新高考浙江理科数学试题及答案解析版
2022年全国普通高等学校招生统一考试数学试卷+浙江卷(含解析)(参考版)

2022年普通高等学校招生全国统一考试浙江卷数学试卷选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合{1,2}A=,{2,4,6}B=,则A B =( )A.{2}B.{1,2}C.{2,4,6}D.{1,2,4,6}2.已知a,b∈R,3i(i)ia b+=+(i为虚数单位),则( )A.1a=,3b=- B.1a=-,3b= C.1a=-,3b=- D.1a=,3b=3.若实数x,y满足约束条件20,270,20,xx yx y-≥⎧⎪+-≤⎨⎪--≤⎩则34z x y=+的最大值是( )A.20B.18C.13D.64.设x∈R,则“sin1x=”是“cos0x=”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件5.某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:3cm)是( )A.22πB.8πC.22π3D.16π36.为了得到函数2sin3y x=的图象,只要把函数π2sin35y x⎛⎫=+⎪⎝⎭图象上所有的点( )A.向左平移π5个单位长度 B.向右平移π5个单位长度C.向左平移π15个单位长度 D.向右平移π15个单位长度 7.已知25a =,8log 3b =,则34a b -=( ) A.25B.5C.259D.538.如图,已知正三棱柱111ABC A B C -,1AC AA =,E ,F 分别是棱BC ,11A C 上的点.记EF 与1AA 所成的角为α,EF 与平面ABC 所成的角为β,二面角F BC A --的平面角为γ,则( )A.αβγ≤≤B.βαγ≤≤C.βγα≤≤D.αγβ≤≤9.已知a ,b ∈R ,若对任意x ∈R ,|||4||25|0a x b x x -+---≥,则( ) A.1a ≤,3b ≥B.1a ≤,3b ≤C.1a ≥,3b ≥D.1a ≥,3b ≤10.已知数列{}n a 满足11a =,()2*113n n n a a a n +=-∈N ,则( ) A.100521002a <<B.100510032a << C.100731002a <<D.100710042a << 非选择题部分(共110分)二、填空题:本大题共7小题,单空题每题4分,多空题每空3分,共36分。
2022浙江高考理数试卷及答案

2022浙江高考理数试卷及答案【一】:2022年高考浙江卷理数试题及答案2022年普通高等学校招生全国统一考试(浙江卷)数学(理科)一、选择题:本大题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一个是符合题目要求的。
1、已知集合P=,Q=,则P=,则A。
[2,3]B。
(-2,3]C。
[1,2)D。
2、已知互相垂直的平面A。
B。
C。
交于直线l,若直线m,n满足D。
3、在平面上,过点P作直线l的垂线所得的垂足称为点P在直线l上的投影,由区域中的点在直线+y-2=0上的投影构成的线段记为AB,则,AB,=A。
B。
4C。
D。
6使得”的否定形式是B。
D。
则的最小正周期使得使得4、命题“A。
C。
5、设函数使得使得A。
与b有关,且与c有关B。
与b有关,但与c无关C。
与b无关,且与c无关D。
与b无关,但与c有关6。
如图,点列分别在锐角的两边上,且,(若A。
表示点P与Q不重合),为的面积,则是等差数列,。
是等差数列B。
C。
是等差数列D。
是等差数列7。
已知椭圆与双曲线的焦点重合,则A。
C。
且且B。
D。
则则则则且且分别为的离心率,8。
已知实数A。
若B。
若C。
若D。
若二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。
9。
若抛物线10。
已知上的点M到焦点的距离为10,则M到y轴的距离是。
,则A=,b=。
11、几何体的三视图如图所示(单位:cm),则该几何体的表面积是cm,体积是cm。
12、已知,若,则a=,b=。
13、设数列的前n项和为,若,则=,=。
14、如图,在中,AB=BC=2,。
若平面ABC外的点P和线段AC上的点D,满足PD=DA,PB=BA,则四面体PBCD的体积的最大值是。
15、已知向量a,b,a,=1,b,=2,若对任意单位向量e,均有,a·e,+,b·e,的最大值是。
三、解答题:本大题共5小题,共74分。
解答应写出文字说明,证明过程或演算步骤。
16。
2024年浙江高考数学真题及答案

2024年浙江高考数学真题及答案本试卷共10页,19小题,满分150分.注意事项:1.答题前,先将自己的姓名、准考证号、考场号、座位号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效.3.填空题和解答题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内.写在试卷、草稿纸和答题卡上的非答题区域均无效.4.考试结束后,请将本试卷和答题卡一并上交.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.1.已知集合{}355,{3,1,0,2,3}A x xB =-<<=--∣,则A B = ()A.{1,0}- B.{2,3} C.{3,1,0}-- D.{1,0,2}-2.若1i 1zz =+-,则z =()A.1i --B.1i-+ C.1i- D.1i+3.已知向量(0,1),(2,)a b x == ,若(4)b b a ⊥-,则x =()A.2- B.1- C.1D.24.已知cos(),tan tan 2m αβαβ+==,则cos()αβ-=()A.3m- B.3m -C.3m D.3m5.()A. B. C. D.6.已知函数为22,0()e ln(1),0x x ax a x f x x x ⎧---<=⎨++≥⎩,在R 上单调递增,则a 取值的范围是()A.(,0]-∞ B.[1,0]- C.[1,1]- D.[0,)+∞7.当[0,2]x πÎ时,曲线sin y x =与2sin 36y x π⎛⎫=- ⎪⎝⎭的交点个数为()A.3B.4C.6D.88.已知函数为()f x 的定义域为R ,()(1)(2)f x f x f x >-+-,且当3x <时()f x x =,则下列结论中一定正确的是()A.(10)100f >B.(20)1000f >C.(10)1000f < D.(20)10000f <二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对得6分,部分选对的得部分分,选对但不全的得部分分,有选错的得0分.9.为了解推动出口后的亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值 2.1x =,样本方差20.01s =,已知该种植区以往的亩收入X 服从正态分布()21.8,0.1N ,假设推动出口后的亩收入Y 服从正态分布()2,N x s ,则()(若随机变量Z 服从正态分布()2,N u σ,()0.8413P Z u σ<+≈)A.(2)0.2P X >>B.(2)0.5P X ><C.(2)0.5P Y >> D.(2)0.8P Y ><10.设函数2()(1)(4)f x x x =--,则()A.3x =是()f x 的极小值点B.当01x <<时,()2()f x f x<C.当12x <<时,4(21)0f x -<-< D.当10x -<<时,(2)()f x f x ->11.造型可以做成美丽的丝带,将其看作图中曲线C 的一部分.已知C 过坐标原点O .且C 上的点满足横坐标大于2-,到点(2,0)F 的距离与到定直线(0)x a a =<的距离之积为4,则()A.2a =- B.点在C 上C.C 在第一象限的点的纵坐标的最大值为1D.当点()00,x y 在C 上时,0042y x ≤+三、填空题:本题共3小题,每小题5分,共15分.12.设双曲线2222:1(0,0)x y C a b a b-=>>的左右焦点分别为12F F 、,过2F 作平行于y 轴的直线交C 于A ,B 两点,若1||13,||10F A AB ==,则C 的离心率为___________.13.若曲线e x y x =+在点()0,1处的切线也是曲线ln(1)y x a =++的切线,则=a __________.14.甲、乙两人各有四张卡片,每张卡片上标有一个数字,甲的卡片上分别标有数字1,3,5,7,乙的卡片上分别标有数字2,4,6,8,两人进行四轮比赛,在每轮比赛中,两人各自从自己持有的卡片中随机选一张,并比较所选卡片上数字的大小,数字大的人得1分,数字小的人得0分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用).则四轮比赛后,甲的总得分不小于2的概率为_________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.记ABC 内角A 、B 、C 的对边分别为a ,b ,c ,已知sin C B =,222a b c +-=(1)求B ;(2)若ABC 的面积为3c .16.已知(0,3)A 和33,2P ⎛⎫ ⎪⎝⎭为椭圆2222:1(0)x yC a b a b+=>>上两点.(1)求C 的离心率;(2)若过P 的直线l 交C 于另一点B ,且ABP 的面积为9,求l 的方程.17.如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,2PA AC ==,1,BC AB ==.(1)若AD PB ⊥,证明://AD 平面PBC ;(2)若AD DC ⊥,且二面角A CP D --的正弦值为427,求AD .18.已知函数3()ln(1)2xf x ax b x x=++--(1)若0b =,且()0f x '≥,求a 的最小值;(2)证明:曲线()y f x =是中心对称图形;(3)若()2f x >-当且仅当12x <<,求b 的取值范围.19.设m 为正整数,数列1242,,...,m a a a +是公差不为0的等差数列,若从中删去两项i a 和()j a i j <后剩余的4m 项可被平均分为m 组,且每组的4个数都能构成等差数列,则称数列1242,,...,m a a a +是(),i j -可分数列.(1)写出所有的(),i j ,16i j ≤<≤,使数列126,,...,a a a 是(),i j -可分数列;(2)当3m ≥时,证明:数列1242,,...,m a a a +是()2,13-可分数列;(3)从1,2,...,42m +中一次任取两个数i 和()j i j <,记数列1242,,...,m a a a +是(),i j -可分数列的概率为m P ,证明:18m P >.参考答案本试卷共10页,19小题,满分150分.注意事项:1.答题前,先将自己的姓名、准考证号、考场号、座位号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效.3.填空题和解答题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内.写在试卷、草稿纸和答题卡上的非答题区域均无效.4.考试结束后,请将本试卷和答题卡一并上交.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.1.已知集合{}355,{3,1,0,2,3}A x xB =-<<=--∣,则A B = ()A.{1,0}- B.{2,3} C.{3,1,0}-- D.{1,0,2}-【答案】A 【解析】【分析】化简集合A ,由交集的概念即可得解.【详解】因为{{}|,3,1,0,2,3A x x B =<<=--,且注意到12<<,从而A B = {}1,0-.故选:A.2.若1i 1zz =+-,则z =()A.1i --B.1i-+ C.1i- D.1i+【答案】C 【解析】【分析】由复数四则运算法则直接运算即可求解.【详解】因为11111i 111z z z z z -+==+=+---,所以111i i z =+=-.故选:C.3.已知向量(0,1),(2,)a b x == ,若(4)b b a ⊥-,则x =()A.2-B.1- C.1D.2【答案】D 【解析】【分析】根据向量垂直的坐标运算可求x 的值.【详解】因为()4b b a ⊥- ,所以()40b b a ⋅-=,所以240b a b -⋅=即2440x x +-=,故2x =,故选:D.4.已知cos(),tan tan 2m αβαβ+==,则cos()αβ-=()A.3m -B.3m -C.3m D.3m【答案】A 【解析】【分析】根据两角和的余弦可求cos cos ,sin sin αβαβ的关系,结合tan tan αβ的值可求前者,故可求()cos αβ-的值.【详解】因为()cos m αβ+=,所以cos cos sin sin m αβαβ-=,而tan tan 2αβ=,所以sin sin 2cos cos αβαβ=,故cos cos 2cos cos m αβαβ-=即cos cos m αβ=-,从而sin sin 2m αβ=-,故()cos 3m αβ-=-,故选:A.5.()A. B. C. D.【答案】B 【解析】【分析】设圆柱的底面半径为r ,根据圆锥和圆柱的侧面积相等可得半径r 的方程,求出解后可求圆锥的体积.【详解】设圆柱的底面半径为r而它们的侧面积相等,所以2ππr r =即=,故3r =,故圆锥的体积为1π93⨯=.故选:B.6.已知函数为22,0()e ln(1),0x x ax a x f x x x ⎧---<=⎨++≥⎩,在R 上单调递增,则a 取值的范围是()A.(,0]-∞ B.[1,0]- C.[1,1]- D.[0,)+∞【答案】B 【解析】【分析】根据二次函数的性质和分界点的大小关系即可得到不等式组,解出即可.【详解】因为()f x 在R 上单调递增,且0x ≥时,()()e ln 1xf x x =++单调递增,则需满足()02021e ln1a a -⎧-≥⎪⨯-⎨⎪-≤+⎩,解得10a -≤≤,即a 的范围是[1,0]-.故选:B.7.当[0,2]x πÎ时,曲线sin y x =与2sin 36y x π⎛⎫=- ⎪⎝⎭的交点个数为()A.3B.4C.6D.8【答案】C 【解析】【分析】画出两函数在[]0,2π上的图象,根据图象即可求解【详解】因为函数sin y x =的的最小正周期为2πT =,函数π2sin 36y x ⎛⎫=-⎪⎝⎭的最小正周期为2π3T =,所以在[]0,2πx ∈上函数π2sin 36y x ⎛⎫=-⎪⎝⎭有三个周期的图象,在坐标系中结合五点法画出两函数图象,如图所示:由图可知,两函数图象有6个交点.故选:C8.已知函数为()f x 的定义域为R ,()(1)(2)f x f x f x >-+-,且当3x <时()f x x =,则下列结论中一定正确的是()A.(10)100f >B.(20)1000f >C.(10)1000f <D.(20)10000f <【答案】B 【解析】【分析】代入得到(1)1,(2)2f f ==,再利用函数性质和不等式的性质,逐渐递推即可判断.【详解】因为当3x <时()f x x =,所以(1)1,(2)2f f ==,又因为()(1)(2)f x f x f x >-+-,则(3)(2)(1)3,(4)(3)(2)5f f f f f f >+=>+>,(5)(4)(3)8,(6)(5)(4)13,(7)(6)(5)21f f f f f f f f f >+>>+>>+>,(8)(7)(6)34,(9)(8)(7)55,(10)(9)(8)89f f f f f f f f f >+>>+>>+>,(11)(10)(9)144,(12)(11)(10)233,(13)(12)(11)377f f f f f f f f f >+>>+>>+>(14)(13)(12)610,(15)(14)(13)987f f f f f f >+>>+>,(16)(15)(14)15971000f f f >+>>,则依次下去可知(20)1000f >,则B 正确;且无证据表明ACD 一定正确.故选:B.【点睛】关键点点睛:本题的关键是利用(1)1,(2)2f f ==,再利用题目所给的函数性质()(1)(2)f x f x f x >-+-,代入函数值再结合不等式同向可加性,不断递推即可.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对得6分,部分选对的得部分分,选对但不全的得部分分,有选错的得0分.9.为了解推动出口后的亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值 2.1x =,样本方差20.01s =,已知该种植区以往的亩收入X 服从正态分布()21.8,0.1N ,假设推动出口后的亩收入Y 服从正态分布()2,N x s ,则()(若随机变量Z 服从正态分布()2,N u σ,()0.8413P Z u σ<+≈)A.(2)0.2P X >>B.(2)0.5P X ><C.(2)0.5P Y >>D.(2)0.8P Y ><【答案】BC 【解析】【分析】根据正态分布的3σ原则以及正态分布的对称性即可解出.【详解】依题可知,22.1,0.01x s ==,所以()2.1,0.1Y N ,故()()()2 2.10.1 2.10.10.84130.5P Y P Y P Y >=>-=<+≈>,C 正确,D 错误;因为()1.8,0.1X N ,所以()()2 1.820.1P X P X >=>+⨯,因为()1.80.10.8413P X <+≈,所以()1.80.110.84130.15870.2P X >+≈-=<,而()()()2 1.820.1 1.80.10.2P X P X P X >=>+⨯<>+<,B 正确,A 错误,故选:BC.10.设函数2()(1)(4)f x x x =--,则()A.3x =是()f x 的极小值点B.当01x <<时,()2()f x f x<C.当12x <<时,4(21)0f x -<-< D.当10x -<<时,(2)()f x f x ->【答案】ACD 【解析】【分析】求出函数()f x 的导数,得到极值点,即可判断A;利用函数的单调性可判断B;根据函数()f x 在()1,3上的值域即可判断C;直接作差可判断D.【详解】对A ,因为函数()f x 的定义域为R ,而()()()()()()22141313f x x x x x x =--+-=--',易知当()1,3x ∈时,()0f x '<,当(),1x ∞∈-或()3,x ∞∈+时,()0f x '>函数()f x 在(),1∞-上单调递增,在()1,3上单调递减,在()3,∞+上单调递增,故3x =是函数()f x 的极小值点,正确;对B,当01x <<时,()210x x x x -=->,所以210x x >>>,而由上可知,函数()f x 在()0,1上单调递增,所以()()2f x f x>,错误;对C,当12x <<时,1213x <-<,而由上可知,函数()f x 在()1,3上单调递减,所以()()()1213f f x f >->,即()4210f x -<-<,正确;对D,当10x -<<时,()()()()()()222(2)()12141220f x f x x x x x x x --=------=-->,所以(2)()f x f x ->,正确;故选:ACD.11.造型可以做成美丽的丝带,将其看作图中曲线C 的一部分.已知C 过坐标原点O .且C 上的点满足横坐标大于2-,到点(2,0)F 的距离与到定直线(0)x a a =<的距离之积为4,则()A.2a =- B.点在C 上C.C 在第一象限的点的纵坐标的最大值为1D.当点()00,x y 在C 上时,0042y x ≤+【答案】ABD 【解析】【分析】根据题设将原点代入曲线方程后可求a ,故可判断A 的正误,结合曲线方程可判断B 的正误,利用特例法可判断C 的正误,将曲线方程化简后结合不等式的性质可判断D 的正误.【详解】对于A:设曲线上的动点(),P x y ,则2x >-4x a -=,04a -=,解得2a =-,故A 正确.对于24x +=,而2x >-,()24x +=.当0x y ==()2844=-=,故()在曲线上,故B 正确.对于C:由曲线的方程可得()()2221622y x x =--+,取32x =,则2641494y =-,而64164525624510494494494---=-=>⨯,故此时21y >,故C 在第一象限内点的纵坐标的最大值大于1,故C 错误.对于D:当点()00,x y 在曲线上时,由C 的分析可得()()()220022001616222y x x x =--≤++,故0004422y x x -≤≤++,故D 正确.故选:ABD.【点睛】思路点睛:根据曲线方程讨论曲线的性质,一般需要将曲线方程变形化简后结合不等式的性质等来处理.三、填空题:本题共3小题,每小题5分,共15分.12.设双曲线2222:1(0,0)x y C a b a b-=>>的左右焦点分别为12F F 、,过2F 作平行于y 轴的直线交C 于A ,B 两点,若1||13,||10F A AB ==,则C 的离心率为___________.【答案】32【解析】【分析】由题意画出双曲线大致图象,求出2AF ,结合双曲线第一定义求出1AF ,即可得到,,a b c 的值,从而求出离心率.【详解】由题可知2,,A B F 三点横坐标相等,设A 在第一象限,将x c =代入22221x ya b-=得2b y a =±,即22,,,b b A c B c a a ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,故2210b AB a ==,225b AF a ==,又122AF AF a -=,得1222513AF AF a a =+=+=,解得4a =,代入25b a=得220b =,故22236,c a b =+=,即6c =,所以6342c e a ===.故答案为:3213.若曲线e x y x =+在点()0,1处的切线也是曲线ln(1)y x a =++的切线,则=a __________.【答案】ln 2【解析】【分析】先求出曲线e x y x =+在()0,1的切线方程,再设曲线()ln 1y x a =++的切点为()()0,ln 1x xa ++,求出y ',利用公切线斜率相等求出0x ,表示出切线方程,结合两切线方程相同即可求解.【详解】由e x y x =+得e 1x y '=+,00|e 12x y ='=+=,故曲线e x y x =+在()0,1处的切线方程为21y x =+;由()ln 1y x a =++得11y x '=+,设切线与曲线()ln 1y x a =++相切的切点为()()00,ln 1x x a ++,由两曲线有公切线得0121y x '==+,解得012x =-,则切点为11,ln 22a ⎛⎫-+ ⎪⎝⎭,切线方程为112ln 21ln 222y x a x a ⎛⎫=+++=++- ⎪⎝⎭,根据两切线重合,所以ln 20a -=,解得ln 2a =.故答案为:ln 214.甲、乙两人各有四张卡片,每张卡片上标有一个数字,甲的卡片上分别标有数字1,3,5,7,乙的卡片上分别标有数字2,4,6,8,两人进行四轮比赛,在每轮比赛中,两人各自从自己持有的卡片中随机选一张,并比较所选卡片上数字的大小,数字大的人得1分,数字小的人得0分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用).则四轮比赛后,甲的总得分不小于2的概率为_________.【答案】12##0.5【解析】【分析】将每局的得分分别作为随机变量,然后分析其和随机变量即可.【详解】设甲在四轮游戏中的得分分别为1234,,,X X X X ,四轮的总得分为X .对于任意一轮,甲乙两人在该轮出示每张牌的概率都均等,其中使得甲获胜的出牌组合有六种,从而甲在该轮获胜的概率()631448k P X ===⨯,所以()()31,2,3,48k E X k ==.从而()()()441234113382kk k E X E X X X X E X ===+++===∑∑.记()()0,1,2,3k p P X k k ===.如果甲得0分,则组合方式是唯一的:必定是甲出1,3,5,7分别对应乙出2,4,6,8,所以04411A 24p ==;如果甲得3分,则组合方式也是唯一的:必定是甲出1,3,5,7分别对应乙出8,2,4,6,所以34411A 24p ==.而X 的所有可能取值是0,1,2,3,故01231p p p p +++=,()1233232p p p E X ++==.所以121112p p ++=,1213282p p ++=,两式相减即得211242p +=,故2312p p +=.所以甲的总得分不小于2的概率为2312p p +=.故答案为:12.【点睛】关键点点睛:本题的关键在于将问题转化为随机变量问题,利用期望的可加性得到等量关系,从而避免繁琐的列举.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.记ABC 内角A 、B 、C 的对边分别为a ,b ,c ,已知sin C B =,222a b c +-=(1)求B ;(2)若ABC 的面积为3c .【答案】(1)π3B =(2)【解析】【分析】(1)由余弦定理、平方关系依次求出cos ,sin C C ,最后结合已知sin C B=得cos B 的值即可;(2)首先求出,,A B C ,然后由正弦定理可将,a b 均用含有c 的式子表示,结合三角形面积公式即可列方程求解.【小问1详解】由余弦定理有2222cos a b c ab C +-=,对比已知222a b c +-=,可得22222cos 222a b c C ab ab +-===,因为()0,πC ∈,所以sin 0C >,从而2sin 2C ==,又因为sin C B =,即1cos 2B =,注意到()0,πB ∈,所以π3B =.【小问2详解】由(1)可得π3B =,2cos 2C =,()0,πC ∈,从而π4C =,ππ5ππ3412A =--=,而5πππ232162sin sin sin 124622224A ⎛⎫⎛⎫==+=⨯=⎪ ⎪⎝⎭⎝⎭,由正弦定理有5πππsin sin sin 1234a b c==,从而623136,4222a cbc +====,由三角形面积公式可知,ABC 的面积可表示为211316233sin 222228ABC S ab C c c c +==⋅⋅= ,由已知ABC 的面积为3+,可得23338c =,所以c =16.已知(0,3)A 和33,2P ⎛⎫ ⎪⎝⎭为椭圆2222:1(0)x yC a b a b+=>>上两点.(1)求C 的离心率;(2)若过P 的直线l 交C 于另一点B ,且ABP 的面积为9,求l 的方程.【答案】(1)12(2)直线l 的方程为3260x y --=或20x y -=.【解析】【分析】(1)代入两点得到关于,a b 的方程,解出即可;(2)方法一:以AP 为底,求出三角形的高,即点B 到直线AP 的距离,再利用平行线距离公式得到平移后的直线方程,联立椭圆方程得到B 点坐标,则得到直线l 的方程;方法二:同法一得到点B 到直线AP 的距离,再设()00,B x y ,根据点到直线距离和点在椭圆上得到方程组,解出即可;法三:同法一得到点B 到直线AP 的距离,利用椭圆的参数方程即可求解;法四:首先验证直线AB 斜率不存在的情况,再设直线3y kx =+,联立椭圆方程,得到点B 坐标,再利用点到直线距离公式即可;法五:首先考虑直线PB 斜率不存在的情况,再设3:(3)2PB y k x -=-,利用弦长公式和点到直线的距离公式即可得到答案;法六:设线法与法五一致,利用水平宽乘铅锤高乘12表达面积即可.【小问1详解】由题意得2239941b a b =⎧⎪⎪⎨⎪+=⎪⎩,解得22912b a ⎧=⎨=⎩,所以12e ==.【小问2详解】法一:3312032APk -==--,则直线AP 的方程为132y x =-+,即260x y +-=,2AP ==,由(1)知22:1129x y C +=,设点B 到直线AP 的距离为d,则5352d ==,则将直线AP 沿着与AP 垂直的方向平移1255单位即可,此时该平行线与椭圆的交点即为点B ,设该平行线的方程为:20x y C ++=,5=,解得6C =或18C =-,当6C =时,联立221129260x y x y ⎧+=⎪⎨⎪++=⎩,解得03x y =⎧⎨=-⎩或332x y =-⎧⎪⎨=-⎪⎩,即()0,3B -或33,2⎛⎫--⎪⎝⎭,当()0,3B -时,此时32l k =,直线l 的方程为332y x =-,即3260x y --=,当33,2B ⎛⎫--⎪⎝⎭时,此时12lk =,直线l 的方程为12y x =,即20x y -=,当18C =-时,联立2211292180x y x y ⎧+=⎪⎨⎪+-=⎩得22271170y y -+=,227421172070∆=-⨯⨯=-<,此时该直线与椭圆无交点.综上直线l 的方程为3260x y --=或20x y -=.法二:同法一得到直线AP 的方程为260x y +-=,点B 到直线AP 的距离1255d =,设()00,B x y,则220012551129x y =⎪+=⎪⎩,解得00332x y =-⎧⎪⎨=-⎪⎩或0003x y =⎧⎨=-⎩,即()0,3B -或33,2⎛⎫--⎪⎝⎭,以下同法一.法三:同法一得到直线AP 的方程为260x y +-=,点B 到直线AP的距离5d =,设(),3sin B θθ,其中[)0,2θ∈π1255=,联立22cos sin 1θθ+=,解得cos 21sin 2θθ⎧=-⎪⎪⎨⎪=-⎪⎩或cos 0sin 1θθ=⎧⎨=-⎩,即()0,3B -或33,2⎛⎫--⎪⎝⎭,以下同法一;法四:当直线AB 的斜率不存在时,此时()0,3B -,16392PAB S =⨯⨯= ,符合题意,此时32l k =,直线l 的方程为332y x =-,即3260x y --=,当线AB 的斜率存在时,设直线AB 的方程为3y kx =+,联立椭圆方程有2231129y kx x y =+⎧⎪⎨+=⎪⎩,则()2243240k x kx ++=,其中AP k k ≠,即12k ≠-,解得0x =或22443k x k -=+,0k ≠,12k ≠-,令22443k x k -=+,则2212943k y k -+=+,则22224129,4343k k B k k ⎛⎫--+ ⎪++⎝⎭同法一得到直线AP 的方程为260x y +-=,点B 到直线AP 的距离1255d =,5=,解得32k =,此时33,2B ⎛⎫-- ⎪⎝⎭,则得到此时12lk =,直线l 的方程为12y x =,即20x y -=,综上直线l 的方程为3260x y --=或20x y -=.法五:当l 的斜率不存在时,3:3,3,,3,2l x B PB A ⎛⎫=-= ⎪⎝⎭到PB 距离3d =,此时1933922ABP S =⨯⨯=≠ 不满足条件.当l 的斜率存在时,设3:(3)2PB y k x -=-,令()()1122,,,P x y B x y ,223(3)21129y k x x y ⎧=-+⎪⎪⎨⎪+=⎪⎩,消y 可得()()22224324123636270k x k k x k k +--+--=,()()()2222Δ24124433636270k kk k k =--+-->,且AP k k ≠,即12k ≠-,21222122241243,36362743k k x x k PB k k x x k ⎧-+=⎪⎪+==⎨--⎪=⎪+⎩,A 到直线PB距离192PAB d S ==⋅ ,12k ∴=或32,均满足题意,1:2l y x ∴=或332y x =-,即3260x y --=或20x y -=.法六:当l 的斜率不存在时,3:3,3,,3,2l x B PB A ⎛⎫=-= ⎪⎝⎭到PB 距离3d =,此时1933922ABP S =⨯⨯=≠ 不满足条件.当直线l 斜率存在时,设3:(3)2l y k x =-+,设l 与y 轴的交点为Q ,令0x =,则30,32Q k ⎛⎫-+⎪⎝⎭,联立223323436y kx k x y ⎧=-+⎪⎨⎪+=⎩,则有()2223348336362702k x k k x k k ⎛⎫+--+--= ⎪⎝⎭,()2223348336362702k x k k x k k ⎛⎫+--+--= ⎪⎝⎭,其中()()22223Δ8343436362702k k k k k ⎛⎫=--+--> ⎪⎝⎭,且12k ≠-,则2222363627121293,3434B B k k k k x x k k----==++,则211312183922234P B k S AQ x x k k +=-=+=+,解的12k =或32k =,经代入判别式验证均满足题意.则直线l 为12y x =或332y x =-,即3260x y --=或20x y -=.17.如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,2PA AC ==,1,BC AB ==.(1)若AD PB ⊥,证明://AD 平面PBC ;(2)若AD DC ⊥,且二面角A CP D --的正弦值为7,求AD .【答案】(1)证明见解析【解析】【分析】(1)先证出AD ⊥平面PAB ,即可得AD AB ⊥,由勾股定理逆定理可得BC AB ⊥,从而//AD BC ,再根据线面平行的判定定理即可证出;(2)过点D 作DEAC ⊥于E ,再过点E 作EF CP ⊥于F ,连接DF ,根据三垂线法可知,DFE ∠即为二面角A CP D --的平面角,即可求得tan DFE ∠=AD的长度表示出,DE EF ,即可解方程求出AD .【小问1详解】(1)因为PA ⊥平面ABCD ,而AD ⊂平面ABCD ,所以PA AD ⊥,又AD PB ⊥,PB PA P = ,,PB PA ⊂平面PAB ,所以AD ⊥平面PAB ,而AB ⊂平面PAB ,所以AD AB ⊥.因为222BC AB AC +=,所以BC AB ⊥,根据平面知识可知//AD BC ,又AD ⊄平面PBC ,BC ⊂平面PBC ,所以//AD 平面PBC .【小问2详解】如图所示,过点D 作DEAC ⊥于E ,再过点E 作EF CP ⊥于F ,连接DF ,因为PA ⊥平面ABCD ,所以平面PAC ⊥平面ABCD ,而平面PAC 平面ABCD AC =,所以DE ⊥平面PAC ,又EF CP ⊥,所以⊥CP 平面DEF ,根据二面角的定义可知,DFE ∠即为二面角A CP D --的平面角,即42sin 7DFE ∠=,即tan DFE ∠=因为AD DC ⊥,设AD x =,则CD =,由等面积法可得,42DE =,又242xCE -==,而EFC 为等腰直角三角形,所以2EF =,故242tan 4DFE x∠==x =AD =.18.已知函数3()ln(1)2xf x ax b x x=++--(1)若0b =,且()0f x '≥,求a 的最小值;(2)证明:曲线()y f x =是中心对称图形;(3)若()2f x >-当且仅当12x <<,求b 的取值范围.【答案】(1)2-(2)证明见解析(3)23b ≥-【解析】【分析】(1)求出()min 2f x a '=+后根据()0f x '≥可求a 的最小值;(2)设(),P m n 为()y f x =图象上任意一点,可证(),P m n 关于()1,a 的对称点为()2,2Q m a n --也在函数的图像上,从而可证对称性;(3)根据题设可判断()12f =-即2a =-,再根据()2f x >-在()1,2上恒成立可求得23b ≥-.【小问1详解】0b =时,()ln2xf x ax x=+-,其中()0,2x ∈,则()()()112,0,222f x a x x x x x =+=+∈--',因为()22212x x x x -+⎛⎫-≤= ⎪⎝⎭,当且仅当1x =时等号成立,故()min 2f x a '=+,而()0f x '≥成立,故20a +≥即2a ≥-,所以a 的最小值为2-.,【小问2详解】()()3ln12x f x ax b x x=++--的定义域为()0,2,设(),P m n 为()y f x =图象上任意一点,(),P m n 关于()1,a 的对称点为()2,2Q m a n --,因为(),P m n 在()y f x =图象上,故()3ln 12m n am b m m=++--,而()()()()3322ln221ln 122m m f m a m b m am b m a m m -⎡⎤-=+-+--=-++-+⎢⎥-⎣⎦,2n a =-+,所以()2,2Q m a n --也在()y f x =图象上,由P 的任意性可得()y f x =图象为中心对称图形,且对称中心为()1,a .【小问3详解】因为()2f x >-当且仅当12x <<,故1x =为()2f x =-的一个解,所以()12f =-即2a =-,先考虑12x <<时,()2f x >-恒成立.此时()2f x >-即为()()3ln21102x x b x x +-+->-在()1,2上恒成立,设()10,1t x =-∈,则31ln 201t t bt t+-+>-在()0,1上恒成立,设()()31ln 2,0,11t g t t bt t t+=-+∈-,则()()2222232322311tbtbg t bt t t -++=-+=-'-,当0b ≥,232332320bt b b b -++≥-++=>,故()0g t '>恒成立,故()g t 在()0,1上为增函数,故()()00g t g >=即()2f x >-在()1,2上恒成立.当203b -≤<时,2323230bt b b -++≥+≥,故()0g t '≥恒成立,故()g t 在()0,1上为增函数,故()()00g t g >=即()2f x >-在()1,2上恒成立.当23b <-,则当01t <<<时,()0g t '<故在⎛ ⎝上()g t 为减函数,故()()00g t g <=,不合题意,舍;综上,()2f x >-在()1,2上恒成立时23b ≥-.而当23b ≥-时,而23b ≥-时,由上述过程可得()g t 在()0,1递增,故()0g t >的解为()0,1,即()2f x >-的解为()1,2.综上,23b ≥-.【点睛】思路点睛:一个函数不等式成立的充分必要条件就是函数不等式对应的解,而解的端点为函数对一个方程的根或定义域的端点,另外,根据函数不等式的解确定参数范围时,可先由恒成立得到参数的范围,再根据得到的参数的范围重新考虑不等式的解的情况.19.设m 为正整数,数列1242,,...,m a a a +是公差不为0的等差数列,若从中删去两项i a 和()j a i j <后剩余的4m 项可被平均分为m 组,且每组的4个数都能构成等差数列,则称数列1242,,...,m a a a +是(),i j -可分数列.(1)写出所有的(),i j ,16i j ≤<≤,使数列126,,...,a a a 是(),i j -可分数列;(2)当3m ≥时,证明:数列1242,,...,m a a a +是()2,13-可分数列;(3)从1,2,...,42m +中一次任取两个数i 和()j i j <,记数列1242,,...,m a a a +是(),i j -可分数列的概率为m P ,证明:18m P >.【答案】(1)()()()1,2,1,6,5,6(2)证明见解析(3)证明见解析【解析】【分析】(1)直接根据(),i j -可分数列的定义即可;(2)根据(),i j -可分数列的定义即可验证结论;(3)证明使得原数列是(),i j -可分数列的(),i j 至少有()21m m +-个,再使用概率的定义.【小问1详解】首先,我们设数列1242,,...,m a a a +的公差为d ,则0d ≠.由于一个数列同时加上一个数或者乘以一个非零数后是等差数列,当且仅当该数列是等差数列,故我们可以对该数列进行适当的变形()111,2,...,42k ka a a k m d-=+=+',得到新数列()1,2, (42)a k k m ==+',然后对1242,,...,m a a a +'''进行相应的讨论即可.换言之,我们可以不妨设()1,2,...,42k a k k m ==+,此后的讨论均建立在该假设下进行.回到原题,第1小问相当于从1,2,3,4,5,6中取出两个数i 和()j i j <,使得剩下四个数是等差数列.那么剩下四个数只可能是1,2,3,4,或2,3,4,5,或3,4,5,6.所以所有可能的(),i j 就是()()()1,2,1,6,5,6.【小问2详解】由于从数列1,2,...,42m +中取出2和13后,剩余的4m 个数可以分为以下两个部分,共m 组,使得每组成等差数列:①{}{}{}1,4,7,10,3,6,9,12,5,8,11,14,共3组;②{}{}{}15,16,17,18,19,20,21,22,...,41,4,41,42m m m m -++,共3m -组.(如果30m -=,则忽略②)故数列1,2,...,42m +是()2,13-可分数列.【小问3详解】定义集合{}{}410,1,2,...,1,5,9,13,...,41A k k m m =+==+,{}{}420,1,2,...,2,6,10,14,...,42B k k m m =+==+.下面证明,对142i j m ≤<≤+,如果下面两个命题同时成立,则数列1,2,...,42m +一定是(),i j -可分数列:命题1:,i A j B ∈∈或,i B j A ∈∈;命题2:3j i -≠.我们分两种情况证明这个结论.第一种情况:如果,i A j B ∈∈,且3j i -≠.此时设141i k =+,242j k =+,{}12,0,1,2,...,k k m ∈.则由i j <可知124142k k +<+,即2114k k ->-,故21k k ≥.此时,由于从数列1,2,...,42m +中取出141i k =+和242j k =+后,剩余的4m 个数可以分为以下三个部分,共m 组,使得每组成等差数列:①{}{}{}11111,2,3,4,5,6,7,8,...,43,42,41,4k k k k ---,共1k 组;②{}{}{}11111111222242,43,44,45,46,47,48,49,...,42,41,4,41k k k k k k k k k k k k ++++++++--+,共21k k -组;③{}{}{}2222222243,44,45,46,47,48,49,410,...,41,4,41,42k k k k k k k k m m m m ++++++++-++,共2m k -组.(如果某一部分的组数为0,则忽略之)故此时数列1,2,...,42m +是(),i j -可分数列.第二种情况:如果,i B j A ∈∈,且3j i -≠.此时设142i k =+,241j k =+,{}12,0,1,2,...,k k m ∈.则由i j <可知124241k k +<+,即2114k k ->,故21k k >.由于3j i -≠,故()()2141423k k +-+≠,从而211k k -≠,这就意味着212k k -≥.此时,由于从数列1,2,...,42m +中取出142i k =+和241j k =+后,剩余的4m 个数可以分为以下四个部分,共m 组,使得每组成等差数列:①{}{}{}11111,2,3,4,5,6,7,8,...,43,42,41,4k k k k ---,共1k 组;②{}112121241,31,221,31k k k k k k k +++++++,{}121212232,222,32,42k k k k k k k +++++++,共2组;③全体{}11212124,3,22,3k p k k p k k p k k p +++++++,其中213,4,...,p k k =-,共212k k --组;④{}{}{}2222222243,44,45,46,47,48,49,410,...,41,4,41,42k k k k k k k k m m m m ++++++++-++,共2m k -组.(如果某一部分的组数为0,则忽略之)这里对②和③进行一下解释:将③中的每一组作为一个横排,排成一个包含212k k --个行,4个列的数表以后,4个列分别是下面这些数:{}111243,44,...,3k k k k +++,{}12121233,34,...,22k k k k k k +++++,{}121212223,223,...,3k k k k k k +++++,{}1212233,34,...,4k k k k k ++++.可以看出每列都是连续的若干个整数,它们再取并以后,将取遍{}11241,42,...,42k k k +++中除开五个集合{}1141,42k k ++,{}121231,32k k k k ++++,{}1212221,222k k k k ++++,{}121231,32k k k k ++++,{}2241,42k k ++中的十个元素以外的所有数.而这十个数中,除开已经去掉的142k +和241k +以外,剩余的八个数恰好就是②中出现的八个数.这就说明我们给出的分组方式满足要求,故此时数列1,2,...,42m +是(),i j -可分数列.至此,我们证明了:对142i j m ≤<≤+,如果前述命题1和命题2同时成立,则数列1,2,...,42m +一定是(),i j -可分数列.然后我们来考虑这样的(),i j 的个数.首先,由于A B ⋂=∅,A 和B 各有1m +个元素,故满足命题1的(),i j 总共有()21m +个;而如果3j i -=,假设,i A j B ∈∈,则可设141i k =+,242j k =+,代入得()()2142413k k +-+=.但这导致2112k k -=,矛盾,所以,i B j A ∈∈.设142i k =+,241j k =+,{}12,0,1,2,...,k k m ∈,则()()2141423k k +-+=,即211k k -=.所以可能的()12,k k 恰好就是()()()0,1,1,2,...,1,m m -,对应的(),i j 分别是()()()2,5,6,9,...,42,41m m -+,总共m 个.所以这()21m +个满足命题1的(),i j 中,不满足命题2的恰好有m 个.这就得到同时满足命题1和命题2的(),i j 的个数为()21m m +-.当我们从1,2,...,42m +中一次任取两个数i 和()j i j <时,总的选取方式的个数等于()()()()424121412m m m m ++=++.31/31而根据之前的结论,使得数列1242,,...,m a a a +是(),i j -可分数列的(),i j 至少有()21m m +-个.所以数列1242,,...,m a a a +是(),i j -可分数列的概率m P 一定满足()()()()()()()()()22221111124214121412142221218m m m m m m m m P m m m m m m m m ⎛⎫+++ ⎪+-++⎝⎭≥=>=++++++++.这就证明了结论.【点睛】关键点点睛:本题的关键在于对新定义数列的理解,只有理解了定义,方可使用定义验证或探究结论.。
2022年理数高考试题答案及解析-浙江

绝密★考试结束前2022年普通高等学校招生全国同一考试〔浙江卷〕数 学〔理科〕本试题卷分选择题和非选择题两局部.全卷共5页,选择题局部1至3页,非选择题局部4至5页.总分值150分,考试时间120分钟.请考生按规定用笔将所有试题的答案涂、写在答题纸上.选择题局部〔共50分〕本卷须知:1.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试卷和答题纸规定的位置上.2.每题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干 净后,再选涂其它答案标号。
不能答在试题卷上.参考公式:如果事件A ,B 互斥,那么 柱体的体积公式如果事件A ,B 相互独立,那么 其中S 表示柱体的底面积,h 表示柱体的高 ()()()P A B P A P B ⋅=⋅ 锥体的体积公式如果事件A 在一次试验中发生的概率是p ,那么 13V Sh =n 次独立重复试验中事件A 恰好发生k 次的概率 其中S 表示锥体的底面积,h 表示锥体的高()()()1,0,1,2,,n kk kn n P k C p p k n -=-=球的外表积公式台体的体积公式 24πS R =()1213V h S S = 球的体积公式其中12,S S 分别表示台体的上底、下底面积, 34π3V R =h 表示台体的高 其中R 表示球的半径一、选择题:本大题共10小题,每题5分,共50分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的.1.设集合A ={x |1<x <4},B ={x |x 2-2x -3≤0},那么A ∩(C R B )=A .(1,4)B .(3,4)C .(1,3)D .(1,2) 【解析】A =(1,4),B =(-3,1),那么A ∩(C R B )=(1,4). 【答案】A 2.i 是虚数单位,那么3+i1i-= A .1-2i B .2-i C .2+i D .1+2i 【解析】3+i 1i -=()()3+i 1+i 2=2+4i2=1+2i .【答案】D3.设a ∈R ,那么“a =1”是“直线l 1:ax +2y -1=0与直线l 2:x +(a +1)y +4=0平行〞的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【解析】当a =1时,直线l 1:x +2y -1=0与直线l 2:x +2y +4=0显然平行;假设直线l 1与直线l 2平行,那么有:211a a =+,解之得:a =1 or a =﹣2.所以为充分不必要条件. 【答案】A4.把函数y =cos2x +1的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移1个单位长度,得到的图像是【解析】把函数y =cos2x +1的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变)得:y 1=cos x +1,向左平移1个单位长度得:y 2=cos(x —1)+1,再向下平移1个单位长度得:y 3=cos(x —1).令x =0,得:y 3>0;x =12π+,得:y 3=0;观察即得答案. 【答案】B5.设a ,b 是两个非零向量.A .假设|a +b |=|a |-|b |,那么a ⊥bB .假设a ⊥b ,那么|a +b |=|a |-|b |C .假设|a +b |=|a |-|b |,那么存在实数λ,使得a =λbD .假设存在实数λ,使得a =λb ,那么|a +b |=|a |-|b |【解析】利用排除法可得选项C 是正确的,∵|a +b |=|a |-|b |,那么a ,b 共线,即存在实数λ,使得a =λb .如选项A :|a +b |=|a |-|b |时,a ,b 可为异向的共线向量;选项B :假设a ⊥b ,由正方形得|a +b |=|a |-|b |不成立;选项D :假设存在实数λ,使得a =λb ,a ,b 可为同向的共线向量,此时显然|a +b |=|a |-|b |不成立. 【答案】C6.假设从1,2,2,…,9这9个整数中同时取4个不同的数,其和为偶数,那么不同的取法共有A .60种B .63种C .65种D .66种【解析】1,2,2,…,9这9个整数中有5个奇数,4个偶数.要想同时取4个不同的数其和为偶数,那么取法有:4个都是偶数:1种;2个偶数,2个奇数:225460C C =种; 4个都是奇数:455C =种.∴不同的取法共有66种. 【答案】D7.设S n 是公差为d (d ≠0)的无穷等差数列{a n }的前n 项和,那么以下命题错误的选项是......A .假设d <0,那么数列{S n }有最大项B .假设数列{S n }有最大项,那么d <0C .假设数列{S n }是递增数列,那么对任意的n ∈N*,均有S n >0D .假设对任意的n ∈N*,均有S n >0,那么数列{S n }是递增数列【解析】选项C 显然是错的,举出反例:—1,0,1,2,3,….满足数列{S n }是递增数列,但是S n >0不成立.【答案】C8.如图,F 1,F 2分别是双曲线C :22221x y a b-=(a ,b >0)的左右焦点,B 是虚轴的端点,直线F 1B 与C 的两条渐近线分别交于P ,Q 两点,线段PQ 的垂直平分线与x 轴交于点M .假设|MF 2|=|F 1F 2|,那么C 的离心率是 A 23 B 6C 2D 3【解析】如图:|OB |=b ,|OF 1|=c .∴k PQ =b c,k MN =﹣b c.直线PQ 为:y =b c (x +c ),两条渐近线为:y =b a x .由()b y x c c b y x a ⎧⎪⎪⎨⎪⎪⎩=+=,得:Q (ac c a -,bc c a -);由()b y x c cb y xa ⎧⎪⎪⎨⎪⎪⎩=+=-,得:P (ac c a -+,bc c a +).∴直线MN 为:y -bc c a +=﹣b c(x -acc a -+), 令y =0得:x M =322c c a -.又∵|MF 2|=|F 1F 2|=2c ,∴3c =x M =322c c a -,解之得:2232a c e a==,即e 6.【答案】B9.设a >0,b >0A .假设2223a b a b +=+,那么a >bB .假设2223a b a b +=+,那么a <bC .假设2223a b a b -=-,那么a >bD .假设2223a b a b -=-,那么a <b【解析】假设2223a b a b +=+,必有2222a b a b +>+.构造函数:()22x f x x =+,那么()2ln 220x f x '=⋅+>恒成立,故有函数()22x f x x =+在x >0上单调递增,即a >b 成立.其余选项用同样方法排除. 【答案】A10.矩形ABCD ,AB =1,BC 2∆ABD 沿矩形的对角线BD 所在的直线进行翻着,在翻着过程中,A .存在某个位置,使得直线AC 与直线BD 垂直B .存在某个位置,使得直线AB 与直线CD 垂直C .存在某个位置,使得直线AD 与直线BC 垂直D .对任意位置,三直线“AC 与BD 〞,“AB 与CD 〞,“AD 与BC 〞均不垂直【解析】最简单的方法是取一长方形动手按照其要求进行翻着,观察在翻着过程,即可知选项C 是正确的. 【答案】C2022年普通高等学校招生全国同一考试〔浙江卷〕数 学〔理科〕非选择题局部〔共100分〕本卷须知:1.用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上.2.在答题纸上作图,可先使用2B 铅笔,确定后必须使用黑色字迹的签字笔或钢笔描黑.二、填空题:本大题共7小题,每题4分,共28分. 11.某三棱锥的三视图(单位:cm)如下列图,那么该三棱锥的体积等于___________cm 3.【解析】观察三视图知该三棱锥的底面为一直角三角 11312123⨯⨯⨯⨯=. 形,右侧面也是一直角三角形.故体积等于【答案】112.假设程序框图如下列图,那么该程序运行后输出的值是______________.【解析】T ,i 关系如以下列图: T 1 12 16 124 1120i 23 4 5 6【答案】112013.设公比为q (q >0)的等比数列{a n }的前n 项和为{S n }.假设2232S a =+,4432S a =+,那么q =______________.q 表示的式子.【解析】将2232S a =+,4432S a =+两个式子全部转化成用1a ,即111233111113232a a q a q a a q a q a q a q +=+⎧⎨+++=+⎩,两式作差得:2321113(1)a q a q a q q +=-,即:2230q q --=,解之得:312q or q ==-(舍去). 【答案】3214.假设将函数()5f x x =表示为其中0a ,1a ,2a ,…,5a 为实数,那么3a =______________. 【解析】法一:由等式两边对应项系数相等.即:545543315544310100a C a a a C a C a a =⎧⎪+=⇒=⎨⎪++=⎩. 法二:对等式:()()()()2550125111f x x a a x a x a x ==+++++++两边连续对x 求导三次得:2234560624(1)60(1)x a a x a x =++++,再运用赋值法,令1x =-得:3606a =,即310a =.【答案】1015.在∆ABC 中,M 是BC 的中点,AM =3,BC =10,那么AB AC ⋅=______________. 【解析】此题最适合的方法是特例法.假设∆ABC 是以AB =AC 的等腰三角形,如图, AM =3,BC =10,AB =AC 34 cos ∠BAC =3434102923434+-=⨯.AB AC ⋅=cos 29AB AC BAC ⋅∠=【答案】2916.定义:曲线C 上的点到直线l 的距离的最小值称为曲线C 到直线l 的距离.曲线C 1:y =x 2+a 到直线l :y =x 的距离等于C 2:x 2+(y +4) 2 =2到直线l :y =x 的距离, 那么实数a =______________.【解析】C 2:x 2+(y +4) 2 =2,圆心(0,—4),圆心到直线l :y =x 的距离为:0(4)222d --==C 2到直线l :y =x 的距离为22d d r d '=-== 另一方面:曲线C 1:y =x 2+a ,令20y x '==,得:12x =,曲线C 1:y =x 2+a 到直线l :y =x 的距离的点为(12,14a +),111()72442422a ad a -++'==⇒=. 【答案】7417.设a ∈R ,假设x >0时均有[(a -1)x -1]( x 2-ax -1)≥0,那么a =______________. 【解析】此题按照一般思路,那么可分为一下两种情况: (A )2(1)1010a x x ax ≤⎧⎨≤⎩----, 无解; (B )2(1)1010a x x ax ≥⎧⎨≥⎩----, 无解. 因为受到经验的影响,会认为此题可能是错题或者解不出此题.其实在x >0的整个区间上,我们可以将其分成两个区间(为什么是两个),在各自的区间内恒正或恒负.(如下答图) 我们知道:函数y 1=(a -1)x -1,y 2=x 2-ax -1都过定点P (0,1). 考查函数y 1=(a -1)x -1:令y =0,得M (11a -,0),还可分析得:a >1; 考查函数y 2=x 2-ax -1:显然过点M (11a -,0),代入得:211011a a a ⎛⎫--= ⎪--⎝⎭,解之得:2a =,舍去2a =,得答案:2a = 【答案】2a =三、解答题:本大题共5小题,共72分,解容许写出文字说明、证明过程或演算步骤. 18.(本小题总分值14分)在∆ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .cos A =23,sin B 5C . (Ⅰ)求tan C 的值;(Ⅱ)假设a 2∆ABC 的面积.【解析】此题主要考察三角恒等变换,正弦定理,余弦定理及三角形面积求法等知识点。
2021年全国统一高考数学试卷(浙江卷)(含详细解析)

2021年全国统一高考数学试卷(浙江卷)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把题卡上对应题目的答案标号涂黑。
如需改动,用皮擦干净后,再选涂其他答案标号,回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
(共10题;共40分)1. ( 4分 ) 设集合 A ={x|x ≥1} , B ={x|−1<x <2} ,则 A ∩B = ( ) A. {x|x >−1} B. {x|x ≥1} C. {x|−1<x <1} D. {x|1≤x <2}2. ( 4分 ) 已知 a ∈R , (1+ai)i =3+i ,(i 为虚数单位),则 a = ( ) A. -1 B. 1 C. -3 D. 33. ( 4分 ) 已知非零向量 a ⃗,b ⃗⃗,c ⃗ ,则“ a ⃗⋅c ⃗=b ⃗⃗⋅c ⃗ ”是“ a ⃗=b⃗⃗ ”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D. 既不充分又不必要条件 4. ( 4分 ) 某几何体的三视图如图所示,则该几何体的体积是( )A. 32 B.3 C. 3√22D. 3√25. ( 4分) 若实数x,y满足约束条件{x+1≥0 x−y≤02x+3y−1≤0,则z=x−12y的最小值是()A. -2B. −32C. −12D. 1106. ( 4分) 如图已知正方体ABCD−A1B1C1D1,M,N分别是A1D,D1B的中点,则()A. 直线A1D与直线D1B垂直,直线MN//平面ABCDB. 直线A1D与直线D1B平行,直线MN⊥平面BDD1B1C. 直线A1D与直线D1B相交,直线MN//平面ABCDD. 直线A1D与直线D1B异面,直线MN⊥平面BDD1B17. ( 4分) 已知函数f(x)=x2+14,g(x)=sinx,则图象为如图的函数可能是()A. y=f(x)+g(x)−14B. y=f(x)−g(x)−14C. y=f(x)g(x)D. y=g(x)f(x)8. ( 4分) 已知α,β,γ是互不相同的锐角,则在sinαcosβ,sinβcosγ,sinγcosα三个值中,大于12的个数的最大值是()A. 0B. 1C. 2D. 39. ( 4分) 已知a,b∈R,ab>0,函数f(x)=ax2+b(x∈R).若f(s−t),f(s),f(s+t)成等比数列,则平面上点(s,t)的轨迹是()A. 直线和圆B. 直线和椭圆C. 直线和双曲线D. 直线和抛物线10. ( 4分) 已知数列{a n}满足a1=1,a n+1=n1+√a ∈N∗).记数列{an}的前n项和为S n,则()A. 12<S100<3 B. 3<S100<4 C. 4<S100<92D. 92<S100<5二、填空题(共7题;共36分)11. ( 4分) 我国古代数学家赵爽用弦图给出了勾股定理的证明.弦图是由四个全等的直角三角形和中间的一个小正方形拼成的一个大正方形(如图所示).若直角三角形直角边的长分别是3,4,记大正方形的面积为S1,小正方形的面积为S2,则S1S1=________.12. ( 4分) 已知a∈R,函数f(x)={x2−4,x>2|x−3|+a,x≤2,若f[f(√6)]=3,则a=________.13. ( 4分) 已知平面向量a⃗,b⃗⃗,c⃗,(c⃗≠0)满足|a⃗|=1,|b⃗⃗|=2,a⃗⋅b⃗⃗=0,(a⃗−b⃗⃗)⋅c⃗=0.记向量d⃗在a⃗,b⃗⃗方向上的投影分别为x,y,d⃗−a⃗在c⃗方向上的投影为z,则x2+y2+z2的最小值为________.14. ( 6分) 已知多项式(x−1)3+(x+1)4=x4+a1x3+a2x2+a3x+a4,则a1=________,a2+ a3+a4=________.15. ( 6分) 在△ABC中,∠B=60°,AB=2,M是BC的中点,AM=2√3,则AC=________,cos∠MAC=________.16. ( 6分) 袋中有4个红球m个黄球,n个绿球.现从中任取两个球,记取出的红球数为ξ,若取出的两个球都是红球的概率为16,一红一黄的概率为13,则m−n=________,E(ξ)=________.17. ( 6分) 已知椭圆x2a2+y2b2=1(a>b>0),焦点F1(−c,0),F2(c,0)(c>0),若过F1的直线和圆(x−12c)2+y2=c2相切,与椭圆在第一象限交于点P,且PF2⊥x轴,则该直线的斜率是________,椭圆的离心率是________.三、解答题:本大题共5小题,共74分。
高考真题——理科数学(浙江卷)解析版(1) Word版含答案

数学理试题(浙江卷)一.选择题1、已知i 是虚数单位,则=-+-)2)(1(i iA. i +-3B. i 31+-C. i 33+-D.i +-12、设集合}043|{},2|{2≤-+=->=x x x T x x S ,则=⋃T S C R )( A. ]1,2(- B. ]4,(--∞ C. ]1,(-∞ D.),1[+∞ 答案:C 解析:如图1所示,由已知得到考点定位:此题考查集合的使用之补集和并集体,考查一元二次不等式的解法,利用数轴即可解决此题,体现数形结合思想的应用,此考点是历年来高考必考考点之一,属于简单题; 3、已知y x ,为正实数,则 A.y x yx lg lg lg lg 222+=+ B.y x y x lg lg )lg(222•=+ C.y x yx lg lg lg lg 222+=• D.y x xy lg lg )lg(222•=答案:D解析:此题中,由考点定位:此题考查对数的运算法则和同底数幂的乘法的运算法则;4、已知函数),0,0)(cos()(R A x A x f ∈>>+=ϕωϕω,则“)(x f 是奇函数”是2πϕ=的A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D.既不充分也不必要条件 答案:B 解析:考点定位:充分条件的判断和三角函数的奇偶性性质知识点;5、某程序框图如图所示,若该程序运行后输出的值是59,则 A.4=a B.5=a C. 6=a D.7=a 答案:A解析:由图可知考点定位:此题考查算法及数列的列项相消求和的方法;6、已知210cos 2sin ,=+∈αααR ,则=α2tan A.34 B. 43 C.43- D.34- 答案:C解析:由已知得到:考点定位:此题考查同角三角函数商数关系和平方关系的灵活应用,考查二倍角正切公式的应用,考查学生的运算求解水平;7、设0,P ABC ∆是边AB 上一定点,满足AB B P 410=,且对于边AB 上任一点P ,恒有C P B P PC PB 00•≥•。
2021年浙江省高考数学(含解析版)

A.充分不必要条件
B.必要不充分条件
C.充分必要条件
D.既不充分也不必要条件
答案:
B
解析:
若 c a 且 c b ,则 a c b c 0 ,但 a 不一定等于 b ,故充分性不成立,
若 a b ,则 a c b c ,必要性成立,故为必要不充分条件.
故选 B.
, E( )
.
6
3
答案:
1 8 9
解析:
P(
2)
C42 C2
mn4
6 C2
mn4
1 6
C
2 mn
4
36
,所以 m n 4 9 ,
P(一红一黄)
C41 Cm1 C2
mn4
4m 36
m 9
1 3
m
3
,所以 n
2 ,则 m n
1,
P(
2)
1 6
,
P(
1)
C41 C51 C92
45 36
13.已知多项式 (x 1)3 (x 1)4 x4 a1x3 a2 x a3x a4 ,则 a1
; a2 a3 a4
.
答案:
5 10
解析:
根据二项式通项公式: a1x3 C30 x3 (1)0 C41x311 5x3 ,故 a1 5 ;
同理, a2 x2 C31x2 (1)1 C42 x212 3x2 6x2 3x2 a2 3 ,
a
,故 e
5
.
5
解析二:不妨假设 c 2 , sin PF1F2
sin HF1M
HM F1M
2 , HM 3
c 2
2
2
,
F1M
【高三】浙江2021年高考数学理科试卷(附答案和解释)

【高三】浙江2021年高考数学理科试卷(附答案和解释)浙江卷数学(理)试题答案与解析选择题部分(共50分)一、选择题:每小题5分,共50分.1.已知i是虚数单位,则(?1+i)(2?i)=A.?3+iB.?1+3i C.?3+3i D.?1+i【命题意图】本题考查复数的四则运算,属于容易题【答案解析】B2.设集合S={xx>?2},T={xx2+3x?4≤0},则(?RS)∪T=A.(?2,1]B.(?∞,?4]C.(?∞,1]D.[1,+∞)【命题意图】本题考查集合的运算,属于容易题【答案解析】C 因为(?RS)={xx≤?2},T={x?4≤x≤1},所以(?RS)∪T=(?∞,1]. 3.已知x,y为正实数,则A.2lgx+lgy=2lgx+2lgyB.2lg(x+y)=2lgx ? 2lgyC.2lgx ? lgy=2lgx+2lgy D.2lg(xy)=2lgx ? 2lgy【命题意图】本题考查指数和对数的运算性质,属于容易题【答案解析】D 由指数和对数的运算法则,易知选项D正确4.已知函数f(x)=Acos(ωx+φ)(A>0,ω>0,φ?R),则“f(x)是奇函数”是“φ=π2”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【命题意图】本题考查简易逻辑以及函数的奇偶性,属于中档题【答案解析】B 由f(x)是奇函数可知f(0)=0,即cosφ=0,解出φ=π2+kπ,k?Z,所以选项B正确5.某程序框图如图所示,若该程序运行后输出的值是95,则A.a=4B.a=5C.a=6D.a=7【命题意图】本题考查算法程序框图,属于容易题【答案解析】A6.已知α?R,sin α+2cos α=102,则tan2α=A.43B.34C.?34D.?43【命题意图】本题考查三角公式的应用,解法多样,属于中档题【答案解析】C 由(sin α+2cos α)2=1022可得sin2α+4cos2α+4sin αcos α sin2α+cos2α=104,进一步整理可得3tan2α?8tan α?3=0,解得tan α=3或tanα=?13,于是tan2α=2tan α1?tan2α=?34.7.设△ABC,P0是边AB上一定点,满足P0B=14AB,且对于AB上任一点P,恒有→PB?→PC≥→P0B?→P0C,则A.?ABC=90?B.?BAC=90?C.AB=ACD.AC=BC【命题意图】本题考查向量数量积的几何意义,不等式恒成立的有关知识,属于中档题【答案解析】D 由题意,设→AB=4,则→P0B=1,过点C作AB的垂线,垂足为H,在AB上任取一点P,设HP0=a,则由数量积的几何意义可得,→PB?→PC=→PH→PB=(→PB ?(a+1))→PB,→P0B?→P0C=?→P0H→P0B=?a,于是→PB?→PC≥→P0B?→P0C恒成立,相当于(→PB?(a+1))→PB≥?a恒成立,整理得→PB2?(a+1)→PB+a≥0恒成立,只需?=(a+1)2?4a=(a?1)2≤0即可,于是a=1,因此我们得到HB=2,即H是AB的中点,故△ABC是等腰三角形,所以AC=BC8.已知e为自然对数的底数,设函数f(x)=(ex?1)(x?1)k(k=1,2),则A.当k=1时,f(x)在x=1处取到极小值B.当k=1时,f(x)在x=1处取到极大值C.当k=2时,f(x)在x=1处取到极小值D.当k=2时,f(x)在x=1处取到极大值【命题意图】本题考查极值的概念,属于中档题【答案解析】C 当k=1时,方程f(x)=0有两个解,x1=0,x2=1,由标根法可得f(x)的大致图象,于是选项A,B错误;当k=2时,方程f(x)=0有三个解,x1=0,x2=x3=1,其中1是二重根,由标根法可得f(x)的大致图象,易知选项C正确。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年普通高等学校招生全国统一考试(浙江卷)数学(理科)第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项符合题目要求. (1)【2016年浙江,理1,5分】已知集合{}|13P x R x =∈≤≤,{}2|4Q x R x =∈≥,则()R P Q U ð( )(A )[]2,3 (B )(]2,3- (C )[)1,2 (D )(][),21,-∞-+∞U【答案】B【解析】{}{}2|22|4Q x R x x R x x =∈≥=∈≥≤-或,即有{}|22R Q x R x -=<∈<ð,则()(]2,3R P Q =-U ð,故选B . 【点评】本题考查集合的运算,主要是并集和补集的运算,考查不等式的解法,属于基础题. (2)【2016年浙江,理2,5分】已知互相垂直的平面α,β交于直线l .若直线m ,n 满足//m α,n β⊥,则( )(A )//m l (B )//m n (C )n l ⊥ (D )m n ⊥ 【答案】C【解析】∵互相垂直的平面α,β交于直线l ,直线m ,n 满足//m α,∴//m β或m β⊂或m β⊥,l β⊂,∵n β⊥,∴n l ⊥,故选C .【点评】本题考查两直线关系的判断,是基础题,解题时要认真审题,注意空间思维能力的培养. (3)【2016年浙江,理3,5分】在平面上,过点P 作直线l 的垂线所得的垂足称为点P 在直线l 上的投影.由区域200340x x y x y -≤⎧⎪+≥⎨⎪-+≥⎩中的点在直线20x y +-=上的投影构成的线段记为AB ,则AB =( )(A )22(B )4 (C )32 (D )6【答案】C 【解析】作出不等式组对应的平面区域如图:(阴影部分),区域内的点在直线20x y +-=上的投影构成线段R Q '',即SAB ,而R Q RQ ''=,由3400x y x y -+=⎧⎨+=⎩得11x y =-⎧⎨=⎩,即()1,1Q -,由20x x y =⎧⎨+=⎩得22x y =⎧⎨=-⎩,即()2,2R -,则()()2212129932AB QR ==--++=+=,故选C .【点评】本题主要考查线性规划的应用,作出不等式组对应的平面区域,利用投影的定义以及数形结合是解决本题的关键.(4)【2016年浙江,理4,5分】命题“x ∀∈R ,n N *∃∈,使得2n x >”的否定形式是( )(A )x ∀∈R ,n N *∃∈,使得2n x < (B )x ∀∈R ,n N *∀∈,使得2n x < (C )x ∃∈R ,n N *∃∈,使得2n x < (D )x ∃∈R ,n N *∀∈,使得2n x < 【答案】D【解析】因为全称命题的否定是特称命题,所以,命题“x ∀∈R ,n N *∃∈,使得2n x >”的否定形式是:x ∃∈R ,n N *∀∈,使得2n x <,故选D .【点评】全称命题的否定是特称命题,特称命题的否定是全称命题.对含有存在(全称)量词的命题进行否定需要两步操作:①将存在(全称)量词改成全称(存在)量词;②将结论加以否定.(5)【2016年浙江,理5,5分】设函数()2sin sin f x x b x c =++,则()f x 的最小正周期( )(A )与b 有关,且与c 有关 (B )与b 有关,但与c 无关(C )与b 无关,且与c 无关 (D )与b 无关,但与c 有关 【答案】B【解析】∵设函数()2sin sin f x x b x c =++,∴c 是图象的纵坐标增加了c ,横坐标不变,故周期与c 无关,当0b =时,()211sin sin cos222f x x b x c x c =++=-++的最小正周期为22T ππ==,当0b ≠时,()11cos2sin 22f x x b x c =-+++,∵cos2y x =的最小正周期为π,sin y b x =的最小正周期为2π,∴()f x 的最小正周期为2π,故()f x 的最小正周期与b 有关,故选B .【点评】本题考查了三额角函数的最小正周期,关键掌握三角函数的图象和性质,属于中档题. (6)【2016年浙江,理6,5分】如图,点列{}n A 、{}n B 分别在某锐角的两边上,且112n n n n A A A A +++=,1n n A A +≠,n N *∈,112n n n n B B B B +++=,1n n B B +≠,n N *∈,(P Q ≠表示点P 与Q 不重合)若n n n d A B =,n S 为1n n n A B B +∆的面积,则( ) (A ){}n S 是等差数列 (B ){}2n S 是等差数列(C ){}n d 是等差数列 (D ){}2n d 是等差数列 【答案】A【解析】设锐角的顶点为O ,1OA a =,1OB b =,112n n n n A A A A b +++==,112n n n n B B B B d +++==,由于a ,b 不确定,则{}n d 不一定是等差数列,{}2nd 不一定是等差数列,设1n n n A B B+∆的底边1n n B B +上的高为n h ,由三角形的相似可得()111n n n n a n b h OA h OA a nb +++-==+,()22111n n n n a n bh OA h OA a nb++++++==+,两式相加可得,21222n n n h h a nb h a nb ++++==+,即有212n n n h h h +++=,由12n n S d h =⋅,可得212n n n S S S +++=, 即为211n n n n S S S S +++=--,则数列{}n S 为等差数列,故选A .【点评】本题考查等差数列的判断,注意运用三角形的相似和等差数列的性质,考查化简整理的推理能力,属于中档题.(7)【2016年浙江,理7,5分】已知椭圆()2212:11x C y m m +=>与双曲线()2212:10x C y n n-=>的焦点重合,1e ,2e 分别为1C ,2C 的离心率,则( ) (A )m n >且121e e > (B )m n >且121e e < (C )m n <且121e e > (D )m n <且121e e < 【答案】A【解析】∵椭圆()2212:11x C y m m +=>与双曲线()2212:10x C y n n-=>的焦点重合,∴满足22211c m n =-=+,即2220m n -=>,∴22m n >,则m n >,排除C ,D ,则2221c m m -<=,2221c n n =+>,则c m <.c n >,1c e m =,2c e n =,则212c c c e e m n mn ⋅=⋅=,则()()()222222212222211m n c c c c e e m n m n m n -+⎛⎫⎛⎫=⋅=⋅= ⎪⎪⎝⎭⎝⎭()22222222222222112111111m n m n m n m n m n m n m n+-----==+=+=+>,∴121e e >,故选A . 【点评】本题主要考查圆锥曲线离心率的大小关系的判断,根据条件结合双曲线和椭圆离心率以及不等式的性质进行转化是解决本题的关键.考查学生的转化能力.(8)【2016年浙江,理8,5分】已知实数a ,b ,c ( )(A )若221a b c a b c +++++≤,则222100a b c ++<(B )若22|1|a b c a b c ++++-≤,则222100a b c ++<(C )若221||a b c a b c ++++-≤,则222100a b c ++<(D )若22|1|a b c a b c ++++-≤,则222100a b c ++< 【答案】D 【解析】A .设10a b ==,110c =-,则2201a b c a b c +++++=≤,222100a b c ++>;B .设10a =,100b =-,0c =,则221||0a b c a b c ++++-=≤,222100a b c ++>;C .设100a =,100b =-,0c =,则22|0|1a b c a b c ++++-=≤,222100a b c ++>,故选D .【点评】本题主要考查命题的真假判断,由于正面证明比较复杂,故利用特殊值法进行排除是解决本题的关键.第Ⅱ卷(非选择题 共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.(9)【2016年浙江,理9,6分】若抛物线24y x =上的点M 到焦点的距离为10,则M 到y 轴的距离是 . 【答案】9【解析】抛物线的准线为1x =-,∵点M 到焦点的距离为10,∴点M 到准线1x =-的距离为10,∴点M 到y 轴的距离为9.【点评】本题考查了抛物线的性质,属于基础题. (10)【2016年浙江,理10,6分】已知()()22cos sin 2sin 0x x A x b A ωϕ+=++>,则A = ,b = . 【答案】2;1【解析】∵2222cos sin 21cos 2sin 212cos 2sin 212sin 214x x x x x x x π⎛⎫⎛⎫+=++=+++=++ ⎪ ⎪ ⎪⎝⎭⎭,2A ∴=,1b =.【点评】本题考查了二倍角的余弦公式、两角和的正弦函数的应用,熟练掌握公式是解题的关键. (11)【2016年浙江,理11,6分】某几何体的三视图如图所示(单位:cm ),则该几何体的表面积是cm 2,体积是 cm 3. 【答案】72;32【解析】由三视图可得,原几何体为由四个棱长为2cm 的小正方体所构成的,则其表面积为()2224672⨯-=cm 2,其体积为34232⨯=.【点评】本题考查了由三视图求几何体的体积和表面积,解题的关键是判断几何体的形状及相关数据所对应的几何量,考查空间想象能力.(12)【2016年浙江,理12,4分】已知1a b >>,若5log o 2l g a b b a +=,ba ab =,则a = ,b = .【答案】4;2【解析】设log b t a =,由1a b >>知1t >,代入5log o 2l g a b b a +=得152t t +=,即22520t t -+=,解得2t =或12t =(舍去),所以log 2b a =,即2a b =,因为b a a b =,所以2b a b b =,则22a b b ==,解得2b =,4a =.【点评】本题考查对数的运算性质,是基础的计算题.(13)【2016年浙江,理13,4分】设数列{}n a 的前n 项和为n S ,若24S =,121n n a S +=+,*n N ∈,则1a = __,5S = __.【答案】1;121【解析】由1n =时,11a S =,可得2112121a S a =+=+,又24S =,即124a a +=,即有1314a +=,解得11a =;由11n n n a S S ++=-,可得131n n S S +=+,由24S =,可得334113S =⨯+=,4313140S =⨯+=,53401121S =⨯+=.【点评】本题考查数列的通项和前n 项和的关系:n=1时,a 1=S 1,n >1时,a n =S n ﹣S n ﹣1,考查运算能力,属于中档题.(14)【2016年浙江,理14,4分】如图,在ABC ∆中,2AB BC ==,120ABC ∠=︒.若平面ABC 外的点P 和线段AC 上的点D ,满足PD DA =,PB BA =,则四面体PBCD 的体积的最大值是 .【答案】12【解析】如图,M 是AC 的中点.①当3AD t AM =<=时,如图,此时高为P 到BD 的距离,也就是A 到BD 的距离,即图中AE ,3DM t =-,由ADE BDM ∆∆∽,可得 ()2131ht=-+,()231h t=-+,()()(()()22233111231,0,33263131tV t t tt--=⋅⋅-⋅⋅=⋅∈-+-+②当3AD t AM =>=时,如图,此时高为P 到BD 的距离,也就是A 到BD 的距离,即图中AH ,3DM t =-,由等面积,可得1122AD BM BD AH ⋅⋅=⋅⋅,∴()21113122t t ⋅⋅=-+,∴()231h t=-+,∴()()(()()22233111231,3,233263131tV t t tt--=⋅⋅-⋅⋅=⋅∈-+-+,综上所述,(()()22331,0,23631tV t t--=⋅∈-+,令()[)2311,2m t=-+∈,则2146m V m-=⋅,∴1m =时,12max V =. 【点评】本题考查体积最大值的计算,考查学生转化问题的能力,考查分类讨论的数学思想,对思维能力和解题技巧有一定要求,难度大.(15)【2016年浙江,理15,5分】已知向量a r ,b r ,1a =r ,2b =r ,若对任意单位向量e r ,均有6a e b e ⋅+⋅≤r r r r,则a b ⋅r r的最大值是 .【答案】12【解析】∵()6a b e a e b e a e b e +⋅=⋅+⋅≤⋅+⋅≤r r r r r r r r r r r ,∴()6a b e a b +⋅=+≤r r r r r ,平方得:2226a b a b ++⋅≤r r r r,即221226a b ++⋅≤r r ,则12a b ⋅≤r r ,故a b ⋅r r 的最大值是12.【点评】本题主要考查平面向量数量积的应用,根据绝对值不等式的性质以及向量三角形不等式的关系是解决本题的关键.综合性较强,有一定的难度.三、解答题:本大题共5题,共74分.解答应写出文字说明,演算步骤或证明过程. (16)【2016年浙江,理16,14分】在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知2cos b c a B +=.(1)证明:2A B =;(2)若ABC ∆的面积24a S =,求角A 的大小.解:(1)由正弦定理得sin sin 2sin cos B C A B +=,()2sin cos sin sin sin sin cos cos sin A B B A B B A B A B =++=++,于是()sin sin B A B =-.又(),0,A B π∈,故0A B π<-<,所以()B A B π=--或B A B =-,因此A π=(舍去)或2A B =,所以,2A B =.(2)由24a S =得21sin 24a ab C =,故有1sin sin sin 2sin cos 2B C B B B ==,因sin 0B ≠,得sin cos C B =.又(),0,B C π∈,所以2C B π=±.当2B C π+=时,2A π=;当2C B π-=时,4A π=.综上,2A π=或4A π=.【点评】本题考查了正弦定理,解三角形,考查三角形面积的计算,考查二倍角公式的运用,属于中档题. (17)【2016年浙江,理17,15分】如图,在三棱台ABC DEF -中,已知平面BCFE ⊥平面ABC ,90ACB ∠=︒,1BE EF FC ===,2BC =,3AC =. (1)求证:EF ⊥平面ACFD ;(2)求二面角B AD F --的余弦值. 解:(1)延长AD ,BE ,CF 相交于一点K ,如图所示.因为平面BCFE ⊥平面ABC ,且AC BC ⊥,; 所以,AC ⊥平面BCK ,因此,BF AC ⊥.又因为//EF BC ,1BE EF FC ===,2BC =,所以BCK ∆ 为等边三角形,且F 为CK 的中点,则BF CK ⊥.所以BF ⊥平面ACFD .(2)解法1:过点F 作FQ AK ⊥,连结BQ .因为BF ⊥平面ACK ,所以BF AK ⊥,则AK ⊥平面BQF ,所以BQ AK ⊥.所以,BQF ∠是二面角B AD F --的平面角.在Rt ACK ∆中,3AC =,2CK =,得313FQ =.在Rt BQF ∆中,313FQ =,3BF =,得3cos BQF ∠=.所以,二面角B AD F --的平面角的余弦值为3. 解法2:如图,延长AD ,BE ,CF 相交于一点K ,则BCK ∆为等边三角形.取BC 的 中点O ,则KO BC ⊥,又平面BCFE ⊥平面ABC ,所以,KO ⊥平面ABC .以点O 为原 点,分别以射线OB ,OK 的方向为x ,z 的正方向,建立空间直角坐标系Oxyz .由题意得()1,0,0B ,()1,0,0C -,()0,0,3K ,()1,3,0A --,13,0,2E ⎛⎫ ⎪ ⎪⎝⎭,13,0,2F ⎛⎫- ⎪ ⎪⎝⎭.因此,()0,3,0AC =u u u r ,()1,3,3AK =u u u r,()2,3,0AB =u u u r .设平面ACK 的法向量为()111,,m x y z =u r,平面ABK 的法向量为()222,,n x y z =r .由0AC m AK m ⎧⋅=⎪⎨⋅=⎪⎩u u u r u ru u u r u r ,得111130330y x y z =⎧⎪⎨++=⎪⎩,取()3,0,1m =-u r ; 由00AB n AK n ⎧⋅=⎪⎨⋅=⎪⎩u u u r r u u u r r,得22222230330x y x y z +=⎧⎪⎨++=⎪⎩,取()3,2,3n =-r .于是,3cos ,4m n m n m n ⋅==⋅r r r r r r . 所以,二面角B AD F --的平面角的余弦值为34. 【点评】本题考查了空间位置关系、法向量的应用、空间角,考查了空间想象能力、推理能力与计算能力,属于中档题.(18)【2016年浙江,理18,15分】已知3a ≥,函数(){}2min 21,242F x x x ax a =--+-,其中(),min ,,p p qp q q p q ≤⎧=⎨>⎩.(1)求使得等式()2242F x x ax a =-+-成立的x 的取值范围;(2)(i )求()F x 的最小值()m a ;(ii )求()F x 在[]0,6上的最大值()M a .解:(1)由于3a ≥,故当1x ≤时,()()()22242212120x ax a x x a x -+---=+-->,当1x >时,()()()22422122x ax a x x x a -+---=--.所以,使得等式()2242F x x ax a =-+-成立的x 的取值范围为[]2,2a .(2)(i )设函数()21f x x =-,()2242g x x ax a =-+-,则()()min 10f x f ==,()()2min 42g x g a a a ==-+-,所以,由()F x 的定义知()()(){}min 1,m a f g a =,即()20,32242,22a m a a a a ⎧≤≤+⎪=⎨-+->+⎪⎩. (ii )当02x ≤≤时,()()()(){}()max 0,222F x f x f f F ≤≤==,当26x ≤≤时,()()()(){}{}()(){}max 2,6max 2,348max 2,6F x g x g g a F F ≤≤=-=.所以,()348,342,4a a M a a -≤<⎧=⎨≥⎩.【点评】本题考查新定义的理解和运用,考查分类讨论的思想方法,以及二次函数的最值的求法,不等式的性质,考查化简整理的运算能力,属于中档题.(19)【2016年浙江,理19,15分】如图,设椭圆()222:11x C y a a+=>.(1)求直线1y kx =+被椭圆截得到的弦长(用a ,k 表示);(2)若任意以点()0,1A 为圆心的圆与椭圆至多有三个公共点,求椭圆的离心率的取值范围.解:(1)设直线1y kx =+被椭圆截得的线段为AP ,由22211y kx x y a=+⎧⎪⎨+=⎪⎩得()2222120a k x a kx ++=,故10x =,222221a k x a k=-+.因此222221a k AP x a k =-=⋅+. (2)假设圆与椭圆的公共点有4个,由对称性可设y 轴左侧的椭圆上有两个不同的点P ,Q ,满足AP AQ =. 记直线AP ,AQ 的斜率分别为1k ,2k ,且1k ,20k >,12k k ≠.由(1)知,AP =AQ =,故=,所以()()22222222121212120kk k k a a k k ⎡⎤-+++-=⎣⎦.由于12k k ≠,1k ,20k >得()2222221212120k k a a k k +++-=,因此()222212111112a a k k ⎛⎫⎛⎫++=+- ⎪⎪⎝⎭⎝⎭①因为①式关于1k ,2k 的方程有解的充要条件是:()22121a a +->,所以a >.因此,任意以点()0,1A 为圆心的圆与椭圆至多有3个公共点的充要条件为12a <≤,由c e a ==得,所求离心率的取值范围为0e <≤【点评】本题考查直线与椭圆的位置关系的综合应用,椭圆与圆的位置关系的综合应用,考查分析问题解决问题的能力,考查转化思想以及计算能力.(20)【2016年浙江,理20,15分】设数列满足11,2n n aa n N *+-≤∈.(1)求证:()()1*122n n a a n N ≥∈﹣﹣; (2)若32nn a ⎛⎫≤ ⎪⎝⎭,*n N ∈,证明:2n a ≤,*n N ∈.解:(1)由112n n a a +-≤得1112n n a a +-≤,故111222n n n n na a ++-≤,n *∈N , 所以31112211223122222222nn n n n n a a a a a a a a --⎛⎫⎛⎫⎛⎫-=-+-+⋅⋅⋅+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭121111222n -≤++⋅⋅⋅+1<, 因此()1122n n a a -≥-. (2)任取n *∈N ,由(1)知,对于任意m n >,1121112122222222n m n n n n m m nmnn n n m m a a a a a a a a +++-+++-⎛⎫⎛⎫⎛⎫-=-+-+⋅⋅⋅+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 11111222n n m +-≤++⋅⋅⋅+112n -<,故11222m n n n m a a -⎛⎫<+⋅ ⎪⎝⎭11132222mnn m-⎡⎤⎛⎫≤+⋅⋅⎢⎥ ⎪⎝⎭⎢⎥⎣⎦3224mn⎛⎫=+⋅ ⎪⎝⎭.从而对于任意m n >,均有3224mn n a ⎛⎫<+⋅ ⎪⎝⎭.由m 的任意性得2n a ≤ ①否则,存在0n *∈N ,有02n a >,取正整数000342log 2n n a m ->且00m n >,则003402log 23322244n n a m m n n a -⎛⎫⎛⎫⋅<⋅=- ⎪⎪⎝⎭⎝⎭,与①式矛盾.综上,对于任意n *∈N ,均有2n a ≤.【点评】本题考查了不等式的应用与证明,等比数列的求和公式,放缩法证明不等式,难度较大.。