2=S3且S1≠S36.(2015·杭州中学模拟)一个四棱锥的三视图如图所示,下列说法中正确的是()A.最长棱的棱长为 6B.最长棱的棱长为3C.侧面四个三角形中有且仅有一个是正三角形D.侧面四个三角形都是直角三角形7.(2015·嘉兴模拟)在长方体ABCD-A1B1C1D1中,A1A=AB=2,若棱AB上存在点P,使得D1P⊥PC,则AD的取值范围是()A.[1,2) B.(1,2]C.(0,1] D.(0,2)8.某市博物馆邀请央视《一槌定音》专家鉴宝,其中一藏友持有的“和田玉”的三视图如图所示,若将和田玉切割、打磨、雕刻成“和田玉球”,则该“玉雕球”的最大表面积是( )A .4πB .16πC .36πD .64π第Ⅱ卷(非选择题)二、填空题9.(2015·舟山中学模拟)如图,在矩形ABCD 中,AB =32,BC =2,沿BD 将矩形ABCD 折叠,连接AC ,所得三棱锥A -BCD 的正视图和俯视图如图所示,则三棱锥A -BCD 侧视图的面积为________.10.如图所示,ABC -A 1B 1C 1是直三棱柱,AC ⊥CB ,点D 1、F 1分别是A 1B 1、A 1C 1的中点.若BC =CA =CC 1,则BD 1与CF 1所成角的正弦值是________.11.(2015·杭州二中调研)在三棱锥P -ABC 中,P A ⊥平面ABC ,AC ⊥BC ,AC =BC =1,P A =3,则该三棱锥外接球的表面积为________.12.(2014·山东高考)在三棱锥P -ABC 中,D ,E 分别为PB ,PC 的中点,记三棱锥D -ABE 的体积为V 1,P -ABC 的体积为V 2,则V 1V 2=________.13.多面体MN -ABCD 的底面ABCD 为矩形,其正视图和侧视图如图,其中正视图为等腰梯形,侧视图为等腰三角形,则AM 的长为________.14.(2015·天津高考)一个几何体的三视图如图所示(单位:m),则该几何体的体积为________m 3.15.将边长为1的正方形ABCD 沿对角线AC 折起后,使得平面ADC ⊥平面ABC ,在折起后的三棱锥D -ABC 中,给出下列四个命题:①AC ⊥BD ;②侧棱DB 与平面ABC 成45°的角;③△BCD 是等边三角形;④三棱锥的体积V D -ABC =26.那么正确的命题是________(填上所有正确命题的序号).三、解答题16.如图1,在直角梯形ABCD 中,AD ∥BC ,∠BAD =π2,AB =BC =1,AD =2,E 是AD 的中点,O 是AC 与BE 的交点,将△ABE 沿BE 折起到△A 1BE 的位置,如图2.(1)证明:CD⊥平面A1OC;(2)若平面A1BE⊥平面BCDE,求直线A1B与平面A1CD所成角.17.(2015·福建高考)如图,在几何体ABCDE中,四边形ABCD是矩形,AB⊥平面BEC,BE⊥EC,AB=BE=EC=2,G,F分别是线段BE,DC的中点.(1)求证:GF∥平面ADE;(2)求平面AEF与平面BEC所成锐二面角的余弦值.18.(2015·四川高考)一个正方体的平面展开图及该正方体的直观图的示意图如图所示,在正方体中,设BC的中点为M,GH的中点为N.(1)请将字母F,G,H标记在正方体相应的顶点处(不需说明理由);(2)证明:直线MN∥平面BDH;(3)求二面角A-EG-M的余弦值.19.如图所示,在四棱锥P -ABCD 中,底面ABCD 是菱形,且∠BAD =120°,AB =2,E 是CD 的中点.平面P AD ⊥平面ABCD ,P A ⊥AD ,PC 与平面ABCD 所成的角为45°.(1)求证:CD ⊥平面P AE ; (2)试问在线段AB (不包括端点)上是否存在一点F ,使得二面角A -PF -E 的大小为45°?若存在,请求出AF 的长;若不存在,说明理由.20.(2015·天津高考)如图,在四棱柱ABCD -A 1B 1C 1D 1中,侧棱A 1A ⊥底面ABCD ,AB ⊥AC ,AB =1,AC =AA 1=2,AD =CD =5,且点M 和N 分别为B 1C 和D 1D 的中点.(1)求证:MN ∥平面ABCD ; (2)求二面角D 1-AC -B 1的正弦值;(3)设E 为棱A 1B 1上的点,若直线NE 和平面ABCD 所成角的正弦值为13,求线段A 1E 的长.答案专题四 立体几何与空间向量真题体验·引领卷1.D [如图,由题意知,该几何体是正方体ABCD -A 1B 1C 1D 1被过三点A 、B 1、D 1的平面所截剩余部分,截去的部分为三棱锥A -A 1B 1D 1,设正方体的棱长为1,则截去部分体积与剩余部分体积的比值为16∶56=1∶5.]2.B [由题意知,米堆的底面半径R =163(尺),则米堆体积V =13×14πR 2·h =13×14×3×⎝ ⎛⎭⎪⎫1632×5≈3209(立方尺).所以堆放的米大约为3209×1.62≈22(斛).] 3.D [A 中α∥β或α与β相交,A 错;B 中直线m 与n 的位置关系:相交、平行或异面,B 错;C 中,在α内存在直线l 平行α与β的交线,从而l ∥β.因此C 不正确;选项D 中,假设m ,n 垂直于同一平面,则m ∥n 与m 、n 不平行矛盾,因此m ,n 不能垂直于同一平面,D 正确.]4.B [当l ∥α时,由于m ⊥平面α.∴m ⊥l .则必要性成立.但l ⊥m 时,由于m ⊥α,则l ⊂α或l ∥α,故充分性不成立.故“l ⊥m ”是“l ∥α”的必要不充分条件.]5.C [设点C 到平面OAB 的距离为h ,球O 的半径为R (如图所示). 由∠AOB =90°,得S △AOB =12R 2,要使V O -ABC =13·S △AOB ·h 最大,当且仅当点C 到平面OAB 的距离,即三棱锥C -OAB 底面OAB 上的高最大,其最大值为球O 的半径R .故V O -ABC =16R 3=36,则R =6. 所以S 球=4πR 2=4π×62=144π.]6.B [由三视图知,该几何体由半个圆柱和半球体构成,由题设得12(πr 2+4πr 2)+2r ·2r +12·2πr ·2r +12πr 2=16+20π.解之得r =2.]7.7 [设新的底面半径为r ,由题意得13πr 2·4+πr 2·8=43π×52+8π×22,解之得r =7.]8.13+π [由三视图知,该几何体为一个三棱锥与一个半圆柱构成的组合体,其中半圆柱的底面半径为1,高为2;三棱锥的底面为斜边为2的等腰直角三角形,高为1.则V 三棱锥=13×12×2×1×1=13,V 半圆柱=12π×12×2=π.故所求几何体的体积V =V 三棱锥+V 半圆柱=13+π.]9.25 [以A 为原点,建立如图所示的空间直角坐标系(如图).设AB =2,则A (0,0,0),E (1,0,0),F (2,1,0).设点M (0,y ,2)(0≤y ≤2).于是EM →=(-1,y ,2),AF →=(2,1,0). ∴cos θ=|cos 〈EM →,AF →〉|=2-y5·5+y 2.又t =2-y5·5+y2在y ∈[0,2]上是减函数. ∴当y =0时,t 有最大值25,即cos θ的最大值为25.] 10.解 (1)交线围成的正方形EHGF 如图:(2)作EM ⊥AB ,垂足为M ,则AM =A 1E =4,EM =AA 1=8. 因为EHGF 为正方形,所以EH =EF =BC =10. 于是MH =EH 2-EM 2=6,所以AH =10.以D 为坐标原点,DA →的方向为x 轴正方向,建立如图所示的空间直角坐标系D-xyz ,则A (10,0,0),H (10,10,0),E (10,4,8),F (0,4,8),FE →=(10,0,0),HE →=(0,-6,8).设n =(x ,y ,z )是平面EHGF 的法向量,则⎩⎪⎨⎪⎧n ·FE →=0,n ·HE →=0. ∴⎩⎨⎧10x =0,-6y +8z =0.所以可取n =(0,4,3). 又AF →=(-10,4,8),故|cos 〈n ,AF →〉|=|n ·AF →||n ||AF →|=4515.所以AF 与平面EHGF 所成角的正弦值为4515.11.(1)证明 在直角梯形BCDE 中,由DE =BE =1,CD =2,得BD =BC = 2. 由AC =2,AB =2,得AB 2=AC 2+BC 2,即AC ⊥BC .又平面ABC ⊥平面BCDE ,平面ABC ∩平面BCDE =BC ,从而AC ⊥平面BCDE . 所以AC ⊥DE .又DE ⊥DC ,AC ∩DC =C ,从而DE ⊥平面ACD .(2)解 法一 作BF ⊥AD ,与AD 交于点F .过点F 作FG ∥DE ,与AE 交于点G ,连接BG ,如图所示.由(1)知DE⊥AD,则FG⊥AD.所以∠BFG是二面角B-AD-E的平面角.在直角梯形BCDE中,由CD2=BC2+BD2,得BD⊥BC,又平面ABC⊥平面BCDE,得BD⊥平面ABC,从而BD⊥AB.由(1)知AC⊥平面BCDE,得AC⊥CD.在Rt△ACD中,由DC=2,AC=2,得AD= 6.在Rt△AED中,由ED=1,AD=6,得AE=7.在Rt△ABD中,由BD=2,AB=2,AD=6,得BF=23 3,AF=23AD.从而GF=2 3.在△ABE,△ABG中,利用余弦定理分别可得cos∠BAE=57 14,BG=2 3.在△BFG中,cos∠BFG=GF2+BF2-BG22BF·GF=32.所以,∠BFG=π6,即二面角B-AD-E的大小是π6.法二以D为原点,分别以射线DE,DC为x,y轴的正半轴,建立空间直角坐标系D-xyz,如图所示.由题意知各点坐标如下:D(0,0,0),E(1,0,0),C(0,2,0),A(0,2,2),B (1,1,0).设平面ADE 的法向量为m =(x 1,y 1,z 1),平面ABD 的法向量为n =(x 2,y 2,z 2).可算得AD →=(0,-2,-2),AE →=(1,-2,-2),DB →=(1,1,0), 由⎩⎪⎨⎪⎧m ·AD →=0,m ·AE →=0,即⎩⎨⎧-2y 1-2z 1=0,x 1-2y 1-2z 1=0. 可取m =(0,1,-2).由⎩⎪⎨⎪⎧n ·AD →=0,n ·DB →=0,即⎩⎨⎧-2y 2-2z 2=0,x 2+y 2=0, 可取n =(1,-1,2). 于是|cos 〈m ,n 〉|=|m ·n||m|·|n|=33·2=32.由题意可知,所求二面角是锐角,故二面角B -AD -E 的大小是π6.12.(1)证明 法一 连接DG , CD ,设CD ∩GF =O ,连接OH . 在三棱台DEF -ABC 中,AB =2DE ,G 为AC 的中点. 可得DF ∥GC ,DF =GC ,所以四边形DFCG 为平行四边形.则O 为CD 的中点,又H 为BC 的中点,所以OH ∥BD ,又OH ⊂平面FGH ,BD ⊄平面FGH , 所以BD ∥平面FGH .法二 在三棱台DEF -ABC 中,由BC =2EF ,H 为BC 的中点,可得BH ∥EF ,BH =EF ,所以四边形BHFE 为平行四边形,可得BE ∥HF .在△ABC 中,G 为AC 的中点,H 为BC 的中点, 所以GH ∥AB .又GH ∩HF =H ,所以平面FGH ∥平面ABED .因为BD ⊂平面ABED ,所以BD ∥平面FGH .(2)解 设AB =2,则CF =1.在三棱台DEF -ABC 中,G 为AC 的中点,由DF =12AC =GC ,可得四边形DGCF 为平行四边形,因此DG ∥FC . 又FC ⊥平面ABC , 所以DG ⊥平面ABC .在△ABC 中,由AB ⊥BC ,∠BAC =45°,G 是AC 中点. 所以AB =BC ,GB ⊥GC ,因此GB ,GC ,GD 两两垂直. 以G 为坐标原点,建立如图所示的空间直角坐标系G -xyz . 所以G (0,0,0),B (2,0,0),C (0,2,0),D (0,0,1). 可得H ⎝ ⎛⎭⎪⎫22,22,0,F (0,2,1),故GH →=⎝ ⎛⎭⎪⎫22,22,0,GF →=(0,2,1).设n =(x ,y ,z )是平面FGH 的一个法向量, 则由⎩⎪⎨⎪⎧n ·GH →=0,n ·GF →=0,可得⎩⎨⎧x +y =0,2y +z =0.可得平面FGH 的一个法向量n =(1,-1,2).因为GB →是平面ACFD 的一个法向量,GB →=(2,0,0).所以cos 〈GB →,n 〉=GB →·n|GB →|·|n |=222=12. 所以平面FGH 与平面ACFD 所成角(锐角)的大小为60°.经典模拟·演练卷1.B [当m ⊥β,m ⊂α时,α⊥β,必要性成立.但α⊥β,m ⊂α,则m ⊂β或m ∥β或m 与β相交.因此“α⊥β”是“m ⊥β”的必要不充分条件.]2.C [由三视图知,该几何体为三棱锥(如图).其中AO ⊥底面BCD ,且OD ⊥BC .∵AO =22,S △BCD =12×42×22=8.所以几何体的体积V =13·OA ·S △BCD =13×22×8=1623.]3.A [如图所示,设点E 为棱A 1C 1的中点,连接AE ,B 1E . 在正三棱柱ABC -A 1B 1C 1中,B 1E ⊥平面ACC 1A 1, ∴∠B 1AE 为直线AB 1与侧面ACC 1A 1所成的角,记为α.设三棱柱的棱长为a ,则B 1E =32a ,AB 1=2a .∴sin α=B 1E AB 1=32a2a =64.]4.C [由三视图知,该几何体是底面为直角梯形的四棱锥. ∵S 底=12(1+2)×2=3.∴几何体的体积V =13x ·S 底=3, 即13x ·3=3.因此x =3.]5.B [如图,平面ABEF ⊥平面EFDC ,AF ⊥EF , ∴AF ⊥平面ECDF ,将三棱锥A -FEC 补成正方体ABC ′D ′-FECD . 依题意,其棱长为1,外接球的半径R =32, ∴外接球的体积V =43πR 3=43π·⎝ ⎛⎭⎪⎫323=32π.]6.C [由DC 1⊥平面A 1BCD 1知DC 1⊥D 1P ,∴A 正确. ∵D 1A 1⊥平面ABB 1A 1,且A 1D 1⊂平面D 1A 1P , ∴平面D 1A 1P ⊥平面A 1AP ,因此B 正确. 当0<A 1P <22时,∠APD 1为钝角,∴C 错.将面AA 1B 与面A 1BCD 1沿面对角线A 1B 展开成平面图形时,线段A 1D 为AP +PD 1的最小值.在△AA 1D 1中,A 1D 1=A 1A =1,∠AA 1D 1=135°.由余弦定理,AD 21=12+12-2×1×1cos 135°=2+ 2.∴AP +PD 1的最小值AD 1=2+2,因此D 正确.] 7.112 [∵V 三棱锥B 1-BFE =V 三棱锥E -BB 1F ,又S △BB 1F =12·BB 1·BF =14,且点E 到底面BB 1F 的距离h =1. ∴V 三棱锥B 1-BFE =13·h ·S △BB 1F =112.]8.(16+213)π [由三视图知,该几何体是由一个底面半径为2, 高为3的圆柱挖去一个同底等高的圆锥所得的组合体. 则S 圆柱侧=2π×2×3=12π.S 圆柱下底=π×22=4π. S 圆锥侧=12×2π×2×13=213π.故几何体的表面积S =12π+4π+213π=(16+213)π.]9.90° [建立如图所示的空间直角坐标系D -xyz ,D 为坐标原点,则P (0,0,a ),B (a ,a ,0),PB →=(a ,a ,-a ),又DE →=⎝ ⎛⎭⎪⎫0,a 2,a 2,PB →·DE →=0+a 22-a 22=0,所以PB ⊥DE .又DF ⊥PB ,且DF ∩DE =D , ∴PB ⊥平面DEF .故直线PB 与平面DEF 所成的角为90°.]10.(1)证明 连接BD ,取DC 的中点G ,连接BG , 由此知DG =GC =BG =1,即△DBC 为直角三角形, ∴BC ⊥BD .又PD ⊥平面ABCD , ∴BC ⊥PD ,又PD ∩BD =D , ∴BC ⊥平面BDP ,∴BC ⊥DM .又PD =BD =2,PD ⊥BD ,M 为PB 的中点, ∴DM ⊥PB ,∵PB ∩BC =B , ∴DM ⊥平面PBC .(2)解 以D 为坐标原点,射线DA 、DC 、DP 分别为x 轴、y 轴、z 轴的正半轴,建立如图所示的直角坐标系D -xyz ,则A (1,0,0),B (1,1,0),C (0,2,0),P (0,0,2),从而M ⎝ ⎛⎭⎪⎫12,12,22,设n 1=(x ,y ,z )是平面ADM 的法向量,则⎩⎪⎨⎪⎧n 1·DA →=0,n 1·DM →=0,即⎩⎨⎧x =0,x 2+y 2+22z =0,∴可取n 1=(0,2,-1).同理,设n 2=(u ,v ,w )是平面CDM 的法向量,则⎩⎪⎨⎪⎧n 2·DC →=0,n 2·DM →=0,即⎩⎨⎧v =0,u 2+v 2+22w =0,∴可取n 2=(2,0,-1),∴cos 〈n 1,n 2〉=13, 显然二面角A -DM -C 的大小为钝角, ∴所以二面角A -DM -C 的余弦值为-13.11. (1)证明 法一 过E 作EO ⊥BC ,垂足为O ,连接OF . 由△ABC ≌△DBC 可证出△EOC ≌△FOC .图1所以∠EOC =∠FOC =π2,即FO ⊥BC .又EO ⊥BC ,FO ∩EO =O ,因此BC ⊥面EFO , 又EF ⊂面EFO ,所以EF ⊥BC .法二 由题意,以B 为坐标原点,在平面DBC 内过B 作垂直BC 的直线为x 轴,BC 所在直线为y 轴,在平面ABC 内过B 作垂图2直BC 的直线为z 轴,建立如图2所示空间直角坐标系.易得B (0,0,0),A (0,-1,3),D (3,-1,0),C (0,2,0).因而E ⎝ ⎛⎭⎪⎫0,12,32,F ⎝ ⎛⎭⎪⎫32,12,0,所以EF →=⎝ ⎛⎭⎪⎫32,0,-32,BC →=(0,2,0),因此EF →·BC →=0.从而EF →⊥BC →,所以EF ⊥BC .(2)解 法一 在图1中,过O 作OG ⊥BF ,垂足为G ,连接EG .由平面ABC ⊥平面BDC ,从而EO ⊥面BDC ,∴EO ⊥BF ,又OG ⊥BF ,EO ∩OG =O ,∴BF ⊥平面BOG ,∴EO ⊥BF . 因此∠EGO 为二面角E -BF -C 的平面角.在△EOC 中,EO =12EC =12BC ·cos 30°=32,由△BGO ∽△BFC 知,OG =BO BC ·FC =34,因此tan ∠EGO =EOOG =2,从而sin ∠EGO =255,即二面角E -BF -C 的正弦值为255. 法二 在图2中,平面BFC 的一个法向量为n 1=(0,0,1). 设平面BEF 的法向量n 2=(x ,y ,z ), 又BF →=⎝ ⎛⎭⎪⎫32,12,0,BE →=⎝⎛⎭⎪⎫0,12,32.由⎩⎪⎨⎪⎧n 2·BF →=0n 2·BE →=0得其中一个n 2=(1,-3,1).设二面角E -BF -C 大小为θ,且由题意知θ为锐角,则 cos θ=|cos 〈n 1,n 2〉|=⎪⎪⎪⎪⎪⎪n 1·n 2|n 1||n 2|=15, 因此sin θ=25=255,即所求二面角的正弦值为255. 12.(1)证明 ∵DC =BC =1,DC ⊥BC ,∴BD =2, 又∵AD =2,AB =2,∴AD 2+BD 2=AB 2,则∠ADB =90°. ∴AD ⊥BD ,又∵面ADEF ⊥面ABCD ,ED ⊥AD ,面ADEF ∩面ABCD =AD , ∴ED ⊥面ABCD ,∴BD ⊥ED ,又∵AD ∩DE =D ,∴BD ⊥面ADEF ,BD ⊂面BDM , ∴面BDM ⊥面ADEF .(2)解 在面DAB 内过D 作DN ⊥AB ,垂足N , ∵AB ∥CD ,∴DN ⊥CD , 又∵ED ⊥面ABCD ,∴DN ⊥ED ,∴以D 为坐标原点,DN 为x 轴,DC 为y 轴,DE 为z 轴,建立空间直角坐标系. ∴B (1,1,0),C (0,1,0),E (0,0,2), N (1,0,0), 设M (x 0,y 0,z 0),EM →=λEC →(0<λ<1),∴(x 0,y 0,z 0-2)=λ(0,1,-2) 因此x 0=0,y 0=λ,z 0=2(1-λ).于是点M (0,λ,2(1-λ)). 设平面BDM 的法向量n 1=(x ,y ,z ), 则⎩⎪⎨⎪⎧n 1·DM →=0,n 1·DB →=0,∴⎩⎨⎧λy +2z (1-λ)=0,x +y =0,令x =1,得n 1=⎝ ⎛⎭⎪⎫1,-1,λ2(1-λ). ∵平面ABF 的法向量n 2=DN →=(1,0,0), ∴cos 〈n 1,n 2〉=11+1+λ22(1-λ)2=cos π3=12,解得λ=23,λ=2(舍去).∴M ⎝ ⎛⎭⎪⎫0,23,23,∴点M 的位置在线段CE 的三等分点且靠近C 处.专题过关·提升卷1.C [该几何体为正方体与正四棱锥的组合体,∴体积V =23+13×22×2=323(cm 3).]2.A [若b ⊥β,α∥β,则b ⊥α,又a ⊂α,∴a ⊥b , 但a ⊥b ,a ⊂α,α∥β时,得不到b ⊥β. ∴“b ⊥β”是“a ⊥b ”的充分不必要条件.]3.C [如图,由题意,得BC =2,AD =AB =1.绕AD 所在直线旋转一周后所得几何体为一个圆柱挖去一个圆锥的组合体.所求体积V =π×12×2-13π×12×1=5π3.]4.C [该三棱锥的直观图如图所示:过D作DE⊥BC,交BC于E,连接AE,则BC=2,EC=1,AD=1,ED=2,AE=5,BD=CD=5,S表=S△BCD+S△ACD+S△ABD+S△ABC=12×2×2+12×1×5×2+12×2×5=2+2 5.]5.D[由图可知S2=S3=2,S1=2,所以S1≠S3.]6.D[由三视图知,该四棱锥的直观图如图所示,其中P A⊥平面ABCD,平面ABCD为直角梯形.则最长棱PB=22+22=22,A错,B错.棱锥中的四个侧面中:由P A⊥底面ABCD,知△P AB,△P AD为直角三角形.又DC⊥AD,P A⊥DC,知DC⊥平面P AD,则DC⊥PD,从而△PDC为直角三角形.又PD=5,DC=1,所以PC=12+(5)2= 6.在梯形ABCD中,易求BC=2,故PB2=PC2+BC2,△PBC为直角三角形.]7.C [如图,以D 为原点,分别以DA ,DC ,DD 1所在的直线为x 轴、y 轴、z 轴建立空间直角坐标系D -xyz ,则D 1(0,0,2),C (0,2,0),设P (x ,y ,0)(x >0,0<y <2),则D 1P →=(x ,y ,-2),PC →=(-x ,2-y ,0).由D 1P ⊥PC ,得D 1P →·PC →=-x 2+y (2-y )=0, ∴x =2y -y 2(0<y <2),所以0<x ≤1.]8.B [由三视图知,“和田玉”为直三棱柱,底面是直角三角形,高为12,如图所示.其中AC =6,BC =8,BC ⊥AC ,则AB =10,若使“玉雕球”的半径最大,则该球与直三棱柱的三个侧面都相切. ∴球半径r =6+8-102=2,则S 球=4πr 2=16π.]9.1825 [由正视图及俯视图知,在三棱锥A -BCD 中,平面ABD ⊥平面BCD (如图所示),因此三棱锥的侧视图为等腰直角三角形.在△ABD 中,AB =32,AD =BC =2. ∴BD =AB 2+BC 2=52.因此AA ′=AB ·AD BD =32×252=65.所以等腰直角三角形的腰长为65. 故侧视图的面积为12×⎝ ⎛⎭⎪⎫652=1825.]10.66 [如图所示,建立以C 为坐标原点,CA 、CB 、CC 1所在直线分别为x 轴、y轴、z 轴的空间直角坐标系.设BC =CA =CC 1=2,则B (0,2,0)、D 1(1,1,2)、F 1(1,0,2).则BD 1→=(1,-1,2),CF 1→=(1,0,2),∴cos 〈BD 1→,CF 1→〉=BD 1→·CF 1→|BD 1→||CF 1→|=530=306.设BD 1与CF1所成的角为α.11.5π [如图所示,将三棱锥P -ABC 补成长方体ADBC -PD ′B ′C ′. 则三棱锥P -ABC 的外接球就是长方体的外接球.∴2R =P A 2+AC 2+AD 2=5, 故外接球的表面积S 球=4πR 2=5π.]12.14 [分别过E ,C 向平面P AB 作高h 1,h 2,由E 为PC 的中点得h 1h 2=12,由D 为PB 的中点得S △ABD =12S △ABP ,所以V 1∶V 2=⎝ ⎛⎭⎪⎫13S △ABD ·h 1∶⎝ ⎛⎭⎪⎫13S △ABP ·h 2=14.]13.6 [如图所示为多面体MN -ABCD , 作MH ⊥AB 交AB 于H .由侧视图可知MH =12+22= 5.根据正视图知MN =2,AB =4,且正视图为等腰梯形.∴AH =4-22=1,从而AM =AH 2+MH 2= 6.] 14.8π3 [由三视图知,该几何体是由两个圆锥和一个圆柱构成的组合体,且圆锥的底面分别与圆柱的两个底面重合.∵圆柱的底面圆的半径R =1,高h =2,且圆锥的高h ′=1. ∴V 圆柱=πR 2·h =2π,V 圆锥=13πR 2h ′=π3. 因此该几何体的体积V =V 圆柱+2V 圆锥=8π3.]15.①②③ [取AC 的中点O ,连接OB ,OD ,则OD ⊥AC ,OB ⊥AC .OD ∩OB =O ,AC ⊥平面OBD ,从而AC ⊥BD ,①正确. 又平面ADC ⊥平面ABC ,DO ⊥AC , 所以DO ⊥平面ABC ,因此DO ⊥OB ,且∠OBD 为棱BD 与底面ABC 所成的角. 由OB =OD ,知∠OBD =45°, 所以②正确,从而BD =2·OB =1,故BC =CD =BD =1, 因此△BCD 是等边三角形,命题③正确. 根据DO ⊥平面ABC .得V 三棱锥D -ABC =13·S △ABC ·OD =212,∴④错误.]16.(1)证明 在题图1中,因AB =BC =1,AD =2,E 是AD 的中点, ∠BAD =π2,所以BE ⊥AC ,即在题图2中,BE ⊥OA 1,BE ⊥OC ,且A 1O ∩OC =O , 从而BE ⊥平面A 1OC ,又在直角梯形ABCD 中,AD ∥BC ,BC =12AD ,E 为AD 中点,所以BC 綉ED , 所以四边形BCDE 为平行四边形, 故有CD ∥BE , 所以CD ⊥平面A 1OC .(2)解 由已知,平面A 1BE ⊥平面BCDE , 又由(1)知,BE ⊥OA 1,BE ⊥OC ,所以∠A 1OC 为二面角A 1-BE -C 的平面角, 所以∠A 1OC =π2,如图,以O 为原点,建立空间直角坐标系, 因为A 1B =A 1E =BC =ED =1,BC ∥ED ,所以B ⎝ ⎛⎭⎪⎫22,0,0,E ⎝ ⎛⎭⎪⎫-22,0,0,A 1⎝ ⎛⎭⎪⎫0,0,22,C ⎝ ⎛⎭⎪⎫0,22,0,于是A 1B →=⎝ ⎛⎭⎪⎫22,0,-22,A 1C →=⎝ ⎛⎭⎪⎫0,22,-22,CD →=BE →=(-2,0,0).设直线A 1B 与平面A 1CD 所成的角为θ,平面A 1CD 的法向量n =(x ,y ,z ).则⎩⎪⎨⎪⎧n ·CD →=0,n ·A 1C →=0,得⎩⎨⎧-2x =0,22y -22z =0,取n =(0,1,1).∴cos 〈A 1B →,n 〉=A 1B →·n |A 1B →|·|n |=-221×2=-12.因此sin θ=|cos 〈A 1B →,n 〉|=12,故直线A 1B 与平面A 1CD 所成的角为π6. 17.(1)证明 如图,取AE 的中点H , 连接HG ,HD ,又G 是BE 的中点, 所以GH ∥AB ,且GH =12AB . 又F 是CD 的中点, 所以DF =12CD .由四边形ABCD 是矩形得,AB ∥CD ,AB =CD , 所以GH ∥DF ,且GH =DF , 从而四边形HGFD 是平行四边形, 所以GF ∥DH .又DH ⊂平面ADE ,GF ⊄平面ADE , 所以GF ∥平面ADE .(2)解 如图,在平面BEC 内,过B 点作BQ ∥EC . 因为BE ⊥CE ,所以BQ ⊥BE .又因为AB ⊥平面BEC ,所以AB ⊥BE ,AB ⊥BQ .以B 为原点,分别以BE →,BQ →,BA →的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系,则A (0,0,2),B (0,0,0),E (2,0,0), F (2,2,1). 因为AB ⊥平面BEC ,所以BA →=(0,0,2)为平面BEC 的法向量. 设n =(x ,y ,z )为平面AEF 的法向量.又AE →=(2,0,-2),AF →=(2,2,-1), 由⎩⎪⎨⎪⎧n ·AE →=0,n ·AF →=0,得⎩⎨⎧2x -2z =0,2x +2y -z =0. 取z =2,得n =(2,-1,2).从而cos 〈n ,BA →〉=n ·BA→|n |·|BA →|=43×2=23. 所以平面AEF 与平面BEC 所成锐二面角的余弦值为23. 18.(1)解 点F ,G ,H 的位置如图所示.(2)证明 连接BD ,设O 为BD 的中点, 因为M ,N 分别是BC ,GH 的中点, 所以OM ∥CD ,且OM =12CD , HN ∥CD ,且HN =12CD , 所以OM ∥HN ,OM =HN ,所以MNHO 是平行四边形,从而MN ∥OH .又MN ⊄平面BDH ,OH ⊂平面BDH , 所以MN ∥平面BDH .(3)解 如图,以D 为坐标原点,分别以DA →,DC →,DH →方向为x ,y ,z 轴的正方向,建立空间直角坐标系D -xyz ,设AD =2,则M (1,2,0),G (0,2,2),E (2,0,2),O (1,1,0),所以,GE →=(2,-2,0),MG →=(-1,0,2), 设平面EGM 的一个法向量为n 1=(x ,y ,z ),由⎩⎪⎨⎪⎧n ·GE →=0,n 1·MG →=0,⎩⎨⎧2x -2y =0,-x +2z =0,取x =2,得n 1=(2,2,1), 在正方体ABCD -EFGH 中,DO ⊥平面AEGC ,则可取平面AEG 的一个法向量为n 2=DO →=(1,1,0), 所以cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=2+2+04+4+1·1+1+0=223,故二面角A -EG -M 的余弦值为223.19.(1)证明 连接AC ,∵平面P AD ⊥平面ABCD ,P A ⊥AD . 又P A ⊂平面P AD ,面P AD ∩面ABCD =AD .∴P A ⊥平面ABCD ,故P A ⊥CD . 在菱形ABCD 中,∠BAD =120°,∴∠ADC =60°,从而△ACD 为等边三角形.又∵E 为CD 的中点, ∴AE ⊥CD ,由于P A ∩AE =A ,所以CD ⊥平面P AE ,(2)解 假设存在,由(1)知,P A 、AB 、AE 两两垂直,以A 为坐标原点,分别以AB 、AE 、AP 所在直线为x ,y ,z 轴建立空间直角坐标系A -xyz (如图所示).由P A ⊥平面ABCD ,则∠PCA 为PC 与平面ABCD 所成的角, ∴∠PCA =45°,因此P A =AC =AB =2.则P (0,0,2),A (0,0,0),E (0,3,0)∴PE →=(0,3,-2). 设AF =a (0<a <2),则F (a ,0,0),∴PF →=(a ,0,-2),设平面PEF 的一个法向量为m =(x ,y ,z ). 由⎩⎪⎨⎪⎧m ·PE →=0,m ·PF →=0.得⎩⎨⎧3y -2z =0,ax -2z =0,取x =2,则m =⎝⎛⎭⎪⎫2,2a 3,a . 又向量AE →=(0,3,0)是平面P AF 的一个法向量.∴|cos 〈m ,AE →〉|=|m ·AE →||m |·|AE →|=2a3·4+7a 23因此2a 3·4+7a 23=cos 45°=22,解之得a =2 3.由于23∉(0,2),故不存在点F ,使得二面角A -PF -E 为45°. 20.解 如图,以A 为原点建立空间直角坐标系,依题意可得A (0,0,0),B (0,1,0),C (2,0,0),D (1,-2,0),A 1(0,0,2),B 1(0,1,2),C 1(2,0,2),D 1(1,-2,2). 又因为M ,N 分别为B 1C 和D 1D 的中点, 得M ⎝ ⎛⎭⎪⎫1,12,1,N (1,-2,1).(1)证明 依题意,可得n =(0,0,1)为平面ABCD 的一个法向量,MN →=⎝ ⎛⎭⎪⎫0,-52,0,由此可得MN →·n =0, 又因为直线MN ⊄平面ABCD ,所以MN ∥平面ABCD .(2)AD 1→=(1,-2,2),AC →=(2,0,0),设n 1=(x 1,y 1,z 1)为平面ACD 1的法向量,则1110,0,n AD n AC ⎧=⎪⎨=⎪⎩ 即⎩⎨⎧x 1-2y 1+2z 1=0,2x 1=0.不妨设z 1=1,可得n 1=(0,1,1).设n 2=(x 2,y 2,z 2)为平面ACB 1的法向量,则1220,0,n AB n AC ⎧=⎪⎨=⎪⎩又AB 1→=(0,1,2),得⎩⎨⎧y 2+2z 2=0,2x 2=0不妨设z 2=1,可得n 2=(0,-2,1). 因此有cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=-1010,于是sin 〈n 1,n 2〉=1-⎝ ⎛⎭⎪⎫-10102=31010. 所以,二面角D 1-AC -B 1的正弦值为31010.(3)依题意,可设1A E =λ11A B,其中λ∈[0,1],则E (0,λ,2),从而NE →=(-1,λ+2,1),又n =(0,0,1)是平面ABCD 的一个法向量,故|cos 〈NE →,n 〉|=|NE →·n ||NE →|·|n |=1(-1)2+(λ+2)2+12=13. 整理得λ2+4λ-3=0,解得λ=-2±7, 又因为λ∈[0,1],所以λ=7-2, 所以,线段A 1E 的长为7-2.。

三年高考2014_2016高考数学试题分项版专题10立体几何(大题)理(含解析)

三年高考(2014-2016)数学(理)试题分项版解析第十章 立体几何三、解答题12.【2015江苏高考,16】(本题满分14分)如图,在直三棱柱111C B A ABC -中,已知BC AC ⊥,1CC BC =,设1AB 的中点为D ,E BC C B =11 .求证:(1)C C AA DE 11//平面;(2)11AB BC ⊥.【答案】(1)详见解析(2)详见解析【解析】试题分析(1)由三棱锥性质知侧面11BB C C 为平行四边形,因此点E 为1B C 的中点,从而由三角形中位线性质得//DE AC ,再由线面平行判定定理得C C AA DE 11//平面(2)因为直三棱柱111C B A ABC -中1CC BC =,所以侧面11BB C C 为正方形,因此11BC B C ⊥,又BC AC ⊥,1AC CC ⊥(可由直三棱柱推导),因此由线面垂直判定定理得11AC BB C C ⊥平面,从而1AC BC ⊥,再由线面垂直判定定理得11BC AB C ⊥平面,进而可得11AB BC ⊥试题解析:(1)由题意知,E 为1C B 的中点,又D 为1AB 的中点,因此D //C E A .又因为D E ⊄平面11C C AA ,C A ⊂平面11C C AA ,所以D //E 平面11C C AA .ABC DE A 1B 1 C1(2)因为棱柱111C C AB -A B 是直三棱柱,所以1CC ⊥平面C AB .【考点定位】线面平行判定定理,线面垂直判定定理【名师点晴】不要忽视线面平行的判定定理中线在面外条件.证明直线与平面平行的关键是设法在平面内找到一条与已知直线平行的直线, 常利用几何体的特征,合理利用中位线定理、线面平行的性质,或者构造平行四边形、寻找比例式证明两直线平行. 证明线面垂直时,不要忽视面内两条线为相交线这一条件.证明直线与平面垂直的关键在于熟练把握空间垂直关系的判定与性质,注意平面图形中的一些线线垂直关系的灵活利用,这是证明空间垂直关系的基础.13. 【2016高考天津理数】(本小题满分13分)如图,正方形ABCD 的中心为O ,四边形OBEF 为矩形,平面OBEF ⊥平面ABCD ,点G 为AB 的中点,AB =BE =2.(I )求证:EG ∥平面ADF ;(II )求二面角O -EF -C 的正弦值;(III )设H 为线段AF 上的点,且AH =23HF ,求直线BH 和平面CEF 所成角的正弦值.【答案】 【解析】试题分析:(Ⅰ)利用空间向量证明线面平行,关键是求出面的法向量,利用法向量与直线方向向量垂直进行论证(Ⅱ)利用空间向量求二面角,关键是求出面的法向量,再利用向量数量积求出法向量夹角,最后根据向量夹角与二面角相等或互补关系求正弦值(Ⅲ)利用空间向量证明线面平行,关键是求出面的法向量,再利用向量数量积求出法向量夹角,最后根据向量夹角与线面角互余关系求正弦值试题解析:依题意,OF ABCD ⊥平面,如图,以O 为点,分别以,,AD BA OF 的方向为x 轴,y 轴、z 轴的正方向建立空间直角坐标系,依题意可得(0,0,0)O ,()1,1,0,(1,1,0),(1,1,0),(11,0),(1,1,2),(0,0,2),(1,0,0)A B C D E F G -------,.(I )证明:依题意,()(2,0,0),1,1,2AD AF ==-.设()1,,n x y z =为平面ADF 的法向量,则1100n AD n AF ⎧⋅=⎪⎨⋅=⎪⎩,即2020x x y z =⎧⎨-+=⎩ .不妨设1z =,可得()10,2,1n =,又()0,1,2EG =-,可得10EG n ⋅=,又因为直线EG ADF ⊄平面,所以//EG ADF 平面.(II )解:易证,()1,1,0OA =-为平面OEF 的一个法向量.依题意,()()1,1,0,1,1,2EF CF ==-.设()2,,n x y z =为平面CEF 的法向量,则2200n EF n CF ⎧⋅=⎪⎨⋅=⎪⎩,即020x y x y z +=⎧⎨-++=⎩.不妨设1x =,可得()21,1,1n =-.因此有222cos ,OA n OA n OA n ⋅<>==-⋅,于是23sin ,OAn <>=,所以,二面角O EF C --考点:利用空间向量解决立体几何问题14. 【2014江苏,理16】如图在三棱锥-P ABC 中,,,D E F 分别为棱,,PC AC AB 的中点,已知,6,8,5PA AC PA BC DF ⊥===,求证(1)直线//PA 平面DEF ;(2)平面BDE ⊥平面ABC .【答案】证明见解析.【解析】试题解析:(1)由于,D E 分别是,PC AC 的中点,则有//PA DE ,又PA DEF ⊄平面,DE DEF ⊂平面,所以//PA DEF 平面.(2)由(1)//PA DE ,又PA AC ⊥,所以PE AC ⊥,又F 是AB 中点,所以132DE PA ==,142EF BC ==,又5DF =,所以222DE EF DF +=,所以DE EF ⊥,,EF AC 是平面ABC 内两条相交直线,所以DE ABC ⊥平面,又DE ⊂平面B D E ,所以平面BDE ⊥平面ABC .【考点定位】线面平行判定定理,面面垂直判定定理【名师点晴】不要忽视线面平行的判定定理中线在面外条件.证明直线与平面平行的关键是设法在平面内找到一条与已知直线平行的直线, 常利用几何体的特征,合理利用中位线定理、线面平行的性质,或者构造平行四边形、寻找比例式证明两直线平行. 由于“线线垂直”“线面垂直”“面面垂直”之间可以相互转化,因此整个证明过程围绕着线面垂直这个核心而展开,这是化解空间垂直关系难点的技巧所在.证明线面垂直时,不要忽视面内两条线为相交线这一条件.证明直线与平面垂直的关键在于熟练把握空间垂直关系的判定与性质,注意平面图形中的一些线线垂直关系的灵活利用,这是证明空间垂直关系的基础.15. 【2015江苏高考,22】(本小题满分10分)如图,在四棱锥P ABCD -中,已知PA ⊥平面ABCD ,且四边形ABCD 为直角梯 形,2ABC BAD π∠=∠=,2,1PA AD AB BC ====(1)求平面PAB 与平面PCD 所成二面角的余弦值;(2)点Q 是线段BP 上的动点,当直线CQ 与DP 所成角最小时,求线段BQ 的长【答案】(12 【解析】(1)因为D A ⊥平面PAB ,所以D A 是平面PAB 的一个法向量,()D 0,2,0A =. 因为()C 1,1,2P =-,()D 0,2,2P =-.设平面CD P 的法向量为(),,m x y z =,则C 0m ⋅P =,D 0m ⋅P =,即20220x y z y z +-=⎧⎨-=⎩. 令1y =,解得1z =,1x =.所以()1,1,1m =是平面CD P 的一个法向量. 从而D 3cos D,D mm m A ⋅A ==A ,所以平面PAB 与平面CD P 所成二面角的余弦值为. (2)因为()1,0,2BP =-,设()Q ,0,2λλλB =BP =-(01λ≤≤),又()C 0,1,0B =-,则()CQ C Q ,1,2λλ=B +B =--,又()D 0,2,2P =-,从而CQ D cos CQ,D CQ D 10⋅PP ==P . 设12t λ+=,[]1,3t ∈,则2222229cos CQ,D 5109101520999t t t t P ==≤-+⎛⎫-+ ⎪⎝⎭. 当且仅当95t=,即25λ=时,cos CQ,D P 的最大值为. 因为cos y x=在0,2π⎛⎫ ⎪⎝⎭上是减函数,此时直线CQ 与D P 所成角取得最小值.又因为BP ==2Q 55B =BP =. 【考点定位】空间向量、二面角、异面直线所成角【名师点晴】1.求两异面直线a ,b 的夹角θ,须求出它们的方向向量a ,b 的夹角,则cos θ=|cos 〈a ,b 〉|.2.求直线l 与平面α所成的角θ可先求出平面α的法向量n 与直线l 的方向向量a 的夹角.则sin θ=|cos 〈n ,a 〉|.3.求二面角α ­l ­β的大小θ,可先求出两个平面的法向量n 1,n 2所成的角,则θ=〈n 1,n 2〉或π-〈n 1,n 2〉.16. 【2015高考山东,理17】如图,在三棱台DEF ABC -中,2,,AB DE G H =分别为,AC BC 的中点.(Ⅰ)求证://BD 平面FGH ;(Ⅱ)若CF ⊥平面ABC ,,AB BC CF DE ⊥=,45BAC ∠= ,求平面FGH 与平面ACFD 所成的角(锐角)的大小.【答案】(I )详见解析;(II )60【解析】试题分析:(I )思路一:连接,DG CD ,设CD GF O =,连接OH ,先证明//OH BD ,从而由直线与平面平行的判定定理得//BD 平面HDF ;思路二:先证明平面 //FGH 平面 ABED ,再由平面与平面平行的定义得到//BD 平面HDF .(II )思路一:连接,DG CD ,设CD GF O =,连接OH ,证明,,GB GC GD 两两垂直, 以G 为坐标原点,建立如图所示的空间直角坐标系G xyz -,利用空量向量的夹角公式求解;思路二:作HM AC ⊥ 于点M ,作MN GF ⊥ 于点N,连接NH ,证明MNH ∠ 即为所求的角,然后在三角形中求解.试题解析:证法二:在三棱台DEF ABC -中,由2,BC EF H =为BC 的中点可得 //,,BH EF BH EF =所以四边形BHFE 为平行四边形可得 //BE HF在 ABC ∆中, G 为AC 的中点, H 为BC 的中点, 所以 //GH AB又 GH HF H =,所以平面 //FGH 平面 ABED 因为 BD ⊂平面 ABED所以 //BD 平面FGH(II )解法一:设2AB = ,则1CF =在三棱台DEF ABC -中,G 为AC 的中点 由12DF AC GC == ,可得四边形DGCF 为平行四边形,因此//DG CF又FC ⊥平面ABC所以DG ⊥平面ABC在ABC ∆中,由,45AB BC BAC ⊥∠= ,G 是AC 中点,所以,AB BC GB GC =⊥因此,,GB GC GD 两两垂直,以G 为坐标原点,建立如图所示的空间直角坐标系G xyz -所以())()()0,0,0,,,0,0,1G B C D可得(),H F ⎫⎪⎪⎝⎭ 故()22,,0,0,2,122GH GF ⎛⎫== ⎪ ⎪⎝⎭设(),,n x y z = 是平面FGH 的一个法向量,则 由0,0,n GH n GF ⎧⋅=⎪⎨⋅=⎪⎩ 可得0x y z +=⎧⎪+= 可得平面FGH 的一个法向量(1,n =-因为GB 是平面ACFD 的一个法向量,()2,0,0GB = 所以21cos ,2||||22GBn GB n GB n ⋅<>===⋅所以平面与平面所成的解(锐角)的大小为60在BGC ∆ 中,1//,2MH BG MH BG ==由GNM ∆∽GCF ∆可得,MN GMFC GF=从而MN =由MH ⊥平面,ACFD MN ⊂平面ACFD 得,MH MN ⊥因此tan HMMNH MN∠==所以60MNH ∠=所以平面FGH 与平面ACFD 所成角(锐角)的大小为60 .【考点定位】1、空间直线与平面的位置关系;2、二面角的求法;3、空间向量在解决立体几何问题中的应用.【名师点睛】本题涉及到了立体几何中的线面平行与垂直的判定与性质,全面考查立几何中的证明与求解,意在考查学生的空间想象能力和逻辑推理能力;利用空间向量解决立体几何问题是一种成熟的方法,要注意建立适当的空间直角坐标系以及运算的准确性. 17. 【2014山东.理17】(本小题满分12分)如图,在四棱柱1111ABCD A BC D -中,底面ABCD 是等腰梯形,60DAB ∠=,22AB CD ==,M 是线段AB 的中点.(Ⅰ)求证:111//C M A ADD ;(Ⅱ)若1CD 垂直于平面ABCD 且1CD =,求平面11C D M 和平面ABCD 所成的角(锐角)的余弦值.【答案】(I )证明:见解析;(II )平面11C D M 和平面ABCD 所成角(锐角)的余弦值为5. 【解析】试题分析:(I )由四边形ABCD 是等腰梯形,且2AB CD =, 可得//CD MA 且CD MA =.连接1AD ,可得1111//,C D MA C D MA =, 从而得到四边形11AMC D 为平行四边形, 进一步可得1//C M 平面11A ADD .思路二:按照“一作,二证,三计算”.过C 向AB 引垂线交AB 于N ,连接1D N ,由1CD ⊥平面ABCD ,可得1D N AB ⊥, 得到1D NC ∠为二面角1C AB C --的平面角,利用直角三角形中的边角关系计算平面11C D M 和平面ABCD 所成角(锐角)的余弦值.试题解析:(I )证明:因为四边形ABCD 是等腰梯形, 且2AB CD =,所以//AB CD ,又由M 是AB 的中点, 因此//CD MA 且CD MA =. 连接1AD ,在四棱柱1111ABCD A BC D -中, 因为1111//,CD C D CD C D =,可得1111//,C D MA C D MA =, 所以,四边形11AMC D 为平行四边形, 因此11//C M D A ,又1C M ⊄平面11A ADD ,1D A ⊂平面11A ADD , 所以1//C M 平面11A ADD .所以1(0,1,0),A B D .因此1(,0)22M ,所以11(22MD =--,111(,,0)22D C MB ==-, 设平面11C D M 的一个法向量(,,)n x y z =,由11100n D C n MD ⎧∙=⎪⎨∙=⎪⎩,得00y y ⎧-=⎪+-=,可得平面11C D M 的一个法向量(1,3,1)n =. 又1CD =为平面ABCD 的一个法向量, 因此1115cos ,||||CD n CD n CD n∙<>==. 所以平面11C D M 和平面ABCD 所成角(锐角)的余弦值为5解法二:由(I )知,平面11DC M平面ABCD=AB ,过C 向AB 引垂线交AB 于N ,连接1D N , 由1CD ⊥平面ABCD ,可得1D N AB ⊥, 因此1D NC ∠为二面角1C AB C --的平面角, 在Rt BNC ∆中,01,60BC NBC=∠=,可得CN =, 所以1ND ==, 在1Rt D CN ∆中,11cos 5CN D NC D N ∠===,所以平面11C D M 和平面ABCD 所成角(锐角)的余弦值为5【名师点睛】本题考查了空间直线与直线、直线与平面、平面与平面的平行关系及空间的角.对于本题,可应用“几何法”和“空间向量方法”,体现了解题的灵活性.本题是一道能力题,属于中等题,对计算能力要求较高,在考查空间平行关系、空间的角等基础知识的同时,考查考生的计算能力、逻辑推理能力、空间想象能力、转化与化归思想及应用数学知识解决问题的能力.18. 【2016年高考北京理数】(本小题14分)如图,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,PA PD ⊥,PA PD =,AB AD ⊥,1AB =,2AD =,AC CD ==(1)求证:PD ⊥平面PAB ;(2)求直线PB 与平面PCD 所成角的正弦值;(3)在棱PA 上是否存在点M ,使得//BM 平面PCD ?若存在,求AMAP的值;若不存在,说明理由.【答案】(1)见解析;(2)3;(3)存在,14AM AP = 【解析】试题分析:(1)由面面垂直性质定理知AB⊥平面PAD ;根据线面垂直性质定理可知PD AB ⊥,再由线面垂直判定定理可知⊥PD 平面PAB ;(2)取AD 的中点O ,连结PO ,CO ,以O 为坐标原点建立空间直角坐标系O xyz -,利用向量法可求出直线PB 与平面PCD 所成角的正弦值;(3)假设存在,根据A ,P ,M 三点共线,设AP AM λ=,根据//BM 平面PCD ,即0=⋅,求λ的值,即可求出AMAP的值.如图建立空间直角坐标系xyz O -,由题意得,)1,0,0(),0,1,0(),0,0,2(),0,1,1(),0,1,0(P D C B A -.设平面PCD 的法向量为),,(z y x n =,则⎪⎩⎪⎨⎧=⋅=⋅,0,0即⎩⎨⎧=-=--,02,0z x z y 令2=z ,则2,1-==y x . 所以)2,2,1(-=.又)1,1,1(-=,所以33,cos -=>=<. 所以直线PB 与平面PCD 所成角的正弦值为33.考点:1.空间垂直判定与性质;2.异面直线所成角的计算;3.空间向量的运用.【名师点睛】平面与平面垂直的性质的应用:当两个平面垂直时,常作的辅助线是在其中一个面内作交线的垂线,把面面垂直转化为线面垂直,进而可以证明线线垂直(必要时可以通过平面几何的知识证明垂直关系),构造(寻找)二面角的平面角或得到点到面的距离等. 19. 【2015高考陕西,理18】(本小题满分12分)如图1,在直角梯形CD AB 中,D//C A B ,D 2π∠BA =,C 1AB =B =,D 2A =,E 是D A 的中点,O 是C A 与BE 的交点.将∆ABE 沿BE 折起到1∆A BE 的位置,如图2.(I )证明:CD ⊥平面1C A O ;(II )若平面1A BE ⊥平面CD B E ,求平面1C A B 与平面1CD A 夹角的余弦值.【答案】(I )证明见解析;(II 【解析】试题分析:(I )先证1BE ⊥OA ,C BE ⊥O ,再可证BE ⊥平面1C A O ,进而可证CD ⊥平面1C A O ;(II )先建立空间直角坐标系,再算出平面1C A B 和平面1CD A 的法向量,进而可得平面1C A B 与平面1CD A 夹角的余弦值. 试题解析:(I )在图1中,因为C 1AB =B =,D 2A =,E 是D A 的中点,D 2π∠BA =,所以C BE ⊥A即在图2中,1BE ⊥OA ,C BE ⊥O 从而BE ⊥平面1AOC 又CD//BE ,所以CD ⊥平面1AOC .(II)由已知,平面1A BE ⊥平面CD B E ,又由(I )知,1OA BE ⊥,C BE ⊥O 所以1AOC ∠为二面角1--C A BE 的平面角,所以1OC 2A π∠=.如图,以O 为原点,建立空间直角坐标系, 因为11B=E=BC=ED=1A A ,//BC ED所以1((0,0,2222B -得2BC(22-12A C(0,22-,CD BE (==-. 设平面1BC A 的法向量1111(,,)n x y z =,平面1CD A 的法向量2222(,,)n x y z =,平面1BC A 与平面1CD A 夹角为θ,则11100n BC n A C ⎧⋅=⎪⎨⋅=⎪⎩,得111100x y y z -+=⎧⎨-=⎩,取1(1,1,1)n =,2210n CD n A C ⎧⋅=⎪⎨⋅=⎪⎩,得22200x y z =⎧⎨-=⎩,取2(0,1,1)n =,从而12cos |cos ,|3n n θ=〈〉==, 即平面1BC A 与平面1CD A 考点:1、线面垂直;2、二面角;3、空间直角坐标系;4、空间向量在立体几何中的应用. 【名师点晴】本题主要考查的是线面垂直、二面角、空间直角坐标系和空间向量在立体几何中的应用,属于中档题.解题时一定要注意二面角的平面角是锐角还是钝角,否则很容易出现错误.证明线面垂直的关键是证明线线垂直,证明线线垂直常用的方法是直角三角形、等腰三角形的“三线合一”和菱形、正方形的对角线.20. 【2016高考新课标3理数】如图,四棱锥P ABC -中,PA ⊥地面ABCD ,ADBC ,3AB AD AC ===,4PA BC ==,M 为线段AD 上一点,2AM MD =,N 为PC 的中点.(I )证明MN平面PAB ;(II )求直线AN 与平面PMN 所成角的正弦值. 【答案】(Ⅰ)见解析;. 【解析】试题分析:(Ⅰ)取PB 的中点T ,然后结合条件中的数据证明四边形AMNT 为平行四边形,从而得到MNAT ,由此结合线面平行的判断定理可证;(Ⅱ)以A 为坐标原点,以,AD AP 所在直线分别为,y z 轴建立空间直角坐标系,然后通过求直线AN 的方向向量与平面PMN 法向量的夹角来处理AN 与平面PMN 所成角.以A 为坐标原点,AE 的方向为x 轴正方向,建立如图所示的空间直角坐标系xyz A -, 由题意知,)4,0,0(P ,)0,2,0(M ,)0,2,5(C ,)2,1,25(N , (0,2,4)PM =-,)2,1,25(-=PN ,)2,1,25(=AN . 设(,,)n x y z =为平面PMN 的法向量,则⎪⎩⎪⎨⎧=⋅=⋅00PM n ,即⎪⎩⎪⎨⎧=-+=-0225042z y x z x ,可取(0,2,1)n =,于是||85|cos ,|||||n AN n AN n AN ⋅<>==考点:1、空间直线与平面间的平行与垂直关系;2、棱锥的体积.【技巧点拨】(1)证明立体几何中的平行关系,常常是通过线线平行来实现,而线线平行常常利用三角形的中位线、平行四边形与梯形的平行关系来推证;(2)求解空间中的角和距离常常可通过建立空间直角坐标系,利用空间向量中的夹角与距离来处理.21. 【2014高考陕西版理第17题】四面体ABCD 及其三视图如图所示,过棱AB 的中点E作平行于AD ,BC 的平面分别交四面体的棱CADC BD ,,于点H G F ,,. 221俯视图左视图 主视图ABCDEFGH(1)证明:四边形EFGH 是矩形;(2)求直线AB 与平面EFGH 夹角θ的正弦值. 【答案】(1)证明见解析;(2. 【解析】试题分析:(1)由该四面体的三视图可知:,,BD DC BD AD AD DC ⊥⊥⊥,2,1BD DC AD ===由题设,BC ∥面EFGH ,面EFGH面BDC FG =,面EFGH面ABC EH =,所以BC ∥FG ,BC ∥EH ,所以FG ∥EH ,同理可得EF ∥HG ,即得四边形EFGH 是平行四边形,同时可证EF FG ⊥,即证四边形EFGH 是矩形;试题解析:(1)由该四面体的三视图可知:,,BD DC BD AD AD DC ⊥⊥⊥,2,1BD DC AD ===由题设,BC ∥面EFGH 面EFGH 面BDC FG = 面EFGH面ABC EH =BC ∴∥FG ,BC ∥EH , FG ∴∥EH .同理EF ∥AD ,HG ∥AD , EF ∴∥HG .∴四边形EFGH 是平行四边形又,,BD AD AD DC BD DC D ⊥⊥=∴AD ⊥平面BDCAD BC ∴⊥BC ∥FG ,EF ∥AD EF FG ∴⊥∴四边形EFGH 是矩形(2)如图,以D 为坐标原点建立空间直角坐标系,则(0,0,0)D ,(0,0,1)A ,(2,0,0)B ,(0,2,0)C(0,0,1)DA =,(2,2,0)BC =-,(2,2,0)BC =-设平面EFGH 的一个法向量(,,)n x y z =BC ∥FG ,EF ∥AD0,0n DA n BC ∴⋅=⋅=即得z =0-2x+2y =0⎧⎨⎩,取(1,1,0)n =sin |cos ,|||||||5BA n BA n BA n θ⋅∴====⋅ 考点:面面平行的性质;线面角的求法.【名师点晴】本题主要考查的是三视图,面面平行的性质定理、线面角、空间直角坐标系和空间向量在立体几何中的应用,属于中档题.解题时一定要注意线面角的正弦值是直线的方向向量与平面的法向量的夹角的余弦值的绝对值,否则很容易出现错误. 22. 【2014新课标,理18】(本小题满分12分)如图,四棱锥P-ABCD 中,底面ABCD为矩形,PA ⊥平面ABCD ,E为PD 的中点. (Ⅰ)证明:PB ∥平面AEC ;(Ⅱ)设二面角D-AE-C 为60°,AP=1,E-ACD 的体积.【解析】(Ⅰ)证明:设O 为AC 与BD 交点,连结OE ,则由矩形ABCD 知:O 为BD 的中点,因为E 是BD 的中点,所以OE ∥PB ,因为OE ⊂面AEC ,PB ⊄面AEC ,所以PB ∥平面AEC 。

2016---2017年高考真题解答题专项训练:立体几何(文科)教师版

2016---2017年高考真题解答题专项训练:立体几何(文科)教师版1.在如图所示的几何体中,D 是AC 的中点,EF ∥DB .(Ⅰ)已知AB=BC ,AE=EC .求证:AC ⊥FB ;(Ⅱ)已知G,H 分别是EC 和FB 的中点.求证:GH ∥平面ABC .【来源】2016年全国普通高等学校招生统一考试文科数学(山东卷精编版) 【答案】(Ⅰ)证明:见解析;(Ⅱ)见解析 【解析】试题分析:(Ⅰ)根据BD EF //,知EF 与BD 确定一个平面,连接DE ,得到AC DE ⊥,AC BD ⊥,从而⊥AC 平面BDEF ,证得FB AC ⊥.(Ⅱ)设FC 的中点为I ,连HI GI ,,在C E F △,CFB △中,由三角形中位线定理可得线线平行,证得平面//GHI 平面ABC ,进一步得到//GH 平面ABC .试题解析:(Ⅰ)证明:因BD EF //,所以EF 与BD 确定平面BDEF .连接DE ,因为,AE EC D =为AC 的中点,所以AC DE ⊥,同理可得AC BD ⊥. 又D DE BD = ,所以⊥AC 平面BDEF , 因为⊂FB 平面BDEF ,所以FB AC ⊥. (Ⅱ)设FC 的中点为I ,连HI GI ,.在CEF △中,因为G 是CE 的中点,所以EF GI //, 又DB EF //,所以DB GI //.在CFB △中,因为H 是FB 的中点,所以BC HI //,又I HI GI = ,所以平面//GHI 平面ABC , 因为⊂GH 平面GHI ,所以//GH 平面ABC . 【考点】平行关系,垂直关系【名师点睛】本题主要考查直线与直线垂直、直线与平面平行.此类题目是立体几何中的基本问题.解答本题,关键在于能利用已知的直线与直线、直线与平面、平面与平面的位置关系,通过严密推理,给出规范的证明.本题能较好地考查考生的空间想象能力、逻辑推理能力及转化与化归思想等.2.如图,在四棱锥P-ABCD 中,PA ⊥CD ,AD ∥BC ,∠ADC=∠PAB=90°,BC=CD=12AD .(Ⅰ)在平面PAD 内找一点M ,使得直线CM ∥平面PAB ,并说明理由; (Ⅱ)证明:平面PAB ⊥平面PBD .【来源】2016年全国普通高等学校招生统一考试文科数学(四川卷精编版) 【答案】(Ⅰ)详见解析;(Ⅱ)详见解析.【解析】试题分析:本题考查线面平行、线线平行、线线垂直、线面垂直等基础知识,考查空间想象能力、分析问题的能力、计算能力.第(Ⅰ)问,先证明线线平行,再利用线面平行的判定定理证明线面平行;第(Ⅱ)问,先由线面垂直得到线线垂直,再利用线面垂直的判定定理得到BD ⊥平面PAB ,最后利用面面垂直的判定定理证明面面垂直. 试题解析:(Ⅰ)取棱AD 的中点M (M ∈平面PAD ),点M 即为所求的一个点.理由如下: 因为AD ∥BC,BC=12AD ,所以BC ∥AM, 且BC=AM. 所以四边形AMCB 是平行四边形,从而CM ∥AB. 又AB ⊂平面PAB,CM ⊄平面PAB, 所以CM ∥平面PAB.(说明:取棱PD 的中点N,则所找的点可以是直线MN 上任意一点)(Ⅱ)由已知,PA⊥AB, PA⊥CD,因为AD∥BC,BC=12AD,所以直线AB与CD相交,所以PA⊥平面ABCD. 从而PA⊥BD.因为AD∥BC,BC=12 AD,所以BC∥MD,且BC=MD.所以四边形BCDM是平行四边形.所以BM=CD=12AD,所以BD⊥AB.又AB∩AP=A,所以BD⊥平面PAB.又BD 平面PBD,所以平面PAB⊥平面PBD.【考点】线面平行、线线平行、线线垂直、线面垂直【名师点睛】本题考查线面平行、面面垂直的判断,考查空间想象能力、分析问题的能力、计算能力.证明线面平行时,可根据判定定理的条件在平面内找一条平行线,而这条平行线一般是由过平面外的直线的一个平面与此平面相交而得,证明时注意定理的另外两个条件(线在面内,线在面外)要写全,否则会被扣分.证明面面垂直时,先证线面垂直,要善于从图形中观察有哪些线线垂直,从而可能有哪些线面垂直,确定要证哪些线线垂直,切忌不加思考,随便写.视频3.如图,在三棱台ABC–DEF中,平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3.(Ⅰ)求证:BF⊥平面ACFD;(Ⅱ)求直线BD与平面ACFD所成角的余弦值.【来源】2016年全国普通高等学校招生统一考试文科数学(浙江卷精编版)【答案】(1)证明详见解析;(2【解析】试题分析:本题主要考查空间点、线、面位置关系,线面角等基础知识,同时考查空间想象能力和运算求解能力.试题解析:(Ⅰ)延长,,AD BE CF 相交于一点K ,如图所示. 因为平面BCFE ⊥平面ABC ,且AC BC ⊥,所以AC ⊥平面BCK ,因此, BF AC ⊥.又因为//EF BC , 1BE EF FC ===, 2BC =,所以BCK 为等边三角形,且F 为CK 的中点,则BF CK ⊥所以BF ⊥平面ACFD .(Ⅱ)因为BF ⊥平面ACK ,所以BDF ∠是直线BD 与平面ACFD 所成的角.在Rt BFD 中, 32BF DF ==,得cos 7BDF ∠=.所以,直线BD 与平面ACFD .【考点】空间点、线、面位置关系、线面角.【方法点睛】解题时一定要注意直线与平面所成的角的范围,否则很容易出现错误.证明线面垂直的关键是证明线线垂直,证明线线垂直常用的方法是直角三角形、等腰三角形的“三线合一”和菱形、正方形的对角线.视频4.如图,四边形ABCD 是平行四边形,平面AED ⊥平面ABCD ,EF ∥AB ,AB=2,BC=EF=1,DE=3,∠BAD=60º,G 为BC 的中点.(Ⅰ)求证:FG 平面BED ; (Ⅱ)求证:平面BED ⊥平面AED ; (Ⅲ)求直线EF 与平面BED 所成角的正弦值.【来源】2016年全国普通高等学校招生统一考试文科数学(天津卷精编版)【答案】(Ⅰ)详见解析;(Ⅱ)详见解析;(Ⅲ).【解析】试题分析:(Ⅰ)证明线面平行,一般利用线面平行判定定理,即从线线平行出发给予证明,而线线平行寻找与论证,往往结合平面几何知识,如本题构造一个平行四边形:取的中点为,可证四边形是平行四边形,从而得出;(Ⅱ)面面垂直的证明,一般转化为证线面垂直,而线面垂直的证明,往往需多次利用线面垂直判定与性质定理,而线线垂直的证明有时需要利用平面几何的知识,如本题可由余弦定理解出90ADB ∠=°,即;(Ⅲ)求线面角,关键作出射影,即面的垂线,可利用面面垂直的性质定理得到线面垂直,即面的垂线:过点作于点,则平面,从而直线与平面所成角即为.再结合三角形可求得正弦值. 试题解析:(Ⅰ)证明:取中点,连接,在BCD 中,因为是中点,所以且,又因为,所以且,即四边形是平行四边形,所以,又平面,平面,所以平面.(Ⅱ)证明:在ABD 中, 1,2,60AD AB BAD ==∠=°,由余弦定理可得,进而得90ADB ∠=°,即,又因为平面平面平面,平面平面,所以平面.又因为平面,所以,平面平面.(Ⅲ)解:因为,所以直线与平面所成的角即为直线与平面所成的角.过点作于点,连接,又平面平面,由(Ⅱ)知平面,所以直线与平面所成的角即为.在ADE 中,,由余弦定理得,所以,因此,,在Rt AHB 中,,所以,直线EF 与平面所成角的正弦值为.【考点】直线与平面平行和垂直、平面与平面垂直、直线与平面所成的角 【名师点睛】垂直、平行关系的证明中应用转化与化归思想的常见类型: (1)证明线面、面面平行,需转化为证明线线平行. (2)证明线面垂直,需转化为证明线线垂直. (3)证明线线垂直,需转化为证明线面垂直.(4)证明面面垂直,需转化为证明线面垂直,进而转化为证明线线垂直.视频 5.如图,在四棱锥中,平面, ,AB DC DC AC ⊥.(Ⅰ)求证: DC PAC ⊥平面; (Ⅱ)求证: PAB PAC ⊥平面平面;(Ⅲ)设点E 为AB 的中点,在棱PB 上是否存在点F ,使得//PA 平面C F E ?说明理由. 【来源】2016年全国普通高等学校招生统一考试文科数学(北京卷精编版) 【答案】(Ⅰ)见解析;(Ⅱ)见解析;(Ⅲ)存在.理由见解析.【解析】试题分析:(Ⅰ)利用线面垂直判定定理证明;(Ⅱ)利用面面垂直判定定理证明;(Ⅲ)取PB 中点F ,连结EF ,则F//E PA ,根据线面平行的判定定理证明//PA 平面C F E .试题解析:(Ⅰ)因为平面,所以C DC P ⊥. 又因为DC C ⊥A , 所以DC ⊥平面C PA .(Ⅱ)因为//DC AB , DC C ⊥A , 所以C AB ⊥A . 因为平面,所以C P ⊥AB . 所以AB ⊥平面C PA . 所以平面PAB ⊥平面C PA .(Ⅲ)棱PB 上存在点F ,使得//PA 平面C F E .证明如下: 取PB 中点F ,连结EF , C E , CF . 又因为E 为AB 的中点, 所以F//E PA .又因为PA ⊄平面C F E , 所以//PA 平面C F E .【考点】空间线面平行、垂直的判定定理与性质定理;空间想象能力,推理论证能力 【名师点睛】平面与平面垂直的性质定理的应用:当两个平面垂直时,常作的辅助线是在其中一个平面内作交线的垂线,把面面垂直转化为线面垂直,进而可以证明线线垂直(必要时可以通过平面几何的知识证明垂直关系),构造(寻找)二面角的平面角或得到点到面的距离等.视频6.如图,四棱锥P ABC -D 中, PA ⊥平面ABCD , AD BC , 3AB AD AC ===,4PA BC ==, M 为线段AD 上一点, 2AM MD =, N 为PC 的中点.(Ⅰ)证明MN 平面PAB ; (Ⅱ)求四面体N BCM -的体积.【来源】2016年全国普通高等学校招生统一考试文科数学(新课标3卷精编版)【答案】(Ⅰ)见解析;(Ⅱ)【解析】试题分析:(Ⅰ)取PB 的中点T ,然后结合条件中的数据证明四边形AMNT 为平行四边形,从而得到MNAT ,由此结合线面平行的判断定理可证;(Ⅱ)由条件可知四面体N-BCM 的高,即点N 到底面的距离为棱PA 的一半,由此可顺利求得结果.试题解析:(Ⅰ)由已知得,取的中点T ,连接,由N 为中点知,.又,故平行且等于,四边形AMNT 为平行四边形,于是.因为平面,平面,所以平面.(Ⅱ)因为平面, N 为的中点,所以N 到平面的距离为.取的中点,连结.由得,.由得到的距离为,故145252BCMS=⨯⨯=. 所以四面体的体积14532N BCM BCM PA V S -=⨯⨯=. 【考点】直线与平面间的平行与垂直关系、三棱锥的体积【技巧点拨】(1)证明立体几何中的平行关系,常常是通过线线平行来实现,而线线平行常常利用三角形的中位线、平行四边形与梯形的平行关系来推证;(2)求三棱锥的体积关键是确定其高,而高的确定关键又找出顶点在底面上的射影位置,当然有时也采取割补法、体积转换法求解.视频7.如图,菱形ABCD 的对角线AC 与BD 交于点O ,点,E F 分别在,AD CD 上,,AE CF EF =交BD 于点H ,将DEF ∆沿EF 折起到'D EF ∆的位置.(Ⅰ)证明: 'AC HD ⊥;(Ⅱ)若55,6,,'4AB AC AE OD ===='D ABCFE -的体积. 【来源】2016年全国普通高等学校招生统一考试文科数学(新课标2卷精编版)【答案】(Ⅰ)详见解析;(Ⅱ). 【解析】试题分析:(1)由已知得, ,AC BD AD CD ⊥=, AE CF = ⇒AE CFAD CD= ⇒ //AC EF ⇒,EF HD EF HD ⊥⊥' ⇒ AC HD ⊥';(2)由//EF AC ⇒ 14OH AE DO AD ==,由5,6A B A C == ⇒4DO BO ===⇒1,3OH D H DH '===⇒(222219OD OH D H +=+'==' ⇒ OD OH '⊥,可证OD '⊥平面ABC .又由EF DH AC DO =得92EF = ⇒五边形ABCFE 的面积1682S =⨯⨯19693224-⨯⨯= ⇒以五棱锥D ABCEF '-体积16934V =⨯⨯. 试题解析: (1)由已知得, ,AC BD AD CD ⊥=, 又由AE CF =得AE CFAD CD=,故//AC EF , 由此得,EF HD EF HD ⊥⊥',所以AC HD ⊥'. (2)由//EF AC 得14OH AE DO AD ==,由5,6AB AC ==得4DO BO ===,所以1,3OH D H DH '===,于是(222219OD OH D H +=+'==',故OD OH '⊥,由(1)知AC HD ⊥',又,AC BD BD HD H ⊥⋂'=, 所以AC ⊥平面BHD ',于是AC OD ⊥',又由,OD OH AC OH O ⊥'⋂=,所以, OD '⊥平面ABC .又由EF DH AC DO =得92EF =. 五边形ABCFE 的面积119696832224S =⨯⨯-⨯⨯=.所以五棱锥D ABCEF '-体积16934V =⨯⨯=. 考点:1、线线垂直;2、锥体的体积.视频8.如图,已知正三棱锥P-ABC 的侧面是直角三角形,PA=6,顶点P 在平面ABC 内的正投影为点D ,D 在平面PAB 内的正投影为点E ,连结PE 并延长交AB 于点G.(Ⅰ)证明:G 是AB 的中点;(Ⅱ)在图中作出点E 在平面PAC 内的正投影F (说明作法及理由),并求四面体PDEF 的体积.【来源】2016年全国普通高等学校招生统一考试文科数学(新课标1卷精编版) 【答案】(Ⅰ)见解析;(Ⅱ)作图见解析,体积为43. 【解析】试题分析:证明.AB PG ⊥由PA PB =可得G 是AB 的中点.(Ⅱ)在平面PAB 内,过点E 作PB 的平行线交PA 于点F , F 即为E 在平面PAC 内的正投影.根据正三棱锥的侧面是直角三角形且6PA =,可得2,DE PE ==在等腰直角三角形EFP 中,可得 2.EF PF ==四面体PDEF 的体积114222.323V =⨯⨯⨯⨯=试题解析:(Ⅰ)因为P 在平面ABC 内的正投影为D ,所以.AB PD ⊥因为D 在平面PAB 内的正投影为E ,所以.AB DE ⊥ 所以AB ⊥平面PED ,故.AB PG ⊥又由已知可得, PA PB =,从而G 是AB 的中点.(Ⅱ)在平面PAB 内,过点E 作PB 的平行线交PA 于点F , F 即为E 在平面PAC 内的正投影.理由如下:由已知可得PB PA ⊥, PB PC ⊥,又E FP B,所以EF PA EF PC ⊥⊥,,因此EF ⊥平面PAC ,即点F 为E 在平面PAC 内的正投影.连结CG ,因为P 在平面ABC 内的正投影为D ,所以D 是正三角形ABC 的中心. 由(Ⅰ)知, G 是AB 的中点,所以D 在CG 上,故2.3CD CG =由题设可得PC ⊥平面PAB , DE ⊥平面PAB ,所以D EP C,因此21,.33PE PG DE PC ==由已知,正三棱锥的侧面是直角三角形且6PA =,可得2,DE PE == 在等腰直角三角形EFP 中,可得 2.EF PF == 所以四面体PDEF 的体积114222.323V =⨯⨯⨯⨯= 【考点】线面位置关系及几何体体积的计算【名师点睛】文科立体几何解答题主要考查线面位置关系的证明及几何体体积的计算,空间中线面位置关系的证明主要包括线线、线面、面面三者的平行与垂直关系,其中推理论证的关键是结合空间想象能力进行推理,注意防止步骤不完整或考虑不全致推理片面,该类题目难度不大,以中档题为主.视频9.如图,在三棱锥P -ABC 中,PA ⊥AB ,PA ⊥BC ,AB ⊥BC ,PA =AB =BC =2,D 为线段AC 的中点,E 为线段PC 上一点.(1)求证:PA ⊥BD ;(2)求证:平面BDE ⊥平面PAC ;(3)当PA ∥平面BDE 时,求三棱锥E -BCD 的体积.【来源】2017年全国普通高等学校招生统一考试文科数学(北京卷精编版) 【答案】(1)证明见解析;(2)证明见解析;(3)【解析】试题分析:(Ⅰ)要证明线线垂直,一般转化为证明线面垂直;(Ⅱ)要证明面面垂直,一般转化为证明线面垂直、线线垂直;(Ⅲ)由即可求解. 试题解析:(I )因为 , ,所以 平面 , 又因为 平面 ,所以 .(II )因为 , 为 中点,所以 , 由(I )知, ,所以 平面 . 所以平面 平面 .(III )因为 平面 ,平面 平面 , 所以 .因为 为 的中点,所以, . 由(I )知, 平面 ,所以 平面 . 所以三棱锥 的体积.【名师点睛】线线、线面的位置关系以及证明是高考的重点内容,而其中证明线面垂直又是重点和热点,要证明线面垂直,根据判定定理可转化为证明线与平面内的两条相交直线垂直,也可根据性质定理转化为证明面面垂直.10.(2017·北京高考)由四棱柱ABCD ­A 1B 1C 1D 1截去三棱锥C 1­B 1CD 1后得到的几何体如图所示.四边形ABCD 为正方形,O 为AC 与BD 的交点,E 为AD 的中点,A 1E ⊥平面ABCD .(1)证明:A 1O ∥平面B 1CD 1;(2)设M 是OD 的中点,证明:平面A 1EM ⊥平面B 1CD 1.【来源】2017年全国普通高等学校招生统一考试文科数学(山东卷精编版) 【答案】(1)见解析(2)见解析【解析】试题分析:(1)取11B D 中点1O ,由平几知识可得四边形11AOCO 为平行四边形,即得11//AO O C ,再根据线面平行判定定理得1//AO 平面11B CD (2)由平几知识可得EM BD ⊥,再根据1A E ⊥面ABCD ,得1,A E B D ⊥即得111A E B D ⊥ 再根据线面垂直判定定理得11B D ⊥平面1,A EM ,即得平面1A EM ⊥平面11B CD试题解析:证明:(1)取11B D 中点1O ,连接111,CO AO ,由于1111ABCD A BC D -为四棱柱, 所以1111//,=AO CO AO CO , 因此四边形11AOCO 为平行四边形,所以11//AO O C , 又1O C ⊂平面11B CD , 1AO ⊄平面11B CD , 所以1//AO 平面11B CD (2)因为 AC BD ⊥,E,M 分别为AD 和OD 的中点, 所以EM BD ⊥,又 1A E ⊥面ABCD , BD ABCD ⊂平面 所以1,A E BD ⊥ 因为 11//B D BD所以11111EM B D A E B D ⊥⊥, 又 A 1E, EM 11,A EM A E EM E ⊂⋂=平面 所以11B D ⊥平面111,A EM B D ⊂又平面11B CD ,所以 平面1A EM ⊥平面11B CD11.如图,已知四棱锥P-ABCD ,△PAD 是以AD 为斜边的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E 为PD 的中点. (I )证明:CE∥平面PAB ;(II )求直线CE 与平面PBC 所成角的正弦值【来源】2017年全国普通高等学校招生统一考试数学(浙江卷精编版)【答案】(I )见解析;(II 【解析】试题分析:本题主要考查空间点、线、面位置关系,直线与平面所成的角等基础知识,同时考查空间想象能力和运算求解能力。

浙江省《立体几何》高考真题汇编

2014--2018浙江省《立体几何》高考真题汇编2014年浙江理(3)某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是A. 902cm D. 1382cmcm C. 1322cm B. 12922014年浙江理 17、如图,某人在垂直于水平地面ABC的墙面前的点A 处进行射击训练.已知点A到墙面的距离为AB,某目标点P沿墙面上的射击线CM移动,此人为了准确瞄准目标点P,需计算由点A观察点P的仰角θ的大小.若15BCM∠=︒,则tanθ的最大值是=,30AB m=,25AC m(仰角θ为直线AP与平面ABC所成角)2014年浙江理 20.(本题满分15分)如图,在四棱锥A BCDE-中,平面ABC?平面BCDE ,AC=.==,190AB CD∠=∠=︒,2CDE BEDDE BE==,2(Ⅰ)证明:DE?平面ACD;(Ⅱ)求二面角B AD E--的大小.2014年浙江文 2. 设四边形ABCD的两条对角线为AC、BD,则“四边形ABCD为菱形”是“BDAC⊥”的()A. 充分不必要条件B. 必要不成分条件C. 充要条件D. 既不充分也不必要条件2014年浙江文 3. 某几何体的三视图(单位:cm)若图所示,则该几何体的体积是( )A. 372cmB. 390cmC. 3108cmD. 3138cm2014年浙江文 10.如图,某人在垂直于水平地面ABC 的墙面前的点A 处进行射击训练,已知点A 刀枪面对而距离为AB ,某目标点P 沿墙面上的射线CM 移动,此人为了准确瞄准目标点P ,需计算由点A 观察点P 的仰角θ的大小(仰角θ为直线AP 与平面ABC 所成的角),若m AB 15=,m AC 25=,ο30=∠BCM ,则θtan 的最大值是( ) A. 530 B. 1030 C.934 D. 9352014年浙江文6. 设m 、n 是两条不同的直线,α、β是两个不同的平面,则( )A.若n m ⊥,α//n ,则α⊥mB.若β//m ,αβ⊥,则α⊥mC.若β⊥m ,β⊥n ,α⊥n ,则α⊥mD.若n m ⊥,β⊥n ,αβ⊥,则α⊥m2014年浙江文 20、(本小题满分15分)如图,在四棱锥BCDE A -中,平面ABC ⊥平面BCDE ;90CDE BED ∠=∠=︒,2AB CD ==,1DE BE ==,2AC =. (1)证明:AC ⊥平面BCDE ;(2)求直线AE 与平面ABC 所成的角的正切值.2015年浙江理 2.(5分)(2015?浙江)某几何体的三视图如图所示(单位:cm ),则该几何体的体积是( )A . 8cm 3B . 12cm 3C .D .2015年浙江理 8.(5分)(2015?浙江)如图,已知△ABC,D 是AB 的中点,沿直线CD 将△ACD 折成△A′CD,所成二面角A′﹣CD ﹣B 的平面角为α,则( )A . ∠A′DB≤αB . ∠A′DB≥αC . ∠A′CB≤αD . ∠A′CB≥α2015年浙江理 13.(4分)(2015?浙江)如图,三棱锥A ﹣BCD 中,AB=AC=BD=CD=3,AD=BC=2,点M ,N 分别是AD ,BC 的中点,则异面直线AN ,CM 所成的角的余弦值是 .2015年浙江理 17.(15分)(2015?浙江)如图,在三棱柱ABC ﹣A 1B 1C 1中,∠BAC=90°,AB=AC=2,A 1A=4,A 1在底面ABC 的射影为BC 的中点,D是B 1C 1的中点.(1)证明:A 1D⊥平面A 1BC ;(2)求二面角A 1﹣BD ﹣B 1的平面角的余弦值.2015年浙江文 2.(5分)与2015年浙江理的第2题相同2015年浙江文 7、如图,斜线段与平面所成的角为,为斜足,平面上的动点满足,则点的轨迹是( )A .直线B .抛物线B .C .椭圆D .双曲线的一支AB α60o B αP 30∠PAB =o P2015年浙江文 4、设,是两个不同的平面,,是两条不同的直线,且,( )A .若,则B .若,则C .若,则D .若,则2015年浙江文 18. (本题满分15分)如图,在三棱柱ABC ﹣A 1B 1C 1中,∠BAC=90°,AB=AC=2,A 1A=4,A 1在底面ABC 的射影为BC 的中点,D 是B 1C 1的中点.(1)证明: ;(2)求直线和平面所成的角的正弦值.αβl m l α⊂m β⊂l β⊥αβ⊥αβ⊥l m ⊥//l β//αβ//αβ//l m 11D A BC A ⊥平面1A B 11B C B C2016浙江文 2. 已知互相垂直的平面 交于直线l .若直线m ,n 满足m ∥α,n ⊥β,则( )∥l ∥n ⊥l ⊥n2016浙江文 9. 某几何体的三视图如图所示(单位:cm ),则该几何体的表面积是______cm 2,体积是______cm 3.2016浙江文 14.如图,已知平面四边形ABCD ,AB =BC =3,CD =1,AD=,∠ADC =90°.沿直线AC 将△ACD 翻折成△ACD',直线AC 与BD'所成角的余弦的最大值是______.αβ,52016浙江文 18. (本题满分15分)如图,在三棱台ABC-DEF中,平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3.(I)求证:BF ⊥平面ACFD;(II)求直线BD与平面ACFD所成角的余弦值.2016浙江理 2.(5分)已知互相垂直的平面α,β交于直线l,若直线m,n满足m∥α,n⊥β,则()A.m∥l B.m∥n C.n⊥l D.m⊥n2016浙江理 11.(6分)某几何体的三视图如图所示(单位:cm),则该几何体的表面积是______cm2,体积是______cm3.2016浙江理 14.(4分)如图,在△ABC中,AB=BC=2,∠ABC=120°.若平面ABC外的点P和线段AC上的点D,满足PD=DA,PB=BA,则四面体PBCD 的体积的最大值是______.2016浙江理 17.(15分)如图,在三棱台ABC﹣DEF中,已知平面BCFE ⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3,(Ⅰ)求证:BF⊥平面ACFD;(Ⅱ)求二面角B﹣AD﹣F的余弦值.2017年浙江3.某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A.+1B.+3 C.+1 D.+3π2π23π23π22017年浙江 9.如图,已知正四面体D–ABC(所有棱长均相等的三棱锥),P,Q,R分别为AB,BC,CA上的点,AP=PB,,分别记二面角D–PR–Q,D–PQ–R,D–QR–P的平面角为α,β,γ,则()A.γ<α<βB.α<γ<βC.α<β<γD.β<γ<α2017年浙江 19.(本题满分15分)如图,已知四棱锥P–ABCD,△PAD 是以AD为斜边的等腰直角三角形,,CD⊥AD,PC=AD=2DC=2CB,E 为PD的中点.(Ⅰ)证明:平面PAB;(Ⅱ)求直线CE与平面PBC 所成角的正弦值.2BQ CRQC RA==//BC AD//CE2018年浙江省 3.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是( )A .2B .4C .6D .82018年浙江省 8.已知四棱锥S ?ABCD 的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设SE 与BC 所成的角为θ1,SE 与平面ABCD 所成的角为θ2,二面角S ?AB ?C 的平面角为θ3,则( )A .θ1≤θ2≤θ3B .θ3≤θ2≤θ1C .θ1≤θ3≤θ2D .θ2≤θ3≤θ12018年浙江省 19.(本题满分15分)如图,已知多面体ABCA 1B 1C 1,A 1A ,B 1B ,C 1C 均垂直于平面ABC ,∠ABC =120°,A 1A =4,C 1C =1,AB =BC =B 1B =2.(Ⅰ)证明:AB 1⊥平面A 1B 1C 1;(Ⅱ)求直线AC 1与平面ABB 1所成的角的正弦值.俯视图正视图。

2004—2019浙江高考真题《立体几何》汇编

2004−2019浙江高考真题《立体几何》汇编三视图1. (2009浙江文12理12)某几何体的三视图(单位:cm )如图所示,则此几何体的体积是 3cm .2. (2010浙江文8)某几何体的三视图(单位:cm )如图所示,则此几何体的体积是( )A .3352cm 3B .3320cm 3C .3224cm 3D .3160cm 33. (2010浙江理12)若某几何体的三视图(单位:cm )如图所示,则此几何体的体积是 3cm .侧视图俯视图正视图侧视图俯视图侧视图俯视图4. (2011浙江文7)某几何体的三视图如图所示,则这个几何体的直观图可以是( )5. (2011浙江理3)某几何体的三视图如图所示,则这个几何体的直观图可以是( )6. (2012浙江文3)已知某三棱锥的三视图(单位:cm )如图所示,则该三棱锥的体积是( )A .13cmB .23cmC .33cmD .63cmDC BA侧视图俯视图正视图DCB A 侧视图俯视图正视图侧视图俯视图正视图7. (2012浙江理11)已知某三棱锥的三视图(单位:cm )如图所示,则该三棱锥的体积等于 3cm .8. (2013浙江文5)已知某几何体的三视图(单位:cm )如图所示,则该几何体的体积是( )A .1083cmB .1003cmC .923cmD .843cm9. (2013浙江理12)若某几何体的三视图(单位:cm )如图所示,则此几何体的体积等于 3cm .侧视图俯视图正视图俯视图侧视图正视图侧视图正视图3410. (2014浙江文3)某几何体的三视图(单位:cm )如图所示,则该几何体的体积是( )A .723cmB .903cmC .1083cmD .1383cm11. (2014浙江理3)某几何体的三视图(单位:cm )如图所示,则该几何体的表面积是( )A .902cmB .1292cmC .1322cmD .1382cm12. (2015浙江文2理2)某几何体的三视图如图所示(单位:cm ),则该几何体的体积是( )A .83cmB .123cmC .3233cmD .403cm俯视图侧视图正视图俯视图侧视图正视图侧视图正视图13. (2016浙江理11)某几何体的三视图如图所示(单位:cm ),则该几何体的表面积是 2cm ,体积是 3cm .14. (2016浙江文9)某几何体的三视图如图所示(单位:cm ),则该几何体的表面积是 2cm ,体积是 3cm .15. (2017浙江3)某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是()A .12π+B .32π+C .312π+D .332π+俯视图正视图316. (2018浙江3)某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:3cm )是( )A .2B .4C .6D .817. (2019浙江4)祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V Sh 柱体,其中S 是柱体的底面积,h 是柱体的高.若某柱体的三视图如图所示(单位:cm ),则该柱体的体积(单位:3cm )是( ) A .158B .162C .182D .324俯视图正视图俯视图侧视图正视图点、直线、平面位置关系18. (2005浙江文7理6)设α,β为两个不同的平面,l ,m 为两条不同的直线,且l α⊂,m β⊂.有如下两个命题:①若αβ∥,则l m ∥;②若l m ⊥,则αβ⊥.那么( ) A .①是真命题,②是假命题 B .①是假命题,②是真命题C .①②都是真命题D .①②都是假命题19. (2007浙江文7理6)若P 是两条异面直线l ,m 外的任意一点,则( )A .过点P 有且仅有一条直线与l ,m 都平行B .过点P 有且仅有一条直线与l ,m 都垂直C .过点P 有且仅有一条直线与l ,m 都相交D .过点P 有且仅有一条直线与l ,m 都异面20. (2008浙江文9)对两条不相交的空间直线a 与b ,必存在平面α,使得( )A .a α⊂,b α⊂B .a α⊂,b α∥C .a α⊥,b α⊥D .a α⊂,b α⊥21. (2009浙江文4)设α,β是两个不同的平面,l 是一条直线,以下命题正确的是( )A .若l α⊥,αβ⊥,则l β⊂B .若l α∥,αβ∥,则l β⊂C .若l α⊥,αβ∥,则l β⊥D .若l α⊥,αβ⊥,则l β⊥22. (2010浙江理6)设l ,m 是两条不同的直线,α是一个平面,则下列命题正确的是( )A .若l m ⊥,m α⊂,则l α⊥B .若l α⊥,l m ∥,则m α⊥C .若l α∥,m α⊂,则l m ∥D .若l α∥,m α∥,则l m ∥23. (2011浙江文4)若直线l 不平行于平面α,且l α⊄,则( )A .α内的所有直线与l 异面B .α内不存在与l 平行的直线C .α内存在唯一的直线与l 平行D .α内的直线与l 都想交24. (2011浙江理4)下列命题中错误的是( )A .如果αβ平面⊥平面,那么平面α内一定存在直线平行于平面βB .如果αβ平面不垂直于平面,那么平面α内一定不存在直线垂直于平面βC .如果αγ平面⊥平面,βγ平面⊥平面,l αβ=,那么l γ⊥平面D .如果αβ平面⊥平面,那么平面α内所有直线都垂直于平面β25. (2012浙江文5)设直线l 是直线,α,β是两个不同的平面.( )A .若l α∥,l β∥,则αβ∥B .若l α∥,l β⊥,则αβ⊥C .若αβ⊥,l α⊥,则l β⊥D .若αβ⊥,l α∥,则l β⊥26. (2013浙江文4)设m ,n 是两条不同的直线,α,β是两个不同的平面.( )A .若m α∥,n α∥,则m n ∥B .若m α∥,m β∥,则αβ∥C .若m n ∥,m α⊥,则n α⊥D .若m α∥,αβ⊥,则m β⊥27. (2014浙江文6)设m ,n 是两条不同的直线,α,β是两个不同的平面.( )A .若m n ⊥,n α∥,则m α⊥B .若m β∥,βα⊥,则m α⊥C .若m β⊥,n β⊥,n α⊥,则m α⊥D .若m n ⊥,n β⊥,βα⊥,则m α⊥28. (2015浙江文4)设α,β是两个不同的平面,l ,m 是两条不同的直线,且l α⊂,m β⊂.( )A .若l β⊥,则αβ⊥B .若αβ⊥,则l m ⊥C .若l β∥,则αβ∥D .若αβ∥,则l m ∥29. (2016浙江文2理2)已知互相垂直的平面α,β交于直线l ,若直线m ,n 满足m α∥,n β⊥,则( ) A .m l ∥ B .m n ∥C .n l ⊥D .m n ⊥30. (2018浙江6)已知平面α,直线m ,n 满足m α⊄,n α⊂,则“m n ∥”是“m α∥”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件小题31. (2004浙江文15)已知α平面⊥β平面,l αβ=,P 是空间一点,且P 到平行α,β的距离分别是1,2,则点P 到l 的距离为 .32. (2004浙江理16)已知平面α和平面β相交于直线l ,P 是空间一点,P A ⊥α,垂足为A ,PB ⊥β,垂足为B ,且1PA =,2PB =,若点A 在β内的射影与点B 在α内的射影重合,则点P 到l 的距离为 .33. (2004浙江文10理10)如图,在正三棱柱111ABC A B C -中,已知1AB =,D 在棱1BB 上,且1BD =,若AD 与平面11AA C C 所成的角为α,则sin α=( ) ABCDDB 1A 1C 1CBA34. (2005浙江文12理12)设M ,N 是直角梯形ABCD 两腰的中点,DE ⊥AB 于E (如图).现将△ADE沿DE 折起,使二面角A DE B --为45°,此时点A 在平面BCDE 内的射影为点B ,则M ,N 的连线与AE 所成角的大小等于 .35. (2006浙江文8)如图,正三棱柱111ABC A B C -的各棱长都为2,E ,F 分别是AB ,11A C 的中点,则EF 的长是( ) A .2BCD36. (2006浙江理9)如图,O 是半径为1的球的球心,点A ,B ,C 在球面上,OA ,OB ,OC 两两垂直,E ,F 分别是大圆弧AB 与AC 的中点,则点E ,F 在该球面上的球面距离是( ) A .4π B .3π C .2π D.4B 1C 1A 1FE CBA37. (2006浙江文14)如图,正四面体ABCD 的棱长为1,平面α过棱AB ,且CD α∥,则正四面体上的所有点在平面α内的射影构成的图形面积是 .38. (2006浙江理14)正四面体ABCD 的棱长为1,棱AB ∥平面α,则正四面体上的所有点在平面α内的射影构成的图形面积的取值范围是 .39. (2007浙江文17理16)已知点O 在二面角AB αβ--的棱上,点P 在α内,且45POB ∠=︒.若对于β内异于O 的任意一点Q ,都有45POQ ∠≥︒,则二面角AB αβ--的大小是 .40. (2008浙江文15理14)如图,已知球O 的面上四点A ,B ,C ,D ,DA ⊥平面ABC ,AB ⊥BC ,DA AB BC ===O 的体积等于 .BDACαBDACαDBCA41. (2008浙江理10)如图,AB 是平面α的斜线段...,A 为斜足.若点P 在平面α内运动,使得△ABP 的面积为定值,则动点P 的轨迹是( ) A .圆B .椭圆C .一条直线D .两条平行直线42. (2009浙江理5)在三棱柱111ABC A B C -中,各棱长相等,侧棱垂直于底面,点D 是侧面11BB C C 的中心,则AD 与平面11BB C C 所成角的大小是( ) A .30° B .45°C .60°D .90°43. (2009浙江理17)如图,在长方形ABCD 中,2AB =,1BC =,E 为DC 的中点,F 为线段EC (端点除外)上一动点,现将AFD △沿AF 折起,使平面ABD ⊥平面ABC ,在平面ABD 内过点D 作DK AB ⊥,K 为垂足,设AK t =,则t 的取值范围是 .PABαKFDCBA44. (2012浙江理10)已知矩形ABCD ,1AB =,BC .将△ABD 沿矩形的对角线BD 所在的直线进行翻折,在翻折过程中,( )A .存在某个位置,使得直线AC 与直线BD 垂直B .存在某个位置,使得直线AB 与直线CD 垂直C .存在某个位置,使得直线AD 与直线BC 垂直D .对于任意位置,三对直线“AC 与BD ”,“AB 与CD ”,“AD 与BC ”均不垂直45. (2013浙江理10)在空间中,过点A 作平面π的垂线,垂足为B ,记()B f A π=.设α,β是两个不同的平面,对空间任意一点P ,()1Q f f P βα=⎡⎤⎣⎦,()2Q f f P αβ⎡⎤=⎣⎦,恒有12PQ PQ =,则( ) A .α平面与β平面垂直 B .α平面与β平面所成的(锐)二面角为45° C .α平面与β平面平行 D .α平面与β平面所成的(锐)二面角为60°46. (2014浙江文10理17)如图,某人在垂直于水平地面ABC 的墙面前的点A 处进行射击训练.已知点A 到墙面的距离为AB ,某目标点P 沿墙面上的射线CM 移动,此人为了准确瞄准目标点P ,需计算由点A 观察点P 的仰角θ的大小.若15m AB =,25m AC =,30BCM ∠=︒,则tan θ的最大值是 .(仰角θ为直线AP 与平面ABC 所成角)PMCB A47. (2015浙江文7)如图,斜线段AB 与平面α所成的角为60︒,B 为斜足,平面α上的动点P 满足30PAB ∠=︒,则点P 的轨迹是( )A .直线B .抛物线C .椭圆D .双曲线的一支48. (2015浙江理8)如图,已知ABC △,D 是AB 的中点,沿直线CD 将ACD △翻折成A CD '△,所成( ) A .A DB α'∠≤B .A DB α'∠≥C .A CB α'∠≤D .A CB α'∠≥49. (2015浙江理13)如图,在三棱锥A BCD -中,3AB AC BD CD ====,2AD BC ==,点M ,N 分别为AD ,BC 的中点,则异面直线AN ,CM 所成的角的余弦值是 .αPBAA'DCBAMNDCBA50. (2016浙江文14)如图,已知平面四边形ABCD ,3AB BC ==,1CD =,AD =90ADC ∠=︒.沿直线AC 将△ACD 翻折成△ACD',直线AC 与BD'所成角的余弦的最大值是 .51. (2016浙江理14)如图,在△ABC 中,2AB BC ==,120ABC ∠=︒.若平面ABC 外的点P 和线段AC 上的点D ,满足PD DA =,PB BA =,则四面体PBCD 的体积的最大值是 .52. (2017浙江9)如图,已知正四面体D ABC -(所有棱长均相等的三棱锥),P ,Q ,R 分别为AB ,BC ,CA 上的点,AP PB =,2BQ CRQC RA==,分别记二面角D PR Q --,D PQ R --,D QR P --的平面角 为α,β,γ,则( ) A .γαβ<<B .αγβ<<C .αβγ<<D .βγα<<D'DC APDCBARCQBP A D53. (2018浙江8)已知四棱锥S ABCD -的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设SE 与BC 所成的角为1θ,SE 与平面ABCD 所成的角为2θ,二面角S AB C --的平面角为3θ,则( ) A .123θθθ≤≤ B .321θθθ≤≤ C .132θθθ≤≤ D .231θθθ≤≤54. (2019浙江8)设三棱锥V ABC -的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点).记直线PB 与直线AC 所成的角为α,直线PB 与平面ABC 所成的角为β,二面角P AC B --的平面角为γ,则( ) A .,βγαγ<< B .,βαβγ<< C .,βαγα<< D .,αβγβ<<大题55. (2004浙江文19)如图,已知正方形ABCD 和矩形ACEF所在的平面互相垂直,AB =1AF =,M 是线段EF 的中点. (1)求证:AM ∥平面BDE ; (2)求证:AM ⊥平面BDF ; (3)求二面角A DF B --的大小.M FEDCBA56. (2004浙江理19)如图,已知正方形ABCD 和矩形ACEF所在的平面互相垂直,AB =1AF =,M 是线段EF 的中点. (1)求证:AM ∥平面BDE ; (2)求二面角A DF B --的大小;(3)试在线段AC 上确定一点P ,使得PF 与BC 所成的角是60︒.57. (2005浙江文18)如图,在三棱锥P ABC -中,AB BC ⊥,12AB BC PA ==,点O ,D 分别是AC ,PC 的中点,OP ⊥底面ABC .(1)求证:OD ∥平面PAB ;(2)求直线OD 与平面PBC 所成角的大小.58. (2005浙江理18)如图,在三棱锥P ABC -中,AB BC ⊥,AB BC kPA ==,点O ,D 分别是AC ,PC 的中点,OP ⊥底面ABC . (1)求证:OD ∥平面PAB ;(2)当12k =,求直线PA 与平面PBC 所成角的大小;(3)当k 取何值时,O 在平面PBC 内的射影恰好为PBC △的重心?MFEDCBA59. (2006浙江文17)如图,在四棱锥P ABCD -中,底面为直角梯形,AD BC ∥,90BAD ∠=︒,PA ⊥底面ABCD ,且2PA AD AB BC ===,M ,N 分别为PC ,PB 的中点. (1)求证:PB DM ⊥;(2)求BD 与平面ADMN 所成角.60. (2006浙江理17)如图,在四棱锥P ABCD -中,底面为直角梯形,AD BC ∥,90BAD ∠=︒,PA ⊥底面ABCD ,且2PA AD AB BC ===,M ,N 分别为PC ,PB 的中点. (1)求证:PB DM ⊥;(2)求CD 与平面ADMN 所成的角.61. (2007浙江理19)在如图所示的几何体中,EA ⊥平面ABC ,DB ⊥平面ABC ,AC ⊥BC ,且2AC BC BD AE ===,M 是AB 的中点.(1)求证:CM EM ⊥;(2)求CM 与平面CDE 所成的角.62. (2007浙江文20)在如图所示的几何体中,EA ⊥平面ABC ,DB ⊥平面ABC ,AC BC ⊥,且2AC BC BD AE ===,M 是AB 的中点.(1)求证:CM EM ⊥;(2)求DE 与平面EMC 所成角的正切值.63. (2008浙江文20理18)如图,矩形ABCD 和梯形BEFC 所在平面互相垂直,BE ∥CF ,90BCF CEF ∠=∠=︒,AD ,2EF =.(1)求证:AE DCF ∥平面;(2)当AB 的长为何值时,二面角A EF C --的大小为60°?64. (2009浙江文19)如图,DC ⊥平面ABC ,EB DC ∥,22AC BC EB DC ====,120ACB ∠=︒,P ,Q 分别为AE ,AB 的中点. (1)证明:PQ ACD ∥平面;(2)若AD 与平面ABE 所成角的正弦值.FEDCBA QPCDEBA65. (2009浙江理20)如图,平面PAC ⊥平面ABC ,ABC △是以AC 为斜边的等腰直角三角形,E ,F ,O 分别为P A ,PB ,AC 的中点,16AC =,10PA PC ==. (1)设G 是OC 的中点,证明:FG ∥平面BOE ;(2)证明:在ABO △内存在一点M ,使FM ⊥平面BOE ,并求点M 到OA ,OB 的距离.66. (2010浙江文20)如图,在平行四边形ABCD 中,2AB BC =,120ABC ∠=︒,E 为线段AB 的中点,将ADE △沿直线DE 翻折成A DE '△,使平面A DE '⊥平面BCD ,F 为线段A C '的中点. (1)求证:BF ∥平面A DE ';(2)设M 为线段DE 的中点,求直线FM 与平面A DE '所成角的余弦值.67. (2010浙江理20)如图,在矩形ABCD 中,点E ,F 分别在线段AB ,AD 上,243AE EB AF FD ====, 沿直线EF 将AEF △翻折成A EF '△,使平面A EF '⊥平面BEF . (1)求二面角A FD C '--的余弦值;(2)点M ,N 分别在线段FD ,BC 上,若沿直线MN 将四边形MNCD 向上翻折,使C 与A '中和,求线段FM 的长.GF EPOCBAA'MFED CBANM A'F EDCB A68. (2011浙江文20)如图,在三棱锥P ABC -中,AB AC =,D 为BC 的中点,PO ⊥平面ABC ,垂足O 落在线段AD 上. (1)证明:AP BC ⊥;(2)已知8BC =,4PO =,3AO =,2OD =,求二面角B AP C --的大小.69. (2011浙江理20)如图,在三棱锥P ABC -中,AB AC =,D 为BC 的中点,PO ⊥平面ABC ,垂足O 落在线段AD 上.已知8BC =,4PO =,3AO =,2OD =. (1)证明:AP BC ⊥;(2)在线段AP 上是否存在点M ,使得二面角A MC B --为直二面角?若存在,求出AM 的长;若不存在,请说明理由.70. (2012浙江文20)如图,在侧棱垂直底面的四棱柱1111ABCD A B C D -中,AD ⊥AB,AB =2AD =,4BC =,12AA =,E 是1DD 的中点,F 是平面11B C E 与直线1AA 的交点.(1)证明:(i )11EF A D ∥;(ii )111BA B C EF ⊥平面;(2)求1BC 与11B C EF 平面所成角的正弦值.OPDCBAOPDCBAD 1C 1B 1A 1EF B D CA71. (2012浙江理20)如图,在四棱锥P ABCD -中,底面是边长为的菱形,120BAD ∠=︒,且PA ABCD ⊥平面,PA =,M ,N 分别为PB ,PD 的中点.(1)证明:MN ∥平面ABCD ;(2)过点A 作AQ PC ⊥,垂足为点Q ,求二面角A MN Q --的平面角的余弦值.72. (2013浙江文20)如图,在四棱锥P ABCD -中,P A ⊥平面ABCD ,2AB BC ==,AD CD ==PA 120ABC ∠=︒.G 为线段PC 上的点. (1)证明:BD ⊥平面P AC ;(2)若G 为PC 的中点,求DG 与平面APC 所成的角的正切值;(3)若G 满足PC ⊥平面BGD ,求PGGC的值.73. (2013浙江理20)如图,在四面体A BCD -中,AD ⊥平面BCD ,BC CD ⊥,2AD =,BD =.M是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且3AQ QC =. (1)证明:PQ BCD ∥平面;(2)若二面角C BM D --的大小为60°,求BDC ∠的大小.QMNDABPGDB APQPMDBA74. (2014浙江文20)如图,在四棱锥A BCDE -中,平面ABC ⊥平面BCDE ,90CDE BED ∠=∠=︒,2AB CD ==,1DE BE ==,AC =(1)证明:AC BCDE ⊥平面;(2)求直线AE 与平面ABC 所成角的正切值.75. (2014浙江理20)如图,在四棱锥A BCDE -中,平面ABC ⊥平面BCDE ,90CDE BED ∠=∠=︒,2AB CD ==,1DE BE ==,AC(1)证明:DE ACD ⊥平面; (2)求二面角B AD E --的大小.76. (2015浙江文18)如图,在三棱柱111ABC A B C -中,90BAC ∠=︒,2AB AC ==,14AA =,1A 在底面ABC 的射影为BC 的中点,D 为11B C 的中点. (1)证明:11A D A BC ⊥平面;(2)求直线1A B 和平面11BB C C 所成的角的正弦值.BED CABED CAC 1B 1A 1DC BA77. (2015浙江理17)如图,在三棱柱111ABC A B C -中,90BAC ∠=︒,2AB AC ==,14AA =,1A 在底面ABC 的射影为BC 的中点,D 为11B C 的中点. (1)证明:11A D A BC ⊥平面;(2)求二面角11A BD B --的平面角的余弦值.78. (2016浙江文18)如图,三棱台ABC DEF -中,平面BCFE ⊥平面ABC ,90ACB ∠=︒,1BE EF FC ===,2BC =,3AC =.(1)求证:BF ⊥平面ACFD ;(2)求直线BD 与平面ACFD 所成角的余弦值.79. (2016浙江理17)如图,在三棱台ABC DEF -中,平面BCFE ⊥平面ABC ,90ACB ∠=︒,1BE EF FC ===,2BC =,3AC =.(1)求证:BF ⊥平面ACFD ;(2)求二面角B AD F --的平面角的余弦值.C 1B 1A 1DC BA80. (2017浙江19)如图,已知四棱锥P −ABCD ,△P AD 是以AD 为斜边的等腰直角三角形,BC ∥AD ,CD ⊥AD ,22PC AD DC CB ===,E 为PD 的中点. (1)证明:CE ∥平面P AB ;(2)求直线CE 与平面PBC 所成角的正弦值.81. (2018浙江19)如图,已知多面体111ABCA B C ,1A A ,1B B ,1C C 均垂直于平面ABC ,120ABC ∠=︒,14A A =,11C C =,12AB BC B B ===. (1)证明:1111AB A B C ⊥平面;(2)求直线1AC 与平面1ABB 所成的角的正弦值.82. (2019浙江19)如图,已知三棱柱111ABC A B C -,平面11A ACC ⊥平面ABC ,90ABC ∠=︒,30BAC ∠=︒,11A A AC AC ==,E ,F 分别是AC ,11A B 的中点. (1)证明:EF BC ⊥;(2)求直线EF 与平面1A BC 所成角的余弦值.ED CBAPC 1B 1A 1CBAC 1B 1A 1FECBA。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浙江高考(2005--2015-)立体几何专题(文科) 1 【2005】18.如图,在三棱锥P-ABC中,AB⊥BC,AB=BC=12PA,点O、D分别是AC、PC的中点,OP⊥底面ABC. (Ⅰ)求证OD∥平面PAB (Ⅱ) 求直线OD与平面PBC所成角的大小;

【2006】(Ⅱ)设P是图象上的最高点,M,N是图象与x轴的交点,求PM与PN的夹角。 (17)如图,在四棱锥 P—ABCD中,底面为直角梯形, AD∥BC,∠BAD=90°,PA⊥底面 ABCD, 且 PA=AD=AB=2BC,M、N分别为 PC、PB的中点。

(Ⅰ)求证:PB⊥DM; (Ⅱ)求 BD与平面 ADMN所成的角。

DOA

B

C

P浙江高考(2005--2015-)立体几何专题(文科)

2 【2007】(20)(本题14分)在如图所示的几何体中,EA⊥平面ABC,DB⊥平面ABC,AC⊥BC,且AC=BC=BD=2AE,M是AB的中点. (I)求证:CM ⊥EM: (Ⅱ)求DE与平面EMC所成角的正切值.

【2008】(20)(本题14分)如图,矩形ABCD和梯形BEFC所在平面互相垂直, ,∠BCF=∠CEF=90°,AD=.2,3EF (Ⅰ)求证:AE∥平面DCF; (Ⅱ)当AB的长为何值时,二面角A-EF-C的大小为60°

EMACB

D浙江高考(2005--2015-)立体几何专题(文科)

3 【2009】(20)(本题满分14分)如图,在平行四边形ABCD中,AB=2BC,∠ABC=120°,E为线段AB的中线,将△ADE沿直线DE翻折成△A′DE,使平面A′DE⊥平面BCD,F为线段A′C的中点. (Ⅰ)求证:BF∥平面A′DE; (Ⅱ)设M为线段DE的中点,求直线FM与平面A′DE所成角的余弦值. 浙江高考(2005--2015-)立体几何专题(文科)

4 【2010】(20)(本题满分14分)如图,在平行四边形ABCD中,AB=2BC,∠ABC=120°,E为线段AB的中线,将△ADE沿直线DE翻折成△A′DE,使平面A′DE⊥平面BCD,F为线段A′C的中点. (Ⅰ)求证:BF∥平面A′DE; (Ⅱ)设M为线段DE的中点,求直线FM与平面A′DE所成角的余弦值. 浙江高考(2005--2015-)立体几何专题(文科)

5 【2011】(20)(本题满分14分)如图,在三棱锥PABC中,ABAC,D为BC的中点,PO⊥平面ABC,垂足O落在线段AD上. (Ⅰ)证明:AP⊥BC; (Ⅱ)已知8BC,4PO,3AO,2OD.求二面角BAPC的大小.

【2012】20. (本题满分15分)如图,在侧棱垂直底面的四棱柱ABCD-A1B1C1D1中,AD∥BC,AD⊥AB,AB=2。AD=2,BC=4,AA1=2,E是DD1的中点,F是平面B1C1E与直线AA1的交点。 (1)证明:(i)EF∥A1D1; (ii)BA1⊥平面B1C1EF;

(2)求BC1与平面B1C1EF所成的角的正弦值。 浙江高考(2005--2015-)立体几何专题(文科)

6 【2013】20.(2013浙江,文20)(本题满分15分)如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AB=BC=2,AD=CD=7,PA=3,∠ABC=120°,G为线段PC上的

点. (1)证明:BD⊥平面APC; (2)若G为PC的中点,求DG与平面APC所成的角的正切值;

(3)若G满足PC⊥平面BGD,求PGGC的值.

【2014】20.(本题满分15分)(2014浙江,文20)如图,在四棱锥A-BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED=90°,AB=CD=2,DE=BE=1,2AC.

(1)证明:AC⊥平面BCDE; (2)求直线AE与平面ABC所成的角的正切值. 浙江高考(2005--2015-)立体几何专题(文科)

7 【2015】 18、(本题满分15分)如图,在三棱柱ABC-A1B1C1中,∠BAC=90°,

AB=AC=2,A1A=4,A1在底面ABC的射影为BC的中点,D是B1C1的中点。 (Ⅰ)证明:A1D⊥平面A1BC; (Ⅱ)求直线A1B和平面BB1C1C所成的角的正弦值。 浙江高考(2005--2015-)立体几何专题(文科)

8 浙江高考2004--2014------线性规划专题(理科)

【2004】(19)(本题满分12分) 如图,已知正方形ABCD和矩形ACEF所在的平面互相垂直,

AB=2,AF=1,M是线段EF的中点 (Ⅰ)求证AM∥平面BDE; (Ⅱ)求二面角A—DF—B的大小;

【2005】18.如图,在三棱锥P-ABC中,AB⊥BC,AB=BC=kPA,点O、D分别是AC、PC的中点,OP⊥底面ABC.

(Ⅰ)当k=21时,求直线PA与平面PBC所成角的大小; (Ⅱ) 当k取何值时,O在平面PBC内的射影恰好为△PBC的重心?

ABCD

F

EM

DOA

B

C

P浙江高考(2005--2015-)立体几何专题(文科)

9 【2006】(17)如图,在四棱锥P—ABCD中,底面为直角梯形,, AD∥BC,∠BAD=90°,PA⊥底面ABCD,且PA=AD=AB=2BC, M、N分别为PC、PB的中点。 (Ⅰ)求证:PB⊥DM; (Ⅱ)求BD与平面ADMN所成的角。

【2007】(19)(本题14分)在如图所示的几何体中,EA平面ABC,DB平面ABC,ACBC,且2ACBCBDAE,M是AB的中点.

(I)求证:CMEM; (II)求CM与平面CDE所成的角. 浙江高考(2005--2015-)立体几何专题(文科)

10 【2008】(18)(本题14分)如图,矩形ABCD和梯形BEFC所在平面互相垂直,BE//CF,BCF=CEF=90,AD=3,EF=2。

(Ⅰ)求证:AE//平面DCF; (Ⅱ)当AB的长为何值时,二面角A-EF-C的大小为60?

【2009】20.(本题满分15分)如图,平面PAC平面ABC,ABC 是以AC为斜边的等腰直角三角形,,,EFO分别为PA, PB,AC的中点,16AC,10PAPC.

(I)设G是OC的中点,证明://FG平面BOE; (II)证明:在ABO内存在一点M,使FM平面 浙江高考(2005--2015-)立体几何专题(文科)

11 【2010】(20)(本题满分15分)如图, 在矩形ABCD中,点,EF分别 在线段,ABAD上,243AEEBAFFD.沿直线EF 将 AEFV翻折成'AEFV,使平面'AEFBEF平面. (Ⅰ)求二面角'AFDC的余弦值; (Ⅱ)点,MN分别在线段,FDBC上,若沿直线MN将四 边形MNCD向上翻折,使C与'A重合,求线段FM 的长。

【2011】20)(本题满分15分)如图,在三棱锥P-ABC中,AB=AC,D为BC的中点,PO⊥平面ABC,垂足O落在线段AD上,已知BC=8,PO=4,AO=3,OD=2 (Ⅰ)证明:AP⊥BC; (Ⅱ)在线段AP上是否存在点M,使得二面角A-MC-B为直 浙江高考(2005--2015-)立体几何专题(文科)

12 【2012】20.(本小题满分15分)如图,在四棱锥P—ABCD中,底面是边长为23的菱形,且∠BAD=120°,且PA⊥平面ABCD,PA=26,M,N分别为PB,PD的中点. (Ⅰ)证明:MN∥平面ABCD; (Ⅱ) 过点A作AQ⊥PC,垂足为点Q,求二面角A—MN—Q的平面角的余弦值.

【2013】20.(本题满分15分)如图,在四面体ABCD中,AD平面BCD, BCCD,2AD,22BD.M是AD的中点,P是BM的中

点,点Q在线段AC上,且3AQQC. (Ⅰ)证明://PQ平面BCD; (Ⅱ)若二面角CBMD的大小为60,求BDC的大小. 浙江高考(2005--2015-)立体几何专题(文科)

13 【2014】20.(本题满分15分) 如图,平面ABCD⊥平面ADEF,其中ABCD为矩形,ADEF为梯形, AF∥DE,AF⊥FE,AF=AD=2 DE=2. (Ⅰ) 求异面直线EF与BC所成角的大小;

(Ⅱ) 若二面角A-BF-D的平面角的余弦值为13,求AB的长.

【2015】20.(本题满分15分) 在四棱锥P-ABCD中,底面是边长为2的菱形,∠BAD=60º,PA=PD=3,PD⊥CD.E为AB中点. (Ⅰ) 证明:PE⊥CD; (Ⅱ) 求二面角C-PE-D的正切值.

A E F

D

B C

(第20题图)

P A C B D E (第20题图)

相关文档
最新文档