浙江省新高考学业水平考试数学试卷

合集下载

2022年7月浙江省普通高中学业水平考试数学试题(高频考点版)

2022年7月浙江省普通高中学业水平考试数学试题(高频考点版)

一、单选题二、多选题三、填空题1. 已知F 是抛物线的焦点,过点F 且斜率为的直线交抛物线于A ,B两点,则的值为( )A.B.C.D.2. 已知点是直线上一动点、是圆的两条切线,、是切点,若四边形的最小面积是,则的值为( )A.B.C.D. 3. 等于( )A.B.C.D.4. 如图,将地球近似看作球体,设地球表面某地正午太阳高度角为为此时太阳直射纬度(当地夏半年取正值,冬半年取负值),为该地的纬度值.已知太阳每年直射范围在南北回归线之间,即.北京天安门广场的汉白玉华表高为9.57米,北京天安门广场的纬度为北纬,若某天的正午时刻,测得华表的影长恰好为9.57米,则该天的太阳直射纬度为()A.北纬B.北纬C.南纬D.南纬5. 下列各组函数是同一函数的是( )①与;②与;③与;④与A .①B .②C .③D .④6.将函数的图像向右平移个单位长度,然后将所得的图像上各点的横坐标缩小为原来的,纵坐标不变,得到函数的图像.则在区间上的值域为( )A.B.C.D.7. 若,且,则下列不等式中不恒成立的是( )A.B.C.D.8. 的内角的对边分别为,则( )A .当时,B.当时,C .当时,是等腰三角形D .当时,是等腰三角形9. 已知函数,则________.10. 函数定义域为________.(用区间表示)2022年7月浙江省普通高中学业水平考试数学试题(高频考点版)2022年7月浙江省普通高中学业水平考试数学试题(高频考点版)四、解答题11.若,则__________.12. “直线a 与平面M 没有公共点”是“直线a 与平面M 平行”的____________条件.13. 已知函数f (x )是定义在R 上的奇函数,且当x >0时,f (x )=﹣x 2+2x .(1)求函数f (x )在R 上的解析式;(2)解关于x 的不等式f (x )<3.14. 如图,正方形与梯形所在的平面互相垂直,,,,为的中点.(1)求证:平面;(2)求证:平面.15.已知等差数列的前n项和为,且,;数列的前n 项和,且,数列的,.(1)求数列、的通项公式;(2)若数列满足:,当时,求证:.16. 如图,为平面外两点,点在平面上的射影分别为点为平面内的向量.求证:.。

2024年7月浙江省普通高中学业水平考试——数学仿真模拟试卷01(解析版)

2024年7月浙江省普通高中学业水平考试——数学仿真模拟试卷01(解析版)

2024年7月浙江省普通高中学业水平合格性考试数学仿真模拟试卷01(考试时间:80分钟;满分:100分)注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、单项选择题(本大题共12小题,每小题3分,共36分.每小题列出的四个备选项中只有一个是符合题目要求的,不选、多选、错选均不得分)1.集合{}|12A x x =-≤≤,{}|1B x x =<,则()A B ⋃R ð=()A .{}|1x x >B .{}1|x x ≥-C .{}|12<≤x x D .{}|12x x ≤≤【答案】B【分析】由补集和并集的定义直接求解.【详解】集合{}|12A x x =-≤≤,{}|1B x x =<,则{}1|B x x =≥R ð,(){}1|=A B x x ≥-R ð.故选:B2.已知复数z 满足(1i)2i z -=,则z 在复平面内对应的点位于()A .第一象限B .第二象限C .第三象限D .第四象限【答案】B【分析】化简复数1i z =-+,结合复数的坐标表示,即可求解.【详解】由题意,复数z 满足(1i)2i z -=,可得()()()2i 1i 2i 1i 1i 1i 1i z ⋅+===-+--+,所以复数z 在复平面内对应的点(1,1)Z -位于第二象限.故选:B.3.函数lg(2)y x =-的定义域是()A .(0,2]B .(0,2)C .(,2)-∞D .(2,)+∞【答案】C【分析】由对数函数的性质可得函数lg(2)y x =-的定义域.【详解】由函数lg(2)y x =-,得到20x ->解得x 2<,则函数的定义域是(),2∞-,故选:C .4.三个数0.35a =,50.3b =,515c ⎛⎫= ⎪⎝⎭大小的顺序是()A .a b c >>B .a c b >>C .b a c >>D .c a b>>【答案】A【解析】利用指数函数、幂函数的单调性即可求解.【详解】由5x y =为增函数,则0.30551a =>=,由5y x =为增函数,555110.35⎛⎫>> ⎪⎝⎭,所以a b c >>.故选:A5.已知向量()1,2a =r ,(),3b λ= ,若a b ⊥,则λ=()A .6-B .32-C .32D .6【答案】A【分析】根据向量垂直的坐标表示进行求解.【详解】因为()1,2a =r ,(),3b λ= ,a b ⊥,所以60a b λ⋅=+=,解得6λ=-.故选:A.6.从甲、乙等4名同学中随机选出2名同学参加社区活动,则甲,乙两人中只有一人被选中的概率为()A .56B .23C .12D .13【答案】B【分析】利用古典概型,列举计算事件数,即得解.【详解】将甲,乙分别记为x ,y ,另2名同学分别记为a ,b .设“甲,乙只有一人被选中”为事件A ,则从4名同学中随机选出2名同学参加社区活动的所有可能情况有(),x y ,(),x a ,(),x b ,(),y a ,(),y b ,(),a b ,共6种,其中事件A 包含的可能情况有(),x a ,(),x b ,(),y a ,(),y b ,共4种,故42()63P A ==.故选:B7.在ABC 中,已知D 是AB 边上的中点,G 是CD 的中点,若AG AB AC λμ=+u u u r u u u r u u u r,则实数λμ+=()A .14B .12C .34D .1【答案】C【分析】根据D 是AB 边上的中点,G 是CD 的中点,得到11,22AD AB CG CD ==u u u r u u u r u u u r u u u r ,再利用平面向量的线性运算求解.【详解】解:因为D 是AB 边上的中点,G 是CD 的中点,所以11,22AD AB CG CD ==u u u r u u u r u u u r u u u r ,所以12AG AC CG AC CD =+=+u u u r u u u r u u u r u u u r u u u r,()111242AC AD AC AB AC =+-=+u u u r u u u r u u u r u u u r u u u r ,又因为AG AB AC λμ=+u u u r u u u r u u u r,所以11,42λμ==,则34λμ+=,故选:C8.若棱长为)A .12πB .24πC .36πD .144π【答案】C【分析】求出正方体的体对角线的一半,即为球的半径,利用球的表面积公式,即可得解.【详解】这个球是正方体的外接球,其半径等于正方体的体对角线的一半,即3R ==,所以,这个球的表面积为2244336S R πππ==⨯=.故选:C.【点睛】本题考查正方体的外接球的表面积的求法,求出外接球的半径是本题的解题关键,属于基础题.求(1)三条棱两两互相垂直时,可恢复为长方体,利用长方体的体对角线为外接球的直径,求出球的半径;(2)直棱柱的外接球可利用棱柱的上下底面平行,借助球的对称性,球心为上下底面外接圆的圆心连线的中点,再根据勾股定理求球的半径;(3)如果设计几何体有两个面相交,可过两个面的外心分别作两个面的垂线,垂线的交点为几何体的球心.9.如图,在四面体ABCD 中,,E F 分别是AC 与BD 的中点,若24CD AB ==,EF BA ⊥,则EF 与CD 所成角的度数为()A .90°B .45°C .60°D .30°【答案】D【分析】设G 为AD 的中点,连接,GF GE ,由三角形中位线定理可得GF AB ∥,GE CD ∥,则GEF ∠或其补角即为EF 与CD 所成的角,结合2AB =,4CD =,EF AB ⊥,在GEF △中,利用三角函数相关知识即可得到答案.【详解】设G 为AD 的中点,连接,GF GE ,则,GF GE 分别为,ABD ACD △△的中位线,所以GF AB ∥,112GF AB ==,GE CD ∥,122GE CD ==,则EF 与CD 所成角的度数等于EF 与GE 所成角的度数,即GEF ∠或其补角即为EF 与CD 所成角,又因为EF AB ⊥,GF AB ∥,所以EF GF ⊥,则GEF △为直角三角形,1GF =,2GE =,90GFE ∠=︒,在直角GEF △中,1sin 2GEF ∠=,即30GEF ∠=︒,所以EF 与CD 所成角的度数为30°.故选:D10.我国著名数学家华罗庚曾说:“数缺形时少直观,形少数时难入微,数形结合白般好,隔离分家万事休.”在数学的学习和研究中,有时可凭借函数的图象分析函数解析式的特征.已知函数()f x 的部分图象如图所示,则函数()f x 的解析式可能为()A .()21xf x x=-B .()221x f x x =+C .()221xf x x =-D .()2211x f x x +=-【答案】C【分析】根据图象函数为奇函数,排除D ;再根据函数定义域排除B ;再根据1x >时函数值为正排除A ;即可得出结果.【详解】由题干中函数图象可知其对应的函数为奇函数,而D 中的函数为偶函数,故排除D ;由题干中函数图象可知函数的定义域不是实数集,故排除B ;对于A ,当1x >时,0y <,不满足图象;对于C ,当1x >时,0y >,满足图象.故排除A ,选C.故选:C11.已知π17tan tan 422θθ⎛⎫+=- ⎪⎝⎭,则cos 2θ=()A .12-B .12C .45-D .45【答案】C【分析】利用两角和的正切公式可得出关于tan θ的方程,解出tan θ的值,再利用二倍角的余弦公式以及弦化切可求得cos 2θ的值.【详解】因为πtan tanπtan 1174tan tan π41tan 221tan tan 4θθθθθθ++⎛⎫+===- ⎪-⎝⎭-,整理可得2tan 6tan 90θθ-+=tan 3θ=,所以,222222cos sin 1tan 194cos 2cos sin 1tan 195θθθθθθθ---====-+++.故选:C.12.若0x >,0y >且x y xy +=,则211x y x y +--的最小值为()A .3B.52C.3D.3+【答案】D【分析】先把x y xy +=转化为111x y +=,再将2211x yx y x y +=+--,根据基本不等式即可求出.【详解】0x >,0y >且x y xy +=,111x y∴+=,211x y x y +-- ,()()2211xy x xy y x y -+-=--,21x y xy x y +=--+2x y =+,()112x y x y ⎛⎫=++ ⎪⎝⎭2333x yy x =++≥++当且仅当2x yy x =,即12x =+,1y =+故211x y x y +--的最小值为3+故选:D .二、多项选择题(本大题共4小题,每小题4分,共16分.每小题列出的四个备选项中有多个是符合题目要求的,全部选对得4分,部分选对且没错选得2分,不选、错选得0分.)13.下列说法中正确的是()A .直线10x y ++=在y 轴上的截距是1B .直线()20mx y m m +++=∈R 恒过定点()1,2--C .点()0,0关于直线10x y --对称的点为()1,1-D .过点()1,2且在x 轴、y 轴上的截距相等的直线方程为30x y +-=【答案】BC【分析】对于A 项,将直线方程化成斜截式方程即得;对于B 项,把直线方程化成关于参数m 的方程,依题得到1020x y +=⎧⎨+=⎩,解之即得;对于C 项,只需验证两点间的线段中点在直线上,且两点的直线斜率与已知直线斜率互为负倒数即可;对于D 项,需注意截距相等还包括都为0的情况.【详解】对于A 项,由10x y ++=可得:=1y x --,可得直线10x y ++=在y 轴上的截距是1-,故A 项错误;对于B 项,由20mx y m +++=可得:(1)20m x y +++=,因R m ∈,则有:1020x y +=⎧⎨+=⎩,故直线()20mx y m m +++=∈R 恒过定点()1,2--,故B 项正确;对于C 项,不妨设(0,0),(1,1)A B -,直线:10l x y --=,因直线AB 的斜率为1-与直线l 的斜率为1的乘积为1-,则得AB l ⊥,又由点A 到直线l与点B 到直线l 相等,且在直线l 的两侧,故点()0,0关于直线10x y --=对称的点为()1,1-,即C 项正确;对于D 项,因过点()1,2且在x 轴、y 轴上的截距相等的直线还有2y x =,故D 项错误.故选:BC.14.已知()π,0θ∈-,7sin cos 13θθ+=,则下列结论正确的是()A .ππ,2θ⎛⎫∈ ⎪⎝-⎭-B .12cos 13θ=C .5tan 12θ=D .17sin cos 13θθ-=-【答案】BD【分析】先利用题给条件求得sin ,cos θθ的值,进而得到θ的范围,tan θ的值和sin cos θθ-的值.【详解】由7sin cos 13θθ+=可得,7cos sin 13θθ=-,则227sin sin 113θθ⎛⎫-+= ⎪⎝⎭,即524sin 2sin 01313θθ⎛⎫⎛⎫+-= ⎪⎪⎝⎭⎝⎭解之得12sin 13θ=或5sin 13θ=-,又()π,0θ∈-,则5sin 13θ=-,故12cos 13θ=,则选项B 判断正确;由5sin 013θ=-<,12cos 013θ=>可得θ为第四象限角,又()π,0θ∈-,则π,02θ⎛⎫∈- ⎪⎝⎭,则选项A 判断错误;sin θ5tan θcos θ12==-,则选项C 判断错误;51217sin cos 131313θθ-=--=-,则选项D 判断正确.故选:BD15.已知函数()()e ,021,0xx f x f x x ⎧≤⎪=⎨->⎪⎩,若关于x 的方程()f x a =有两解,则实数a 的值可能为()A .1ea =B .1a =C .ea =D .3a =【答案】BD【分析】根据题意分析可得方程()f x a =的根的个数可以转化为()y f x =与y a =的交点个数,结合()y f x =的单调性与值域以及图象分析判断.【详解】①当0x ≤时,()e xf x =在(],0-∞内单调递增,且()01f =,所以()(]0,1f x ∈;②当0x >时,则()(]*2e ,1,,k x k f x x k k k -=∈-∈N ,可知()f x 在(]*1,,k k k -∈N 内单调递增,且()()21,2ekk f k f k -==,所以()*2,2,e k k f x k ⎛⎤∈∈ ⎥⎝⎦N ,且12222,e e k k kk ++<<∈N .方程()f x a =的根的个数可以转化为()y f x =与y a =的交点个数,可得:当0a ≤时,()y f x =与y a =没有交点;当20e a <≤时,()y f x =与y a =有且仅有1个交点;当122,ek k a k +<≤∈N 时,()y f x =与y a =有且仅有2个交点;当222,ek ka k +<≤∈N 时,()y f x =与y a =有且仅有1个交点;若关于x 的方程()f x a =有两解,即()y f x =与y a =有且仅有2个交点,所以实数a 的取值范围为12,2,e k k k +⎛⎤∈ ⎥⎝⎦N ,因为281,1,3,4e e ⎛⎤⎛⎤∈∈ ⎥⎥⎝⎦⎝⎦,而A 、C 不在相关区间内,所以A 、C 错误,B 、D 正确.故选:BD.16.如图,在直三棱柱111ABC A B C -中,12AA =,1AB BC ==,120ABC ︒∠=,侧面11AAC C 的对角线交点O ,点E 是侧棱1BB 上的一个动点,下列结论正确的是()A .直三棱柱的侧面积是4+B .直三棱柱的外接球表面积是4πC .三棱锥1E AAO -的体积与点E 的位置无关D .1AE EC +的最小值为【答案】ACD【分析】首先计算AC 长,再根据直棱柱的侧面积公式,即可判断A ;首先计算ABC 外接圆的半径,再根据几何关系求外接球的半径,代入公式,即可判断B ;根据体积公式,结合线与平面平行的关系,即可判断C ;利用展开图,结合几何关系,即可判断D.【详解】A.ABC 中,AC =,所以直棱柱的侧面积为(1124++⨯=+,故A 正确;B.ABC 外接圆的半径12sin120ACr ==,所以直棱柱外接球的半径R =则直三棱柱外接球的表面积24π8πS R ==,故B 错误;C.因为11//BB AA ,且1BB ⊄平面11AAC C ,1AA ⊂平面11AAC C ,所以1//BB 平面11AAC C ,点E 在1BB 上,所以点E 到平面11AAC C 的距离相等,为等腰三角形ABC 底边的高为12,且1AAO 的面积为122⨯=则三棱锥1E AAO -的体积为定值1132=,与点E 的位置无关,故C 正确;D.将侧面展开为如图长方形,连结1AC ,交1BB 于点E ,此时1AE EC +=D 正确.故选:ACD【点睛】关键点点睛:本题D 选项解决的关键是将平面11AA B B 与11CC B B 展开到同一个面,利用两点之间距离最短即可得解.三、填空题(本大题共4小题,每空3分,共15分.)17.已知函数()21,02,0x x f x x x ⎧+≤=⎨->⎩,则()2f =;若()10f x =,则x =.【答案】4-;3-.【分析】利用分段函数的性质计算即可.【详解】由条件可知()2224f =-⨯=-;若()201103x f x x x ≤⇒=+=⇒=-,若()021050x f x x x >⇒=-=⇒=-<,不符题意.故答案为:4-;3-18.已知双曲线2222:1(0,0)x y C a b a b-=>>的离心率为2,右焦点与抛物线216y x =的焦点重合,则双曲线C 的顶点到渐近线的距离为.【解析】求出抛物线的焦点,可得双曲线的c ,运用离心率公式可得a ,再由a ,b ,c 的关系,求得b ,求出顶点到渐近线的距离,即可得到所求值.【详解】解:抛物线216y x =的焦点为(4,0),则双曲线的4c =,双曲线的离心率等于2,即2ca=,可得2a =,b ==则双曲线的渐近线方程为y =,顶点坐标为(20)±,,可得双曲线的顶点到其渐近线的距离等于d =【点睛】本题考查双曲线的方程和性质,主要是渐近线方程和离心率公式的运用,考查运算能力,属于中档题.19.已知a 、b 、c 分别为ABC 的三个内角A 、B 、C 的对边,2a =,且()(sin sin )()sin a b A B c b C +-=-,则ABC 面积的最大值为.【分析】先求出角A 的大小,由1sin 2S bc A =,考虑余弦定理建立,b c 的方程,再由基本不等式求bc 的最大值.【详解】解析:因为()(sin sin )()sin a b A B c b C +-=-,根据正弦定理可知(a b)()(c b)a b c +-=-,即222b c a bc +-=,由余弦定理可知1cos 2A =,又(0,π)A ∈,故π3A =,又因为2a =,所以224b c bc +-=,2242b c bc bc bc bc =+-≥-=(当且仅当b c =时取等号),即4bc ≤所以11sin 422S bc A =≤⨯=ABC20.已知定义在R 上的函数()f x 在(,3)-∞-上是减函数,若()() 3g x f x =-是奇函数,且()03g =,则满足不等式()0xf x ≤的x 的取值范围是.【答案】][3(),6,-∞-⋃-+∞【分析】由已知条件,可得()g x 是奇函数,则()f x 关于(3,0)-对称,可得()f x 在(,3)-∞-与(3,)-+∞上是减函数,且()()060f f -==,(3)0f -=,画出()f x 对应的函数草图,可得不等式()0xf x ≤的x 的取值范围.【详解】解:将()f x 向右平移3个单位,可得到()3f x -,由()() 3g x f x =-是奇函数,可得()g x 关于原点对称,则()f x 关于(3,0)-对称,且()00(3)g f =-=,由()f x 在(,3)-∞-上是减函数,可得()f x 在(3,)-+∞上也是减函数,由()03g =,可得()()033g g =-=,故可得:()()060f f -==,可得()f x 对应的函数草图如图,可得()0xf x ≤的解集为:][3(),6,-∞-⋃-+∞,故答案为:][3(),6,-∞-⋃-+∞.【点睛】本题主要考查函数单调性与奇偶性的综合,注意数形结合解题,属于难题.四、解答题(本大题共3小题,共33分.解答应写出文字说明、证明过程或演算步骤.)21.为了解某项基本功大赛的初赛情况,一评价机构随机抽取40名选手的初赛成绩(满分100分),作出如图所示的频率分布直方图:(1)根据上述频率分布直方图估计初赛的平均分;(2)假设初赛选手按1:8的比例进入复赛(即按初赛成绩由高到低进行排序,前12.5%的初赛选手进入复赛),试估计能进入复赛选手的最低初赛分数.注:直方图中所涉及的区间是:[50,60),[60,70),[70,80),[80,90),[90,100].【答案】(1)平均分的估计值为72分;(2)最低初赛分数为85分.【分析】(1)利用每小组中间值乘以每小组频率,再求和即可;(2)先设最低分数为x ,依题意大于x 的成绩的频率为0.125,即解得x .【详解】解:(1)由频率分布直方图得样本平均分550.15650.25750.4850.15950.0572x =⨯+⨯+⨯+⨯+⨯=.因此,初赛平均分的估计值为72分;(2)根据频率分布直方图,设40名选手进入复赛的最低分数为x ,依题意成绩落入区间[90,100]的频率是0.05,成绩落入区间[80,90)的频率是0.15,按初赛成绩由高到低进行排序,前12.5%的初赛选手进入复赛,可判断x 在[80,90)内,则(90)0.0150.050.125x -⨯+=,解得85x =.因此,估计能进入复赛选手的最低初赛分数为85分.22.已知函数()()sin 0f x x x ωωω=+>的最小正周期是π.(1)求ω值;(2)求()f x 的对称中心;(3)将()f x 的图象向右平移3π个单位后,再将所得图象所有点的横坐标伸长到原来的2倍,纵坐标不变,得到函数()y g x =的图象,求()g x 的单调递增区间.【答案】(1)2;(2),026k ππ⎛⎫- ⎪⎝⎭,Z k ∈;(3)52,266k k ππππ⎡⎤-+⎢⎥⎣⎦,Z k ∈.【分析】(1)由()2sin 3f x x πω⎛⎫=+ ⎪⎝⎭且2T ππω==,即可求ω值;(2)由(1)知()2sin 23f x x π⎛⎫=+ ⎪⎝⎭,结合正弦函数的对称中心即可求()f x 的对称中心;(3)由函数平移知()sin 23g x x π⎛⎫- ⎝=⎪⎭,结合正弦函数的单调性即可求()g x 的单调递增区间.【详解】(1)()sin 2sin 3f x x x x πωωω⎛⎫=+=+ ⎪⎝⎭,又0ω>,∵2T ππω==,∴2ω=.(2)由(1)知,()2sin 23f x x π⎛⎫= ⎪⎝⎭,令23x k ππ+=,解得26k x ππ=-.∴()f x 的对称中心是,026k ππ⎛⎫- ⎪⎝⎭,Z k ∈.(3)将()f x 的图像向右平移3π个单位后可得:2sin 23y x π⎛⎫=- ⎪⎝⎭,再将所得图像横坐标伸长到原来的2倍,纵坐标不变得到:()sin 23g x x π⎛⎫- ⎝=⎪⎭,由22232k x k πππππ-≤-≤+,解得52266k x k ππππ-≤≤+,Z k ∈.∴()g x 的单调递增区间为52,266k k ππππ⎡⎤-+⎢⎥⎣⎦,Z k ∈.【点睛】关键点点睛:(1)应用辅助角公式求三角函数解析式,结合最小正周期求参数.(2)根据正弦函数的对称中心,应用整体代入求()f x 的对称中心.(3)由函数图像平移得()g x 解析式,根据正弦函数的单调增区间,应用整体代入求()g x 的单调增区间.23.函数()221a xb f x x +=+是定义在()1,1-上的奇函数,且1225f ⎛⎫= ⎪⎝⎭.(1)求实数,a b 的值;(2)用定义证明函数()f x 在()1,1-上是增函数;(3)解关于x 的不等式()()10f x f x -+<.【答案】(1)1a =±,0b =(2)证明见解析(3)102x x ⎧⎫<<⎨⎬⎩⎭.【分析】(1)利用奇函数的性质,结合条件即可得解;(2)利用函数单调性的定义,结合作差法即可得解;(3)利用()f x 的奇偶性、单调性与定义域列式即可得解.【详解】(1)函数()221a xb f x x +=+是定义在()1,1-上的奇函数所以()00f =,则()0001b f b ===+,所以()221a x f x x =+因为1225f ⎛⎫= ⎪⎝⎭,则2112212514a f ⎛⎫== ⎪⎝⎭+,则21a =,所以1a =±,此时()21x f x x =+,定义域关于原点对称,又()()()2211xx f x f x x x --==--+-+,所以()f x 是奇函数,满足题意,故1a =±,0b =.(2)由(1)知()21x f x x =+.设12,x x 是()1,1-内的任意两个实数,且12x x <,()()()()()()221221121222221212111111x x x x x x f x f x x x x x +-+-=-=++++()()()()12122212111x x x x x x --=++,因为()()22121212110,0,10x x x x x x --<+>>+,所以()()120f x f x -<,即()()12f x f x <,所以函数()f x 在()1,1-上是增函数.(3)因为()()10f x f x -+<,所以()()1f x f x -<-,即()()1f x f x -<-,则111111xxx x-<-<⎧⎪-<-<⎨⎪-<-⎩,所以021112xxx⎧⎪<<⎪-<<⎨⎪⎪<⎩,所以12x<<,即此不等式解集为12x x⎧⎫<<⎨⎬⎩⎭.。

2024年7月浙江省高中学业水平测试数学试题试卷

2024年7月浙江省高中学业水平测试数学试题试卷

2024年7月浙江省学业水平考试数学试卷班级______姓名______学号______得分______.一、单项选择题1.若{0,2,3,4},{2,3}A B ,则A B ( ) A .B .{0}C .{2.3}D .{0,2,3,4}2.(1i)(1i) ( ) A .iB .iC .0D .23.函数()21x f x 的值域是( ) A .(0.)B .(0.]C .(1,)D .(1,]4.若(1,2)a ,(2,1)b ,||a b( )A .10BCD .5.6个球,2红4黄,求随机模到一个红球的概率为( )A .16 B .13 C .12D .236.“0a b ”是1a b 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .即不充分也不必要7.已知sin cos 1 ,则sin 2 ( ) A .1B .1C .12D .08.一个棱长为1的正方体顶点都在同一个球上,则该球体的表面积为( )A .3πB .2πCD .π9.甲某全年交税额为5617.19元,则他的交税等级为(题干不完整)( )A .1B .2C .3D .410.,m n 为两条异面直线,且m 平面 ,n 平面 ,若直线l 满足m 是l m ,l n ,l ,l ,则( ) A . ∥B .lC .若平面 和平面 相交,则交线a l ∥D .若平面 和平面 相交,则交线l11.有一支队伍长Lm ,以V 的速度前行,传令员传令需要从排尾跑到排头,再立即返回排尾,速度为1V ,若传令员回到排尾时,队伍正好前进了2Lm ,则1V V( )A .2B .3C .12D .3212.若()()()f x y f x f y xy ,(1)1f ,则(20)f ( ) A .55B .190C .210D .231二、多项选择题13.若π()sin 23f x x,则( ) A .()f x 的最小正周期为π B .()f x 关于直线π2x 对称 C .()f x 的一个对称点是π,06D .()f x 在ππ,62上单调递减 14.,A B 是两个随机事件,则( ) A .()()()P A B P A P B B .若A B ,则()()P A P BC .若,A B 互为独立事件,则()()()P AB P A P BD .若,A B 互为对立事件,则()()1P A P B15.棱长为1的正方体,E 是1CC 的中点,P 是平面11ADD A 上的动点,平面PBE 与平面ABCD 的交线为l ,则( )A .EP 的最小值为1B .EP BP 的最小值为2C .存在一点P ,使得EP CDD .二面角E l C 最小时,平面角的正切值为12三、填空题16.奇函数3()f x x x a ,则a ______.17.a b 是两个单位向量,夹角为π3,则()a a b ______.18.已知一个四条棱均相等的四面体成A BCD ,则棱AB 与平面BCD 的夹角的余弦值为______.19.已知,x y 均为正实数,11x y,则4y x的最大值为______. 四、解答题20.对某小区抽取100户居民的用电量进行调查,得到如下数据(1)求x 的值;(2)已知该小区的居民有800户,则用电量在150以下的有多少户; (3)求第50百分位数.21.已知ABC △为锐角三角形,角A 、B 、C 对应的边分别为a ,b ,c sin cos B b A b (1)求A 的值;(2)若2a ,求2b c 的取值范围.22.已知()ln(),0,()ln b f x ax a g x x (1)若e,1a b ,求()()f x g x 的最大值; (2)若2a ,求关于x 的不等式()0()g x f x 的解集; (3)()|()||()|F x f x g x ,对于给定实数b ,有x 满足()1F x ,求a .。

2020届浙江省普通高校招生学业水平考试数学试题及答案解析版

2020届浙江省普通高校招生学业水平考试数学试题及答案解析版

2020届浙江省普通高校招生学业水平考试数学试题及答案解析版一、单选题1.已知集合{}1,2,4A =,{}2,4,6B =,则A B =()A .{}4B .{}1,6C .{}2,4D .{}1,2,4,6【答案】D【解析】根据集合的并集运算,即可求解. 【详解】因为集合{}1,2,4A =,{}2,4,6B = 由集合的并集定义可知{}1,2,4,6A B =故选:D 【点睛】本题考查了集合的并集运算,属于基础题. 2.()tan a π-=( ) A .tan a - B .tan a C .tan a ±D .1tan a【答案】A【解析】根据诱导公式,化简即可求解. 【详解】 由诱导公式可知()tan a π-tan a =-故选:A本题考查了诱导公式的简单应用,属于基础题. 3.66log 2log 3+=( ) A .0 B .1 C .6log 5 D .12log 5【答案】B【解析】根据对数的运算及常数对数的值即可求解. 【详解】根据对数的运算性质可知66log 2log 3+()6log 23=⨯6log 61==故选:B 【点睛】本题考查了对数的运算性质的简单应用,属于基础题. 4.圆22280x y x ++-=的半径是( ) A .2 B .3 C .6 D .9【答案】B【解析】将圆的一般方程化为标准方程,即可求得圆的半径. 【详解】因为圆22280x y x ++-= 化为标准方程可得()2219x y ++=所以圆的半径为3 故选:B本题考查了圆的一般方程与标准方程的转化,圆的标准方程的性质,属于基础题. 5.不等式12x -<( )A .{}13x x -<<B .{}13x x <<C .{1x x <-或}3x >D .{1x x <或}3x > 【答案】A【解析】根据绝对值不等式,分类讨论解不等式即可求解. 【详解】 不等式12x -<当1x ≥时,不等式可化为12x -<,即3x <.所以13x ≤< 当1x <时,不等式可化为12x -<,即1x -<.所以11x -<< 综上可知,不等式的解集为13x ,即{}13x x -<<故选:A 【点睛】本题考查了绝对值不等式的解法,分类讨论解绝对值不等式,属于基础题.6.椭圆221259x y +=的焦点坐标是()A .()5,0-,()5,0B .()0,5-,()0,5C .()4,0-,()4,0D .()0,4-,()0,4【答案】C【解析】根据椭圆的标准方程,先判断出焦点位置并求得,a b .再根据椭圆中a b c 、、的关系即可求得焦点坐标.椭圆221259x y +=所以为焦点在x 轴上,且2225,9a b == 由椭圆中222a b c =+ 可得22225916c a b =-=-= 因而4c =所以焦点坐标为()4,0-,()4,0 故选:C 【点睛】本题考查了椭圆的标准方程及简单性质,椭圆中a b c 、、的关系及焦点坐标求法,属于基础题.7.若实数x ,y 满足不等式组0,0,2,x x y x y ≥⎧⎪-≤⎨⎪+≤⎩,则2x y +的最大值是( ) A .1 B .2C .3D .4【答案】D【解析】根据不等式组,画出可行域,由可行域即可求得线性目标函数的最大值. 【详解】根据所给不等式组,画出可行域如下图所示:将12y x =-平移即可得目标函数122zy x =-+因而当经过点()0,2A 时,目标函数的截距最大 此时20224z x y =+=+⨯= 所以2x y +的最大值是4 故选:D 【点睛】本题考查了线性规划的简单应用,线性目标函数的最值求法,属于基础题.8.已知直线l 和平面α,若//l α,P α∈,则过点P 且平行于l 的直线()A .只有一条,不在平面α内B .只有一条,且在平面α内C .有无数条,一定在平面α内D .有无数条,不一定在平面α内 【答案】B【解析】假设m 是过点P 且平行于l 的直线, n 也是过点P 且平行于l 的直线,则与平行公理得出的结论矛盾,进而得出答案. 【详解】假设过点P 且平行于l 的直线有两条m 与n ,则m ∥l 且n ∥l 由平行公理得m ∥n ,这与两条直线m 与n 相交与点P 相矛盾,故过点P 且平行于l 的直线只有一条,又因为点P 在平面内,所以过点P 且平行于l 的直线只有一条且在平面内. 故选B 【点睛】本题主要考查了空间中直线与直线之间的位置关系,空间中直线与平面的位置关系.过一点有且只有一条直线与已知直线平行.9.过点()3,1A -且与直线230x y +-=垂直的直线方程是( )A .210x y ++=B .210x y +-=C .270x y -+=D .270x y --=【答案】D【解析】根据直线垂直时的斜率关系,先求得直线的斜率.再由点斜式即可求得直线方程,进而化为一般式可得解. 【详解】因为直线230x y +-=可化为1322y x =-+ 当直线垂直时的斜率乘积为1,所以2k = 因为经过点()3,1A -由点斜式可知直线方程为()123y x +=-化简可得270x y --= 故选:D 【点睛】本题考查了垂直直线的斜率关系,点斜式方程的用法,将方程化为一般式的方法,属于基础题.10.在ABC ∆中,角A ,B ,C 所对的边分别是a ,b ,c ,若60A =︒,45B =︒,3a =则b =() A .1 BC .2D【答案】D【解析】根据正弦定理,即可求得b 的值. 【详解】在ABC ∆中, 角A ,B ,C 所对的边分别是a ,b ,c 若60A =︒,45B =︒,3a = 由正弦定理可知sin sin a bA B = 代入可得3sin 60sin 45b =解得b故选:D 【点睛】本题考查了正弦定理在解三角形中的简单应用,属于基础题.11.函数()sin f x x x =⋅的图象大致是( )A .B .C .D .【答案】A【解析】根据函数的奇偶性及特殊值,可判断函数的图像. 【详解】 因为()sin f x x x =⋅而()g x x =为偶函数, ()sin h x x =为奇函数,所以()sin f x x x =⋅为奇函数,所以排除C,D.当0.001x =时, ()0.0010.0010.0010g ==>,()0.001sin0.0010h =>,所以()0.0010.001sin0.0010f =⋅>,所以排除B 选项.故选:A 【点睛】本题考查了根据函数解析式判断函数图像,利用函数的奇偶性、单调性和特殊值,可排除选项,属于基础题. 12.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:3cm )是( )A .13B .23C .1D .2【答案】B【解析】根据三视图,还原出空间几何体,即可求得该几何体的体积. 【详解】由三视图可知,该几何体为三棱锥,其空间结构体如下图所示:则由三视图中的线段长度可知12112ABC S ∆=⨯⨯=则121233P ABC V -=⨯⨯=故选:B 【点睛】本题考查了三视图的简单应用,根据三视图还原空间几何体,棱锥的体积求法,属于基础题.13.设,a b ∈R ,则“0a b +>”是“330a b +>”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】C【解析】根据立方和公式,结合充分必要条件的判断即可得解. 【详解】因为()()()223322324b b a b a b a ab b a b a ⎡⎤⎛⎫+=+-+=+-+⎢⎥⎪⎝⎭⎢⎥⎣⎦当0a b +>时,223024b b a ⎛⎫-+> ⎪⎝⎭,所以330a b +>.即“0a b +>”是“330a b +>”的充分条件.当330a b +>时,由于223024b b a ⎛⎫-+> ⎪⎝⎭成立,所以0a b +>,即“0a b +>”是“330a b +>”的必要条件.综上可知, “0a b +>”是“330a b +>”的充要条件 故选:C 【点睛】本题考查了立方和公式的用法,充分必要关系的判断,属于基础题.14.设1F ,2F 分别是双曲线()22221,0x y a b a b -=>的左、右焦点.若双曲线上存在一点P ,使得124PF PF =,且1260F PF∠=︒,则该双曲线的离心率是( )A B .3C D【答案】B【解析】根据双曲线的定义及124PF PF =,用a 表示出12PF PF 、,再在三角形12F PF 中由余弦定理求得a c 、的关系,进而求得离心率. 【详解】1F ,2F 分别是双曲线()22221,0x y a b a b-=>的左、右焦点,且双曲线上的点P 满足124PF PF =所以121224PF PF a PF PF ⎧-=⎪⎨=⎪⎩,解得128323a PF a PF ⎧=⎪⎪⎨⎪=⎪⎩因为1260F PF∠=︒,122F F c =所以在三角形12F PF 中由余弦定理可得222121212122cos F F PF PF PF PF F PF =+-⋅∠,代入可得2222644821499332a a c a a =⨯⨯⨯+- 化简可得22913c a=,即222139c ea==所以e =故选:B 【点睛】本题考查了双曲线的定义,利用余弦定理解三角形,双曲线离心率的求法,属于基础题.15.点P 从O 出发, 按逆时针方向沿周长为l 的图形运动一周, 点O 、P 的距离(y )与点P 走过的路程(x )的函数关系如图所示.那么点P 所走过的图形是图中的( ).A .B .C .D .【答案】C【解析】【详解】易知, 选项(A)、(B)的图像是若干条线段组成的折线;选项(D)中当点P 走过的路程为2lx =时,OP 不是最大值(过点P 作OP 的垂线交椭圆于点P′, 显然, OP′>OP);选项(C)中πsin πl xy l=, 其图像如图.选C.16.设数列{}n a 满足11a =,2212n n a a -=+,2121n n a a +=-,*n N ∈,则满足4n a n -≤的n 的最大值是( ) A .7 B .9 C .12 D .14【答案】C【解析】根据数列{}n a 满足的条件,讨论n 的奇偶性,即可求得解析式.根据解析式解绝对值不等式即可求得满足条件的n 的最大值. 【详解】数列{}n a 满足11a =,2212n n a a -=+,2121n n a a +=-23a =则21211n n a a +--=则当n ∈奇数时, 12n n a +=所以4n a n -≤,代入可得142n n +-≤,解不等式可得79n -≤≤ 而*n N ∈,所以此时n 的最大值是9 则当n ∈偶数时, 22n n a =+所以若4n a n -≤,代入可得242nn +-≤,解不等式可得412n -≤≤ 而*n N ∈,所以此时n 的最大值是12 综上可知, n 的最大值是12 故选:C 【点睛】本题考查了等差数列的通项公式求法,对奇偶项分类讨论数列的性质,绝对值不等式的解法,属于中档题.17.设点A ,B 的坐标分别为()0,1,()1,0,P ,Q 分别是曲线2x y =和2log y x =上的动点,记1I AQ AB =⋅,2I BP BA =⋅.( ) A .若12II =,则()PQ AB R λλ=∈B .若12II =,则AP BQ =C .若()PQ AB R λλ=∈,则12I I = D .若AP BQ=,则12II =【答案】C【解析】根据题意,由向量数量积和投影的定义,结合平面向量共线的性质即可判断选项. 【详解】根据题意,在直线AB 上取','P Q ,且''AP BQ =.过','P Q 分别作直线AB 的垂线,交曲线2x y =于12,P P 和交2log y x =于12,Q Q .在曲线2x y =上取点3P ,使13AP AP =.如下图所示:1cos 'I AQ AB AQ AB QAB AQ AB =⋅=⋅∠=⋅2cos 'I BP BA BP BA PBA BP BA=⋅=⋅∠=⋅若''AP BQ =,则''AQ BP =若12II =,则''AQ BP =即可.此时P 可以与1P 重合,Q 与2Q 重合,满足题意,但是()PQ AB R λλ=∈不成立,且AP BQ≠所以A 、B错误;对于C,若()PQ AB R λλ=∈,则PQ AB ∥,此时必有1P 与1Q 对应(或2P 与2Q ),所以满足12I I =,所以C 正确;对于D,对于点3P ,满足13AP AP =,但此时3P 在直线AB 上的投影不在P'处,因而不满足''AQ BP =,即12I I ≠,所以D 错误综上可知,C 为正确选项 故选:C 【点睛】本题考查了平面向量数量积的意义及向量投影的应用,向量共线的特征和性质,综合性强,较为复杂,属于难题. 18.如图,在圆锥SO 中,A ,B 是O 上的动点,BB '是O的直径,M ,N 是SB 的两个三等分点,()0AOB θθπ∠=<<,记二面角N OA B --,M AB B '--的平面角分别为α,β,若αβ≤,则θ的最大值是()A .56π B .23πC .2πD .4π【答案】B【解析】设底面圆的半径为r ,OS a =,以'B B 所在直线为x 轴,以垂直于'B B 所在直线为y 轴,以OS 所在直线为z 轴建立空间直角坐标系,写出各个点的坐标.利用法向量求得二面角N OA B --与M AB B '--夹角的余弦值.结合αβ≤即可求得θ的取值范围,即可得θ的最大值. 【详解】设底面圆的半径为r ,OS a =,以'B B 所在直线为x 轴,以垂直于'B B 所在直线为y 轴,以OS 所在直线为z 轴建立空间直角坐标系,如下图所示:则由()0AOB θθπ∠=<<可得()()()0,0,0,,0,0,0,0,O B r S a ,()()cos ,sin ,0,',0,0A r r B r θθ-M ,N 是SB 的两个三等分点则22,0,,,0,3333ra r a M N ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭所以()2cos ,sin ,0,,0,33r a OA r r ON θθ⎛⎫== ⎪⎝⎭ 设平面NOA 的法向量为()111,,m x y z =则00m OA m ON ⎧⋅=⎨⋅=⎩,代入可得()()()111111,,cos ,sin ,002,,,0,033x y z r r r a x y z θθ⎧⋅=⎪⎨⎛⎫⋅= ⎪⎪⎝⎭⎩化简可得1111cos sin 02033x r y r x r az θθ+=⎧⎪⎨+=⎪⎩ 令11x =,解得11cos 2,sin ry z aθθ=-=-所以cos 21,,sin r m a θθ⎛⎫=--⎪⎝⎭ 平面OAB 的法向量为()0,0,1n =由图可知, 二面角N OA B --的平面角α为锐二面角,所以二面角N OA B --的平面角α满足cos 1m n m nα⋅==⋅+设二面角M AB B '--的法向量为()222,,k x y z =()2'cos ,sin ,0,cos ,sin ,33ra B A r r r AM r r θθθθ⎛⎫=+=-- ⎪⎝⎭则'00k B A k AM ⎧⋅=⎨⋅=⎩代入可得()()()222222,,cos ,sin ,002,,cos ,sin ,033x y z r r r r a x y z r r θθθθ⎧⋅+=⎪⎨⎛⎫⋅--= ⎪⎪⎝⎭⎩化简可得2222222cos sin 02cos sin 033x r x r y r x r az x r y r θθθθ++=⎧⎪⎨--+=⎪⎩令21x =,解得221cos 2,sin ry z aθθ--==-所以1cos 21,,sin r k a θθ--⎛⎫=-⎪⎝⎭ 平面AB B '的法向量为()0,0,1h =由图可知, 二面角M AB B '--的平面角β为锐二面角,所以二面角M AB B '--的平面角β满足cos 1k h k hβ⋅==⋅⎛+由二面角的范围可知0αβπ≤≤≤结合余弦函数的图像与性质可知cos cos αβ≥≥化简可得1cos 2θ≤-,且0θπ<<所以203πθ<≤所以θ的最大值是23π故选:B 【点睛】本题考查了空间直角坐标系在求二面角中的综合应用,根据题意建立合适的空间直角坐标系,求得平面的法向量,即可求解.本题含参数较多,化简较为复杂,属于难题.二、填空题19.设等比数列{}n a 的前n 项和为()*n S n N ∈,若22a =,34a =,则1a =______,4S =______. 【答案】1 15【解析】根据等比数列的通项公式,可求得1a 与q .再求得4a ,即可求得4S 的值. 【详解】因为数列{}n a 为等比数列,由等比数列的通项公式可知11n n a a q -=而22a=,34a =所以2123124a a q a a q ==⎧⎨==⎩,解方程组可得112a q =⎧⎨=⎩所以3341128a a q ==⨯= 所以41234+++S a a a a =124815=+++=故答案为:1;15 【点睛】本题考查了等比数列通项公式的简单应用,前n 项和的求法,属于基础题.20.设u ,v 分别是平面a ,β的法向量,()1,2,2u =-,()2,4,v m =--.若a β∥,则实数m =______. 【答案】4【解析】根据两个平面平行时,其法向量也平行,即可求得参数m 的值.因为a β∥,且u ,v 分别是平面a ,β的法向量 则u v ∥因为()1,2,2u =-,()2,4,v m =-- 所以存在λ,满足u v λ= 则()()1,2,22,4,m λ-=--即12242m λλλ=-⎧⎪=-⎨⎪-=⎩解得124m λ⎧=-⎪⎨⎪=⎩ 所以4m = 故答案为:4 【点睛】本题考查了平面平行时法向量的关系,平行向量的坐标表示及关系,属于基础题.21.在中国古代数学著作《就长算术》中,鳖臑(biēnào )是指四个面都是直角三角形的四面体.如图,在直角ABC ∆中,AD 为斜边BC 上的高,3AB =,4AC =,现将ABD ∆沿AD 翻折AB D '∆,使得四面体AB CD '为一个鳖臑,则直线B D '与平面ADC 所成角的余弦值是______.【答案】916【解析】作'B M CD ⊥于交CD 于M ,可证明'B M ⊥平面ACD ,则'B DM ∠即为B D '与平面ADC 的夹角.根据线段关系即可求解.作'B M CD ⊥于交CD 于M因为,'AD CD AD DD ⊥⊥ 且'CD DD D ⋂= 所以AD ⊥平面'DB C 而AD ⊂平面ACD 所以平面ACD ⊥平面'DB C又因为平面ACD 平面'DB C DC =,且'B M CD ⊥ 所以'B M ⊥平面ACD则'B DM ∠即为B D '与平面ADC 的夹角 因为直角ABC ∆中,3AB =,4AC = 所以229165BC AB AC +=+=341255AB AC AD BC ⨯⨯===则22221216455DC AC AD ⎛⎫=-=-= ⎪⎝⎭所以169'555DB BC DC =-=-= 在直角三角形'B DC 中,9'95cos 'cos '16165DB B DM B DC DC ∠=∠=== 故答案为:916【点睛】本题考查了空间几何体中直线与平面的夹角求法,直线与平面垂直关系的判定,对空间想象能力和计算能力要求较高,属于中档题. 22.已知函数()226f x x ax =+--,若存在a R ∈,使得()f x 在[]2,b 上恰有两个零点,则实数b 的最小值是______.【答案】2+【解析】根据函数()f x 存在a R ∈在[]2,b 上恰有两个零点,则求得当2x =时满足条件的a .再由当x b =时取到零点,即可求得b 的值. 【详解】 因为函数()226f x x ax =+--,()f x 在[]2,b 上恰有两个零点则必在2x =与x b =时恰好取到零点的边界 若2x =时,()f x 的零点满足()2222260f a =+--=解方程求得2a =或4a =- 当2a =时, ()2226f x x x =+--,满足()f x 在[]2,b 上恰有两个零点 则()22260f b bb =+--=,且2b >解方程可得2b =(舍)或4b =-(舍) 当4a =-时, ()2426f x x x =---,满足()f x 在[]2,b 上恰有两个零点 则()24260f b bb =---=,且2b >解方程可得2b =-(舍)或2b =+综上可知,当2b =+()f x 在[]2,b 上恰有两个零点故答案为:2+【点睛】本题考查了含绝对值函数零点的分类讨论,注意恰有两个零点条件的应用,根据边界取等时能刚好取得,属于中档题.三、解答题23.已知函数()2sin cos 66f x x x ππ⎛⎫⎛⎫=--⎪ ⎪⎝⎭⎝⎭,x ∈R (Ⅰ)求3f π⎛⎫⎪⎝⎭的值; (Ⅱ)求()f x 的最小正周期; (Ⅲ)求()f x 在0,2π⎡⎤⎢⎥⎣⎦上的值域.【答案】(Ⅰ)3f π⎛⎫= ⎪⎝⎭Ⅱ)π(Ⅲ)⎡⎤⎢⎥⎣⎦【解析】(Ⅰ)将3π代入解析式,即可求得3f π⎛⎫⎪⎝⎭的值. (Ⅱ)根据正弦的二倍角公式化简后,即可求得()f x 的最小正周期.(Ⅲ)根据正弦函数的图像与性质,可求得()f x 在0,2π⎡⎤⎢⎥⎣⎦上的值域. 【详解】(Ⅰ)2sin cos 33636f πππππ⎛⎫⎛⎫⎛⎫=-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭12sin cos 266222ππ==⨯⨯=即3f π⎛⎫= ⎪⎝⎭(Ⅱ)因()sin 2sin 263f x x x ππ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭故()f x 的最小正周期22T ππ== (Ⅲ)当0,2x π⎡⎤∈⎢⎥⎣⎦时,22,333x πππ⎡⎤-∈-⎢⎥⎣⎦因此当233x ππ-=-,即0x =时,()3min f x =-当232x ππ-=,即512x π=时,()max 1f x =所以()f x 在0,2π⎡⎤⎢⎥⎣⎦上的值域为3,1⎡⎤-⎢⎥⎣⎦. 【点睛】本题考查了正弦函数的求值,正弦函数的图像与性质简单应用,属于基础题.24.如图,设抛物线21C x y =与()22:20C y px p =>的公共点M 的横坐标为()0t t >,过M 且与1C 相切的直线交2C 于另一点A ,过M 且与2C 相切的直线交1C 于另一点B ,记S 为MBA ∆的面积.(Ⅰ)求p 的值(用t 表示);(Ⅱ)若1,24S ⎡⎤∈⎢⎥⎣⎦,求t 的取值范围. 注:若直线与抛物线有且只有一个公共点,且与抛物线的对称轴不平行也不重合,则称该直线与抛物线相切.【答案】(Ⅰ)32t p =;(Ⅱ)24,33t ⎡⎤∈⎢⎥⎣⎦【解析】(Ⅰ)将M 的横坐标为t 代入抛物线1C 解析式可得()2,M t t ,再代入抛物线2C 解析式,化简即可用t 表示p 的值.(Ⅱ)设出点A 的坐标,结合M 的坐标即可表示出直线MA 的方程.联立抛物线1C ,根据相切时判别式0∆=可得2kt ,表示出直线MA 的方程.利用两点式表示出直线MA 的斜率,即可用t 表示出点A 的坐标.同理可求得B 点的坐标.进而利用两点间距离公式表示出MB ,利用点到直线距离公式求得A 到直线MB 的距离,即可表示出MBA ∆的面积S .结合S 的取值范围,即可求得t 的取值范围. 【详解】(Ⅰ)因点M 在抛物线1C :2x y =上,故()()2,0M t t t >又点M 在抛物线2C :()220y px p =>上,故()222t pt =,则32t p =(Ⅱ)设点()11,A x y ,直线MA 的方程为()2y k x t t =-+联立方程组22(),,y k x t t x y ⎧=-+⎨=⎩消去y ,得220x kx kt t -+-=则()()222420k kt t k t ∆=--=-=因此2kt即直线MA 的方程为22y tx t =-则直线MA 的斜率223112211132y t y t t k ty x t y t tt --====-+- 从而212t y =-,即2,42t t A ⎛⎫- ⎪⎝⎭同理,直线MB 的方程为222t t y x =+,点2,24t t B ⎛⎫- ⎪⎝⎭因此2t MB t =-=点2,42t t A ⎛⎫- ⎪⎝⎭到直线MB :2022t t x y -+=的距离29t d ==故MBA ∆的面积23911272232t t S MB d ===即32732t S =因为1,24S ⎡⎤∈⎢⎥⎣⎦即31272432t ≤≤ 解得24,33t ⎡⎤∈⎢⎥⎣⎦. 【点睛】本题考查了直线与抛物线的位置关系,利用韦达定理分析直线与抛物线的交点问题,两点间距离公式及点到直线距离公式的应用,综合性强,属于难题.。

2022年7月浙江省普通高中学业水平考试数学试题(含详细答案)

2022年7月浙江省普通高中学业水平考试数学试题(含详细答案)

2022年7月浙江省普通高中学业水平考试数学试题卷(时间80分钟,总分100分)选择题部分一、单项选择题(本大题共12小题,每小题3分,共36分.每小题列出的四个备选项中只有一个是符合题目要求的,不选、多选、错选均不得分)1.已知集合{}0,1,2A =,{}1,2,3,4B =,则A B =()A.∅B.{}1 C.{}2 D.{}1,2【答案】D【解析】∵{}0,1,2A =,{}1,2,3,4B =,∴{}1,2A B = .2.复数2i -(i 为虚数单位)的实部是()A.1B.1-C.2D.2-【答案】C【解析】显然复数2i -的实部是2.3.函数()f x =的定义域是()A.(),1-∞ B.[)1,+∞ C.(),1-∞- D.[)1,-+∞【答案】D【解析】∵10x +≥,∴1x ≥-,即函数()f x =的定义域为[)1,-+∞.4.已知tan 1α=,ππ,22⎛⎫∈- ⎪⎝⎭α,则α=()A.4π B.π4-C.π3D.π3-【答案】A【解析】∵tan 1α=,∴ππ4k α=+,又ππ,22⎛⎫∈- ⎪⎝⎭α,∴π4α=.5.袋子中有5个大小质地完全相同的球,其中2个红球,3个黄球,从中随机摸出1个球,则摸到黄球的概率是()A.15B.25C.35D.45【答案】C【解析】5个大小质地完全相同的球,黄球有3个,则随机摸出1个球,有5种方法,摸到黄球有3种方法,所以摸到黄球的概率为35.6.已知平面向量()2,4a =r ,(),6b x = .若//a b r r,则实数x =()A.3-B.3C.12-D.12【答案】B【解析】由a b ∥,可得2640x ⨯-=,解得3x =.7.已知球的半径是2,则该球的表面积是()A.2π B.4π C.8π D.16π【答案】D【解析】224π4π216πS R ==⨯=,8.设0a >,下列选项中正确的是()A.313a a ⎛⎫= ⎪⎝⎭B.2233a a-= C.2332a a a= D.2332a a a÷=【答案】A【解析】对于A ,311333a a a ⨯⎛⎫== ⎪⎝⎭,故A 正确;对于B ,2223023331a aa a--===,故B 错误;对于C ,23213332362a a aa ==,故C 错误;对于D ,221133332a a a a a a-÷===,故D 错误.9.中国茶文化博大精深,茶水口感与茶叶类型和水的温度有关.经验表明,某种绿茶用85℃的水泡制,再等到茶水的温度降至60℃时饮用,可以产生最佳口感.已知在25℃的室温下,函数()600.9227250ty t =⨯+≥近似刻画了茶水温度y (单位:℃)随时间t (单位:min )的变化规律.为达到最佳饮用口感,刚泡好的茶水大约需要放置(参考数据: 6.70.92270.5833≈,8.70.92270.4966≈)()A.5min B.7min C.9min D.11min 【答案】B【解析】由题可知,函数()600.9227250ty t =⨯+≥,当 6.7t =,59.998y ≈,已经接近60,又函数()600.9227250ty t =⨯+≥在()0,∞+上单调递减,则大约在7min 时口感最佳.故A ,C ,D 错误.10.设a ,b 是实数,则“a b >”是“a b >”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B【解析】对于a b >,比如3a ==-,显然13a b =<=,不能推出a b >;反之,如果a b >,则必有0,a a a b b >∴=>≥;所以“a b >”是“a b >”的必要不充分条件;11.在ABC 中,设2AD DB = ,2BE EC =,CF FA λ= ,其中R λ∈.若DEF 和ABC 的重心重合,则λ=()A.12B.1C.32D.2【答案】D【解析】设O 为DEF 和ABC 的重心,连接DO 延长交EF 与N ,连接AO 延长交BC 与M ,所以N 是EF 的中点,M 是BC 的中点,所以()2211133233AO AM AB AC AB AC==+=+,2111133333DO DA AO AB AB AC AB AC=+=-++=-+,()()22113323DO DN DE DF DB BE DA AF==+=+++()112211121333313331AB BC AB AC AB AC AB AC λλ=+-+=-+-+++11213331AB AC λ=-+++,可得21131λ=++,解得2λ=.12.如图,棱长均相等的三棱锥-P ABC 中,点D 是棱PC 上的动点(不含端点),设CD x =,锐二面角A BD C --的大小为θ.当x 增大时,()A.θ增大 B.θ先增大后减小 C.θ减小 D.θ先减小后增大【答案】C【解析】由题意,三棱锥-P ABC 是正四面体,以PBC 的重心为原点,BC 边的中线PG 为x 轴,OA 为z 轴,过O 点平行于BC 的直线为y 轴,建立空间直角坐标系如图:设三棱锥P -ABC的棱长为,则有:22221228OA AP PO =-=-=,()(()()1,,0,0,,1,,2,0,0B A C P --,3231,,022x D x ⎛⎫- ⎪ ⎪⎝⎭,(1,,1,,22x AB AD x ⎛-=--=-- ⎝ ,设(),,m t y z = 是平面ABD 的一个法向量,则有·0·0m AB m AD ⎧=⎪⎨=⎪⎩,即01022t x x t y ⎧--=⎪⎛⎫⎛⎫⎨--+-= ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎩,令y =,解得(,,,t x z m x =-=-=-,显然()0,0,1n =是平面PBC 的一个法向量,cos m nm n θ∴===;显然当x =x 的取值范围是0x <<),πcos 0,2θθ==最大,当x >或x <时,cos θ都变大,即θ变小;二、多项选择题(本大题共4小题,每小题4分,共16分.每小题列出的四个备选项中有多个是符合题目要求的,全部选对得4分,部分选对且没有错选得2分,不选、错选得0分)13.图象经过第三象限的函数是()A.2y x= B.3y x= C.23y x= D.1y x -=【答案】BD【解析】由幂函数的图象可知,A 中,2y x =过第一、二象限;B 中,3y x =过第一、三象限;C 中,320y x ==≥且定义域为R ,过第一、二象限;D 中,1y x -=过第一、三象限.14.下列命题正确的是()A.过平面外一点,有且只有一条直线与这个平面垂直B.过平面外一点,有且只有一条直线与这个平面平行C .过直线外一点,有且只有一个平面与这个直线垂直D.过直线外一点,有且只有一个平面与这个直线平行【答案】AC【解析】对于A ,根据线面垂直的定义,可得经过平面外一点作已知平面的垂线,有且仅有一条,故A 正确;对于B ,过平面外一点可以作一个平面与已知平面平行,在这个平行平面内的经过已知点作直线,它就和已经平面平行,故过平面外一点有无数条直线与这个平面平行,故B 不正确;对于C ,由直线与平面垂直的性质知:过直线外一点只能作一个平面与这条直线垂直,故C 正确;对于D ,过直线外一点,有无数个平面与这条直线平行,故D 不正确.15.在锐角ABC 中,有()A.sin sin sin A B C +> B.222sin sin sin A B C +>C.cos cos sin A B C +> D.222cos cos sin A B C +>【答案】ABC【解析】对于A ,根据正弦定理,因为a b c +>可得sin sin sin A B C +>,故A 正确;对于B ,因为222cos 02a b c C ab+-=>可得222a b c +>,再由正弦定理可得222sin sin sin A B C +>,故B 正确;对于C ,因为π0,2A B <<中,所以0sin ,sin 1A B <<,所以()cos cos cos sin cos sin sin sin A B A B B A A B C +>+=+=,故C 正确;对于D ,当222π13cos cos sin 324A B C A B C ===⇒+=<=,故D 错误16.已知a ∈R ,设()11,A x y ,()22,B x y 是函数()2y x a =-与1sin y x =-图象的两个公共点,记()12f a x x =-.则()A.函数()f a 是周期函数,最小正周期是πB.函数()f a 在区间π0,2⎛⎫⎪⎝⎭上单调递减C.函数()f a 的图象是轴对称图形D.函数()f a 的图象是中心对称图形【答案】BC【解析】分别作出()2y x a =-与1sin y x =-(周期为2π)的图象(如图).对于B ,由图可知,当3ππ,22a ⎛⎫∈-- ⎪⎝⎭时,()f a 单调递增;当ππ,22a ⎛⎫∈- ⎪⎝⎭时,()f a 单调递减,故B 正确;对于C 、D ,对于任意a ∈R ,此时作()2y x a =-关于2x π=-的对称函数()2πy x a =---⎡⎤⎣⎦,且1sin y x =-也关于2x π=-对称,故()()πf a f a --=,即()f a 关于2x π=-对称,即()f a 关于2x π=-对称,故C 正确,D 错误.错误.对于A ,由于当3ππ,22a ⎛⎫∈-- ⎪⎝⎭时,()f a 单调递增;当ππ,22a ⎛⎫∈- ⎪⎝⎭时,()f a 单调递减,()f a 关于π2x =-对称,由于1sin y x =-是最小正周期为2π的函数,其图象呈周期性变换,而()2y x a =-在平移过程中大小与形状不变,所以()12f a x x =-呈周期性变换,根据函数的对称性作出()f a 的大致图像(如图),可知其为周期函数,且最小正周期为2πT =,故A错误;非选择题部分三、填空题(本大题共4小题,每空分3分,共15分)17.已知函数()25,1,log ,1,x x f x x x +<⎧=⎨≥⎩则()1f -=______,()1f f -=⎡⎤⎣⎦______.【答案】①.4②.2【解析】()1154f -=-+=;()()214log 42f f f ⎡⎤-===⎣⎦.故答案为:4;2.18.某广场设置了一些石凳供大家休息,每个石凳都是由正方体截去八个一样的四面体得到的(如图,从棱的中点截).如果被截正方体的棱长是4(单位:dm ),那么一个石凳的体积是______(单位:3dm ).【答案】1603【解析】正方体的体积为3464=,正方体截去的八个四面体是全等的正三棱锥,截去的一个正三棱锥的体积为114222323⨯⨯⨯⨯=,则石凳的体积为416064833-⨯=.19.已知实数0x >,0y >,则2x yx y x++的最小值是______.【答案】1-【解析】211x y x y xx y x x y x ++=+-≥-++,当且仅当2x y xx y x+==+.20.已知平面向量a ,b 是非零向量.若a 在b上的投影向量的模为1,21a b -= ,则()4a b b -⋅ 的取值范围是______.【答案】[]3,4【解析】解:由题意,令(),0b b = ,()1,a y =±,则()()2221221a b b y -=⇒±-+= ,所以[]240,1y ∈,由21a b -= ,得22441a a b b -⋅+= ,所以()2441a b b a -⋅=- .()[]222411433,4y y ⎡⎤=±+-=+∈⎣⎦.四、解答题(本大题共3小题,共33分)21.在某市的一次数学测试中,为了解学生的测试情况,从中随机抽取100名学生的测试成绩,被抽取成绩全部介于40分到100分之间(满分100分),将统计结果按如下方式分成六组:第一组[)40,50,第二组[)50,60,L ,第六组[]90,100,画出频率分布直方图如图所示.(1)求第三组[)60,70的频率;(2)估计该市学生这次测试成绩的平均值(同一组中的数据用该组区间的中点值为代表)和第25百分位数.解:(1)由频率分布直方图知,第三组的频率为0.020100.2⨯=.(2)平均值450.00410550.01210650.02010750.03010850.02410x =⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯950.0101073.8+⨯⨯=,因为()0.0040.012100.16+⨯=,()0.0040.0120.020100.36++⨯=,所以第25百分位数为0.250.16601064.50.2-+⨯=.22.已知函数()222cos f x x x =+.(1)求π4f ⎛⎫⎪⎝⎭的值;(2)求函数()f x 的最小正周期;(3)当[],2x t t ∈([][],20,2πt t ⊆)时,()1f x ≤恒成立,求实数t 的最大值.解:(1)22πππππ22cos 2cos 144424f ⎛⎫⎛⎫=⨯+=+=⎪ ⎪⎝⎭⎝⎭.(2)()2π22cos 2cos 212sin 216f x x x x x x ⎛⎫=+=++=++ ⎪⎝⎭,所以函数()f x 的最小正周期2ππ2T ==.(3)当[],2x t t ∈,()1f x ≤恒成立,即π2sin 2116x ⎛⎫++≤ ⎪⎝⎭,所以π1sin 206x ⎛⎫-≤+≤ ⎪⎝⎭,因为[],2x t t ∈,[][],20,2πt t ⊆,所以πππ242π66t t ≤+<+≤,解得5π11π1224t ≤≤,即实数t 的最大值为11π24.综上,π14f ⎛⎫= ⎪⎝⎭,最小正周期为π,实数t 的最大值为11π24.23.已知函数()()20xa f x a x x x=+->,其中1a >.(1)若()24f ≤,求实数a 的取值范围;(2)证明:函数()f x 存在唯一零点;(3)设()00f x =,证明:()22021222a a f x a a -+<+<-+.解:(1)因为()()20xaf x a x x x=+->,由()2224f a a =+-≤,可得220a a --≤,所以()()210a a -+≤,即12a -≤≤,又1a >,所以12a <≤;(2)证明:因为函数()()20xaf x a x x x=->,其中1a >,所以()f x 在()0,∞+上单调递增,且()11210f a a a =+-=-<,()221722024f a a a ⎛⎫=+-=-+> ⎪⎝⎭,所以由零点存在定理,得()f x 在()1,2内有唯一零点,即函数()f x 存在唯一零点;(3)证明:若()00f x =,则()()001,212,3x x ∈⇒+∈,所以()()20221f a a f x =+-<+,又()000020xa f x a x x =+-=,0002x a a x x =-,所以()()()021000000022211111x a a af x ax ax x x x x ++=++-=-++-++()200002211a x a x x x ⎛⎫=-+++ ⎪+⎝⎭,令()()22000002222212211g a a a f x a x a x x x ⎛⎫⎛⎫=-+-+=-+-++- ⎪ ⎪+⎝⎭⎝⎭,又0220x ->,所以()g a 的图象开口向上,对称轴()()200020000000221104141222x x x x x x a x x x x ⎛⎫--+ ⎪++⎝⎭=-=-=--+⎛⎫⋅- ⎪⎝⎭,所以()g a 在()1,+∞上单调递增,所以()()20000002222121211111g a g x x x x x x ⎛⎫⎛⎫>=-⋅+-+⋅+-=-+ ⎪ ⎪++⎝⎭⎝⎭()()()()()()22000000000000002122120111x x x x x x x x x x x x x x +-+++-+-===>+++,即()201222f x a a +<-+,所以()22021222a a f x a a -+<+<-+.。

2022年1月浙江省普通高中学业水平考试数学试题(学生版+解析版)

2022年1月浙江省普通高中学业水平考试数学试题(学生版+解析版)
2022年1月浙江省普通高中学业水平考试
数学试题
一、选择题(本大题共18小题, 每小题3分, 共54分, 每小题列出的四个备选项中只有一个
是符合题目要求的, 不选、多选、错选均不得分)
I.己知|集合P={O, I. 2}, Q={ I. 2, 3}, 则PnQ= ( )
A (O}
B. {0, 3}
c. { 1, 2}
A.2
B.2.Ji百
c. 8
D. 4M
15.如阁,正方体 ABCD-A,B1C1D1 中,N是梭 DDI 的中点,则直线 CN 与平而 DBB1 D1 所成角的正强健 等于( )
D,
A,.
N 人 ·· L
/ D
B,
- - a
ve
p
t
A hL ,, B
A.
_!_ 2
Jw B.一一一
c. 一Ji一s一
D. '!:JJi
D. (-1, -2)
冯; · (x+1)2 +(y-2) 2 =4 的圆心坐标为( - l
故;i在:A.
6.某几何体的三视图如 l到所示,则这个几何体可能是(
厂\厂\

A.棱校
B.回校
【答案】C
【j衍析】
【分析】根据几何体的特征可以直接求出结果
【详解】由三视图知, 从正面非II侧面看都是梯形,
C.四台
故地:B
� 12.为了得到函数y
=cosl
\
x

3
JI的|到象

可以将函数y = cosx的图象(

A向左 移二个单位长度 C时平时个单位长度 【答案】D
- B 向 右 平 移 3π 个 曲中 恍

浙江省份普通高中学业水平考试数学试题

浙江省份普通高中学业水平考试数学试题

浙江省 2021 年 1 月份普通高中学业水平考试数学试题选择题局部一、选择题〔共 25 小题, 1-15 每题 2 分, 16- 25 每题 3 分,共 60 分 . 每题给出的选项中只有一个是符合题目要求的,不选、多项选择、错选均不得分1、设集合 M={0,1,2} ,那么∈M B.2 M ∈M. 〕D.{0}∈M〔 〕2、函数 y x 1 的定义域是〔 〕 A. [0 ,+∞〕3、假设关于 x 的不等式A. -1B.[1 ,+∞〕 mx - 2>0 的解集是 {x|x>2} B. - 2C. 〔-∞, 0],那么实数 m 等于D.〔-∞, 1]〔 〕4、假设对任意的实数 A. 〔1,2〕 k ,直线 y - 2=k(x+1) B. 〔 1,- 2〕恒经过定点 M ,那么 M 的坐标是C.〔- 1,2〕〔 〕D.〔- 1,- 2〕5、与角-终边相同的角是〔〕6A. 56B.3C. 116D. 236、假设一个正方体截去一个三棱锥后所得的几何体如下图,那么该几何体的正视图是〔 〕A. B. C.D.〔第 6 题图〕7、以点〔 0,1〕为圆心, 2 为半径的圆的方程是〔 〕A.x 2+(y -1) 2=2B. (x - 1) 2+y 2=2C. x 2+(y -1) 2 =4D. (x -1) 2+y 2 =48、在数列 { an } 中, a =1,a =3a (n ∈ N*) ,那么 a 等于〔 〕1n+1n49、函数 yx 的图象可能是〔〕yyyyOxOxOxOxA.B.C. D.a ba bab〔〕10、设 ,是两个平面向量,那么“= 〞是“|| =| | 〞的A. 充分而不必要条件B. 必要而不充分条件C.充要条件D.既不充分也不必要条件11、设双曲线 C :x 2y 2 0)的一个顶点坐标为〔 , 〕,那么双曲线C 的方程是〔〕a 21(a2 03A. x2y21B. x2y21C. x2y21D. x2y21163123834312、设函数 f(x)=sinxcosx , x∈ R,那么函数f(x)的最小值是〔〕A. 1B.1C.3D.- 1 422、假设函数f(x)=x a(a∈R)是奇函数,那么 a 的值为〔〕13x21C.-1D.±114、在空间中,设α,表示平面, m,n 表示直线 . 那么以下命题正确的选项是〔〕A. 假设 m∥ n, n⊥α,那么m⊥αB.假设α⊥,m α,那么 m⊥C.假设 m上有无数个点不在α内,那么 m∥αD.假设 m∥α,那么 m与α内的任何直线平行15、在△ ABC中,假设 AB=2,AC=3,∠ A=60°,那么 BC的长为〔〕A. 19B. 13 D.716、以下不等式成立的是〔〕A.1.2 2>1.2 3B.1.2 -3<1.2 -2C. log 2>log 3D.log 2<log 317、设 x0为方程 2x+x=8 的解 . 假设x0∈ (n,n+1)(n ∈N*) ,那么 n 的值为〔〕18、以下命题中,正确的选项是〔〕A. x 0∈Z,x02<0B. x∈Z,x2≤0C.x 0∈Z,x02=1D. x∈Z,x2≥119、假设实数 x,y 满足不等式组x y00,那么 2y- x 的最大D1C1 x y2E值是〔〕A1B1A. -2B. -1DC20、如图,在正方体 ABCD-A B C D 中, E 为线段 A C 的中点,111111A B那么异面直线 DE 与 B C 所成角的大小为1〔〕〔第 20 题图〕°°°°21、研究发现,某公司年初三个月的月产值y〔万元〕与月份 n 近似地满足函数关系式 y=an2+bn+c〔如 n=1 表示 1 月份〕 . 1 月份的产值为 4 万元, 2 月份的产值为11 万元, 3 月份的产值为 22 万元 . 由此可预测 4 月份的产值为〔〕A.35 万元B.37 万元C.56 万元D.79 万元22、设数列 { a n } , { a n 2 } (n ∈N*) 都是等差数列,假设 a1= 2,那么a22+ a 33+ a 44 + a55 等于〔〕23、设椭圆:x2y21(a b0)的焦点为1,F2 ,假设椭圆上存在点P,使△ P F1F2是以F1P a2b2F为底边的等腰三角形,那么椭圆的离心率的取值范围是〔〕A. (0,1) B. (0,1) C. (1,1) D.(1,1) 232324、设函数 f ( x)x,给出以下两个命题:x1①存在 x0∈(1,+ ∞) ,使得 f(x 0)<2 ;②假设 f(a)=f(b)(a≠b),那么a+b>4.其中判断正确的选项是〔〕A. ①真,②真B. ①真,②假C. ①假,②真D. ①假,②假25、如图,在 Rt△ABC中, AC=1,BC=x,D 是斜边 AB的中点,将△ BCD沿直线 CD翻折,假设在翻折过程中存在某个位置,使得CB⊥AD,那么 x 的取值范围是〔〕A. (0, 3]B. ( 22,2] C. ( 3, 2 3] D.〔 2, 4] BBDDC ACA〔第 25 题图〕非选择题局部二、填空题〔共 5 小题,每题 2 分,共 10 分〕26、设函数 f(x)=x2 , x 2,那么 f(3) 的值为3x2, x227、假设球 O的体积为3cm.36 cm,那么它的半径等于28、设圆 C:x2+y2=1,直线 l:x+y=2 ,那么圆心 C 到直线 l 的距离等于.29、设 P 是半径为1 的圆上一动点,假设该圆的弦AB= 3uuur uuur,那么 AP AB 的取值范围是30、设 ave{a,b,c}表示实数 a,b,c 的平均数, max{a,b,c} 表示实数 a,b,c的最大值 . 设 A=ave{ 1111,假设的取值范围是2 x 2, x, 2 x 1},M= max{2 x 2, x,2 x 1}M=3|A- 1| ,那么 x三、解答题〔共 4 小题,共 30 分〕31、〔此题 7分〕sin 32 ,求cos和 sin(4 ) 的值.5 ,032、〔此题 7分,有〔 A〕,〔B〕两题,任选其中一题完成,两题都做,以〔A〕题记分 . 〕〔A〕如图,四棱锥P-ABCD的底面为菱形,对P角线AC与BD相交于点E,平面PAC垂直于底面ABCD,线段 PD的中点为 F.〔1〕求证: EF∥平面 PBC;〔2〕求证: BD⊥PC.FD CEA B〔第 32 题〔 A〕图〕〔B〕如图,在三棱锥 P-ABC中,PB⊥AC,PC⊥平面ABC,点 D,E 分别为线段 PB, AB的中点 .〔1〕求证: AC⊥平面 PBC;〔2〕设二面角 D- CE-B 的平面角为θ,假设 PC=2,BC=2AC=23,求 cosθ的值 .33、〔此题 8 分〕如图,设直线 l : y=kx+ 2 (k ∈R)与抛物线 C:y=x2相交于 P, Q 两点,其中 Q点在第一象限.〔1〕假设点 M是线段 PQ的中点,求点 M到 x 轴距离的PDC BEA〔第 32 题〔 B〕图〕yRQ最小值;〔2〕当 k>0 时,过点 Q作 y 轴的垂线交抛物线C于uuur uuur POx点 R,假设PQ PR=0,求直线 l 的方程 .〔第 33 题图〕34、〔此题 8 分〕设函数 f(x)=x 2-ax+b,a,b ∈ R..〔1〕 f(x) 在区间 ( -∞ ,1) 上单调递减,求 a 的取值范围;〔2〕存在实数 a,使得当 x∈[0,b]时,2≤f(x)≤6恒成立,求b的最大值及此时 a 的值 .浙江省 2021 年 1 月份普通高中学业水平考试数学试题参考答案一、选择题〔共25 小题, 1-15 每题 2 分, 16- 25 每题 3 分,共 60 分 . 每题给出的选 项中只有一个是符合题目要求的,不选、多项选择、错选均不得分 . 〕 题号 1 2 3 4 5 6 7 8 9 10 1112 1314 15答案A B CC CA CCA AD BBAD题号 1617 18 1920 21 22 232425 答案B BCCBBADCA25 题解答x 2 1 ,BC=x ,取 BC 中点 E ,〔 1〕由题意得, AD=CD=BD=2翻折前,在图 1 中,连接 DE,CD,那么 DE=1 AC=1,22翻折后,在图 2 中,此时 CB ⊥AD 。

2022年7月浙江省普通高中学业水平考试数学试题

2022年7月浙江省普通高中学业水平考试数学试题

一、单选题二、多选题1. 已知,,则下列结论正确的是( )A.是的充分不必要条件B.是的必要不充分条件C.是的既不充分也不必要条件D.是的充要条件2. 设集合,,则( )A.B.C.D.3. 一艘轮船按照北偏东42°方向,以18海里/时的速度沿直线航行,一座灯塔原来在轮船的南偏东18°方向上,经过10分钟的航行,此时轮船与灯塔的距离为海里,则灯塔与轮船原来的距离为( )A .5海里B .4海里C .3海里D .2海里4. 设复数满足(是虚数单位),则( )A.B.C.D.5. 已知的展开式中的系数为10,则实数a 的值为( )A.B.C.D .26. 若是第四象限角,则是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角7.函数满足,,函数的图象关于点对称,则( )A .-8B .0C .-4D .-28. 已知正四棱柱中,,是的中点,则异面直线与所成角的余弦值为( )A.B.C.D.9.已知双曲线的离心率等于,过的右焦点的直线与双曲线的两条渐近线分别交于点,,若以为直径的圆过点(为坐标原点),则下列说法正确的是( )A.双曲线的渐近线方程为B .直线的倾斜角为C .圆的面积等于D .与的面积之比为10. 已知抛物线的焦点为,直线与抛物线交于两点,是线段的中点,过作轴的垂线交抛物线于点,则下列判断正确的是( )A .若过点,则的准线方程为B .若过点,则C .若,则D .若,则点的坐标为11. 甲、乙两城市某月初连续7天的日均气温数据如图所示,则在这7天中,下列判断正确的是( )2022年7月浙江省普通高中学业水平考试数学试题2022年7月浙江省普通高中学业水平考试数学试题三、填空题四、解答题A .甲城市日均气温的中位数与平均数相等B .甲城市的日均气温比乙城市的日均气温稳定C.乙城市日均气温的极差为D.乙城市日均气温的众数为12. 已知,下列结论正确的是( )A .与向量垂直且模长是2的向量是和B.与向量反向共线的单位向量是C.向量在向量上的投影向量是D.向量与向量所成的角是锐角,则的取值范围是13. 在平面直角坐标系xOy 中,已知A ,B 为圆C :(x +4)2+(y -a )2=16上的两个动点,且AB=,若直线l :y =2x 上存在唯一的一个点P ,使得,则实数a 的值为________.14. 现将6本不同的书籍分发给甲乙丙3人,每人至少分得1本,已知书籍分发给了甲,则不同的分发方式种数是________.(用数字作答)15.已知函数是定义域为的奇函数,当时,,且,则不等式的解集为___________.16.设椭圆:的焦点分别为、,抛物线:的准线与轴的交点为,且.(1)求椭圆的方程;(2)过、分别作互相垂直的两直线与椭圆分别交于、、、四点(如图),求四边形面积的最大值和最小值.17. 如图,多面体中,平面,底面为等腰梯形,,,,,且.(1)求证:平面;(2)求二面角的余弦值.18. 如图所示,四边形ABCD为矩形,,,平面平面ABE,点F为CE中点.(1)证明:;(2)求三棱锥的体积.19. 2014年7月16日,中国互联网络信息中心发布《第三十四次中国互联网发展状况报告》,报告显示:我国网络购物用户已达亿.为了了解网购者一次性购物金额情况,某统计部门随机抽查了6月1日这一天100名网购者的网购情况,得到如下数据统计表.已知网购金额在2000元以上(不含2000元)的频率为.(1)确定,,,的值,并补全频率分布直方图;(2)为进一步了解网购金额的多少是否与网龄有关,对这100名网购者调查显示:购物金额在2000元以上的网购者中网龄3年以上的有35人,购物金额在2000元以下(含2000元)的网购者中网龄不足3年的有20人.①请将列联表补充完整;网龄3年以上网龄不足3年合计购物金额在2000元以上35购物金额在2000元以下20合计100②并据此列联表判断,是否有%的把握认为网购金额超过2000元与网龄在三年以上有关?参考数据:(参考公式:,其中)20. 已知函数.(1)若在其定义域上单调递减,求的取值范围;(2)证明:当时,在区间恰有一个零点.21. 已知椭圆的离心率为e,且过,两点.(1)求椭圆E的方程;(2)若经过有两条直线,,它们的斜率互为倒数,与椭圆E交于A,B两点,与椭圆E交于C,D两点,P,Q分别是,的中点.试探究:与的面积之比是否为定值?若是,请求出此定值;若不是,请说明理由.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年11月浙江省新高考学业水平考试数学试卷一、选择题:本大题共18小题,每小题3分,共54分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(3分)(2017•浙江学业考试)已知集合A={1,2,3},B={1,3,4},则A ∪B=()A.{1,3}B.{1,2,3}C.{1,3,4}D.{1,2,3,4}2.(3分)(2017•浙江学业考试)已知向量=(4,3),则||=()A.3 B.4 C.5 D.73.(3分)(2017•浙江学业考试)设θ为锐角,sinθ=,则cosθ=()A.B.C.D.4.(3分)(2017•浙江学业考试)log2=()A.﹣2 B.﹣ C.D.25.(3分)(2017•浙江学业考试)下列函数中,最小正周期为π的是()A.y=sinx B.y=cosx C.y=tanx D.y=sin6.(3分)(2017•浙江学业考试)函数y=的定义域是()A.(﹣1,2]B.[﹣1,2]C.(﹣1,2)D.[﹣1,2)7.(3分)(2017•浙江学业考试)点(0,0)到直线x+y﹣1=0的距离是()A.B.C.1 D.8.(3分)(2017•浙江学业考试)设不等式组所表示的平面区域为M,则点(1,0),(3,2),(﹣1,1)中在M内的个数为()A.0 B.1 C.2 D.39.(3分)(2017•浙江学业考试)函数f(x)=x•ln|x|的图象可能是()A.B.C.D.10.(3分)(2017•浙江学业考试)若直线l不平行于平面α,且l⊄α,则()A.α内的所有直线与l异面B.α内只存在有限条直线与l共面C.α内存在唯一直线与l平行D.α内存在无数条直线与l相交11.(3分)(2017•浙江学业考试)图(1)是棱长为1的正方体ABCD﹣A1B1C1D1截去三棱锥A1﹣AB1D1后的几何体,将其绕着棱DD1逆时针旋转45°,得到如图(2)的几何体的正视图为()A.B.C.D.12.(3分)(2017•浙江学业考试)过圆x2+y2﹣2x﹣8=0的圆心,且与直线x+2y=0垂直的直线方程是()A.2x﹣y+2=0 B.x+2y﹣1=0 C.2x+y﹣2=0 D.2x﹣y﹣2=013.(3分)(2017•浙江学业考试)已知a,b是实数,则“|a|<1且|b|<1”是“a2+b2<1”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件14.(3分)(2017•浙江学业考试)设A,B为椭圆(a>b>0)的左、右顶点,P为椭圆上异于A,B的点,直线PA,PB的斜率分别为k1,k2,若k1•k2=﹣,则该椭圆的离心率为()A.B.C.D.15.(3分)(2017•浙江学业考试)数列{a n}的前n项和S n满足S n=a n﹣n,n∈N*,则下列为等比数列的是()A.{a n+1}B.{a n﹣1}C.{S n+1}D.{S n﹣1}16.(3分)(2017•浙江学业考试)正实数x,y满足x+y=1,则的最小值是()A.3+B.2+2C.5 D.17.(3分)(2017•浙江学业考试)已知1是函数f(x)=ax2+bx+c(a>b>c)的一个零点,若存在实数x0.使得f(x0)<0.则f(x)的另一个零点可能是()A.x0﹣3 B.x0﹣C.x0+D.x0+218.(3分)(2017•浙江学业考试)等腰直角△ABC斜边CB上一点P满足CP≤CB,将△CAP沿AP翻折至△C′AP,使二面角C′﹣AP﹣B为60°,记直线C′A,C′B,C′P 与平面APB所成角分别为α,β,γ,则()A.α<β<γ B.α<γ<β C.β<α<γ D.γ<α<β二.填空题19.(6分)(2017•浙江学业考试)设数列{a n}的前n项和为S n,若a n=2n﹣1,n ∈N*,则a1=,S3=.20.(3分)(2017•浙江学业考试)双曲线﹣=1的渐近线方程是.21.(3分)(2017•浙江学业考试)若不等式|2x﹣a|+|x+1|≥1的解集为R,则实数a的取值范围是.22.(3分)(2017•浙江学业考试)正四面体A﹣BCD的棱长为2,空间动点P满足||=2,则的取值范围是.三.解答题23.(10分)(2017•浙江学业考试)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知cosA=.(1)求角A的大小;(2)若b=2,c=3,求a的值;(3)求2sinB+cos()的最大值.24.(10分)(2017•浙江学业考试)如图,抛物线x2=y与直线y=1交于M,N两点,Q为该抛物线上异于M,N的任意一点,直线MQ与x轴、y轴分别交于点A,B,直线NQ与x轴,y轴分别交于点C,D.(1)求M,N两点的坐标;(2)证明:B,D两点关于原点O的对称;(3)设△QBD,△QCA的面积分别为S1,S2,若点Q在直线y=1的下方,求S2﹣S1的最小值.25.(11分)(2017•浙江学业考试)已知函数g(x)=﹣t•2x+1﹣3x+1,h(x)=t•2x ﹣3x,其中x,t∈R.(1)求g(2)﹣h(2)的值(用t表示);(2)定义[1,+∞)上的函数f(x)如下:f(x)=(k∈N*).若f(x)在[1,m)上是减函数,当实数m取最大值时,求t的取值范围.2017年11月浙江省新高考学业水平考试数学试卷参考答案与试题解析一、选择题:本大题共18小题,每小题3分,共54分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(3分)(2017•浙江学业考试)已知集合A={1,2,3},B={1,3,4},则A ∪B=()A.{1,3}B.{1,2,3}C.{1,3,4}D.{1,2,3,4}【分析】根据并集的定义写出A∪B.【解答】解:集合A={1,2,3},B={1,3,4},则A∪B={1,2,3,4}.故选:D.【点评】本题考查了并集的定义与运算问题,是基础题.2.(3分)(2017•浙江学业考试)已知向量=(4,3),则||=()A.3 B.4 C.5 D.7【分析】根据平面向量的模长公式计算可得.【解答】解:因为向量=(4,3),则||==5;故选C.【点评】本题考查了平面向量的模长计算;属于基础题.3.(3分)(2017•浙江学业考试)设θ为锐角,sinθ=,则cosθ=()A.B.C.D.【分析】根据同角三角函数的基本关系,以及三角函数在各个象限中的符号,求得cosθ的值.【解答】解:∵θ为锐角,sinθ=,则cosθ==,故选:D.【点评】本题主要考查同角三角函数的基本关系,以及三角函数在各个象限中的符号,属于基础题.4.(3分)(2017•浙江学业考试)log2=()A.﹣2 B.﹣ C.D.2【分析】直接利用对数运算法则化简求解即可.【解答】解:log2=log21﹣log24=﹣2.故选:A.【点评】本题考查对数的运算法则的应用,考查计算能力.5.(3分)(2017•浙江学业考试)下列函数中,最小正周期为π的是()A.y=sinx B.y=cosx C.y=tanx D.y=sin【分析】求出函数的周期,即可判断选项.【解答】解:y=sinx,y=cosx的周期是2π,y=sin的周期是4π,y=tanx的周期是π;故选:C.【点评】本题考查三角函数的周期的求法,是基础题.6.(3分)(2017•浙江学业考试)函数y=的定义域是()A.(﹣1,2]B.[﹣1,2]C.(﹣1,2)D.[﹣1,2)【分析】根据二次根式的性质求出函数的定义域即可.【解答】解:由题意得:,解得:﹣1<x≤2,故函数的定义域是(﹣1,2],故选:A.【点评】本题考查了求函数的定义域问题,考查二次根式的性质,是一道基础题.7.(3分)(2017•浙江学业考试)点(0,0)到直线x+y﹣1=0的距离是()A.B.C.1 D.【分析】利用点到直线的距离公式即可得出.【解答】解:点(0,0)到直线x+y﹣1=0的距离d==.故选:A.【点评】本题考查了点到直线的距离公式,考查了推理能力与计算能力,属于基础题.8.(3分)(2017•浙江学业考试)设不等式组所表示的平面区域为M,则点(1,0),(3,2),(﹣1,1)中在M内的个数为()A.0 B.1 C.2 D.3【分析】验证点的坐标是否满足不等式组,即可得到结果.【解答】解:不等式组所表示的平面区域为M,点(1,0),代入不等式组,不等式组成立,所以(1,0),在平面区域M内.点(3,2),代入不等式组,不等式组不成立,所以(3,2),不在平面区域M 内.点(﹣1,1),代入不等式组,不等式组不成立,所以(﹣1,1),不在平面区域M内.故选:B.【点评】本题考查线性规划的应用,点的坐标与可行域的关系,是基础题.9.(3分)(2017•浙江学业考试)函数f(x)=x•ln|x|的图象可能是()A.B.C.D.【分析】判断函数的奇偶性排除选项,利用特殊点的位置排除选项即可.【解答】解:函数f(x)=x•ln|x|是奇函数,排除选项A,C;当x=时,y=,对应点在x轴下方,排除B;故选:D.【点评】本题考查函数的图象的判断,函数的奇偶性以及特殊点的位置是判断函数的图象的常用方法.10.(3分)(2017•浙江学业考试)若直线l不平行于平面α,且l⊄α,则()A.α内的所有直线与l异面B.α内只存在有限条直线与l共面C.α内存在唯一直线与l平行D.α内存在无数条直线与l相交【分析】根据线面相交得出结论.【解答】解:由题意可知直线l与平面α只有1个交点,设l∩α=A,则α内所有过A点的直线与l都相交,故选D.【点评】本题考查了空间线面位置关系,属于基础题.11.(3分)(2017•浙江学业考试)图(1)是棱长为1的正方体ABCD﹣A1B1C1D1截去三棱锥A1﹣AB1D1后的几何体,将其绕着棱DD1逆时针旋转45°,得到如图(2)的几何体的正视图为()A.B.C.D.【分析】正视图是光线从几何体的前面向后面正投影得到的投影图,结合三视图的作法,即可判断出其正视图.【解答】解:由题意可知几何体正视图的轮廓是长方形,底面对角线DB在正视图的长为,棱CC1在正视图中的投影为虚线,D1A,B1A在正视图中为实线;故该几何体的正视图为B.故选:B【点评】本题考查三视图与几何体的关系,从正视图的定义可以判断出题中的正视图,同时要注意能看见的轮廓线和棱用实线表示,不能看见的轮廓线和棱用虚线表示.12.(3分)(2017•浙江学业考试)过圆x2+y2﹣2x﹣8=0的圆心,且与直线x+2y=0垂直的直线方程是()A.2x﹣y+2=0 B.x+2y﹣1=0 C.2x+y﹣2=0 D.2x﹣y﹣2=0【分析】求出圆心坐标和直线斜率,利用点斜式方程得出直线方程.【解答】解:圆的圆心为(1,0),直线x+2y=0的斜率为﹣,∴所求直线的方程为y=2(x﹣1),即2x﹣y﹣2=0.故选D.【点评】本题考查了直线方程,属于基础题.13.(3分)(2017•浙江学业考试)已知a,b是实数,则“|a|<1且|b|<1”是“a2+b2<1”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【分析】根据充分条件和必要条件的定义进行判断即可.【解答】解:“|a|<1且|b|<1”,不一定能推出“a2+b2<1,例如a=b=0.8,即充分性不成立,若a2+b2<1一定能推出a|<1且|b|<1,即必要性成立,故“|a|<1且|b|<1”是“a2+b2<1”的必要不充分条件,故选:B.【点评】本题主要考查充分条件和必要条件的判断,比较基础.14.(3分)(2017•浙江学业考试)设A,B为椭圆(a>b>0)的左、右顶点,P为椭圆上异于A,B的点,直线PA,PB的斜率分别为k1,k2,若k1•k2=﹣,则该椭圆的离心率为()A.B.C.D.【分析】由题意可得A(﹣a,0),B(a,0),设P(x0,y0),由题意可得ab的关系式,结合椭圆系数的关系和离心率的定义可得.【解答】解:由题意可得A(﹣a,0),B(a,0),设P(x0,y0),则由P在椭圆上可得y02=•b2,①∵直线AP与BP的斜率之积为﹣,∴=﹣,②把①代入②化简可得=,∴=,∴离心率e=.故选:C.【点评】本题考查椭圆的简单性质,涉及椭圆的离心率和直线的斜率公式,属中档题.15.(3分)(2017•浙江学业考试)数列{a n}的前n项和S n满足S n=a n﹣n,n∈N*,则下列为等比数列的是()A.{a n+1}B.{a n﹣1}C.{S n+1}D.{S n﹣1}【分析】根据题意,将S n=a n﹣n作为①式,由此可得S n﹣1=a n﹣1﹣n+1,②,将两式相减,变形可得a n=3a n﹣1+2,③,进而分析可得a n+1=3(a n﹣1+1),结合等比数列的定义分析即可得答案.【解答】解:根据题意,数列{a n}满足S n=a n﹣n,①,则有S n=a n﹣1﹣n+1,②,﹣1①﹣②可得:S n﹣S n﹣1=(a n﹣a n﹣1)﹣1,即a n=3a n﹣1+2,③对③变形可得:a n+1=3(a n﹣1+1),即数列{a n+1}为等比数列,故选:A.【点评】本题考查数列的递推公式以及等比数列的判定,关键是求出数列{a n}的通项公式.16.(3分)(2017•浙江学业考试)正实数x,y满足x+y=1,则的最小值是()A.3+B.2+2C.5 D.【分析】利用“1”的代换,然后利用基本不等式求解即可.【解答】解:正实数x,y满足x+y=1,则==2+≥2+2=2.当且仅当x==2﹣时取等号.故选:B.【点评】本题考查基本不等式在最值中的应用,考查计算能力.17.(3分)(2017•浙江学业考试)已知1是函数f(x)=ax2+bx+c(a>b>c)的一个零点,若存在实数x0.使得f(x0)<0.则f(x)的另一个零点可能是()A.x0﹣3 B.x0﹣C.x0+D.x0+2【分析】由题意可得a>b>c,则a>0,c<0,且|a|>|b|,得,然后分类分析得答案.【解答】解:∵1是函数f(x)=ax2+bx+c的一个零点,∴a+b+c=0,∵a>b>c,∴a>0,c<0,且|a|>|b|,得,函数f(x)=ax2+bx+c的图象是开口向上的抛物线,其对称轴方程为x=﹣,则<<,画出函数大致图象如图:当0≤,函数的另一零点x1∈[﹣1,0),x0∈(﹣1,1),则x0﹣3∈(﹣4,﹣2),∈(,),∈(,),x0+2∈(1,3);当﹣<<0,函数的另一零点x1∈(﹣2,﹣1),x0∈(﹣2,1),则x0﹣3∈(﹣5,﹣2),∈(,),∈(﹣,),x0+2∈(0,3).综上,f(x)的另一个零点可能是.故选:B.【点评】本题考查根的存在性及根的个数判断,考查数形结合的解题思想方法及分类讨论的数学思想方法,是中档题.18.(3分)(2017•浙江学业考试)等腰直角△ABC斜边CB上一点P满足CP≤CB,将△CAP沿AP翻折至△C′AP,使二面角C′﹣AP﹣B为60°,记直线C′A,C′B,C′P 与平面APB所成角分别为α,β,γ,则()A.α<β<γ B.α<γ<β C.β<α<γ D.γ<α<β【分析】建立坐标系,找出C′在平面ABC上的射影N,判断N到A,B,P三点的距离大小得出结论.【解答】解:以A为原点建立平面直角坐标系如图所示:过C作CM⊥AP,垂足为H,使得CH=MH,设MH的中点为N,∵二面角C′﹣AP﹣B为60°,∴C′在平面ABC上的射影为N.连接NP,NA,NB.显然NP<NA.设AC=AB=1,则CH=sin∠PAC,∴CN=CH=sin∠PAC,∴N到直线AC的距离d=CN•sin∠ACN<sin∠PAC,∵CP≤,∴sin∠PAC≤.∴d<,即N在直线y=下方,∴NA<NB.设C′到平面ABC的距离为h,则tanα=,tanβ=,tanγ=,∵NP<NA<NB,∴tanγ>tanα>tanβ,即γ>α>β.故选C.【点评】本题考查了空间角的大小比较,属于中档题.二.填空题19.(6分)(2017•浙江学业考试)设数列{a n}的前n项和为S n,若a n=2n﹣1,n∈N*,则a1=1,S3=9.【分析】由a n=2n﹣1,n∈N*,依次求出数列的前3项,由此能求出结果.【解答】解:∵数列{a n}的前n项和为S n,a n=2n﹣1,n∈N*,∴a1=2×1﹣1=1,a2=2×2﹣1=3,a3=2×3﹣1=5,∴S3=1+3+5=9.故答案为:1,9.【点评】本题考查数列的首项和前3项和的求法,考查数列的通项公式、前n 项和公式等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.20.(3分)(2017•浙江学业考试)双曲线﹣=1的渐近线方程是.【分析】根据双曲线的渐近线方程即可得到结论.【解答】解:∵双曲线的方程﹣=1,∴a2=9,b2=16,即a=3,b=4,则双曲线的渐近线方程为,故答案为:.【点评】本题主要考查双曲线渐近线的判断,根据双曲线的方程确定a,b是解决本题的关键.比较基础.21.(3分)(2017•浙江学业考试)若不等式|2x﹣a|+|x+1|≥1的解集为R,则实数a的取值范围是(﹣∞,﹣4]∪[0.+∞).【分析】令f(x)=|2x﹣a|+|x+1|,由不等式|2x﹣a|+|x+1|≥1的解集为R可得:f()≥1,且f(﹣1)≥1,进而得到答案.【解答】解:令f(x)=|2x﹣a|+|x+1|,∵不等式|2x﹣a|+|x+1|≥1的解集为R,∴f()≥1,且f(﹣1)≥1,∴|+1|≥1,且|﹣2﹣a|≥1,∴a≤﹣4或a≥0.即实数a的取值范围是:(﹣∞,﹣4]∪[0.+∞)故答案为:(﹣∞,﹣4]∪[0.+∞)【点评】本题考查的知识点是绝对值不等式的解法,函数恒成立问题,难度中档.22.(3分)(2017•浙江学业考试)正四面体A﹣BCD的棱长为2,空间动点P满足||=2,则的取值范围是[0,4] .【分析】建立空间中坐标系,设P(x,y,z),求出关于x,y,z的表达式,根据||=2得出x,y,z的范围,利用简单线性规划得出答案.【解答】解:设BC的中点为M,则||=|2|=2,∴||=1,即P在以M为球心,以1为半径的球面上.以M为原点建立如图所示的空间坐标系如图所示:则A(,0,),D(,0,0),设P(x,y,z),则=(x﹣,y,z﹣),=(,0,﹣),∴=x﹣z+2,∵P在以M为球心,以1为半径的球面上,∴x2+y2+z2=1,∵0≤y2≤1,0≤x2+z2≤1.令x﹣z+2=m,则直线x﹣z+2﹣m=0与单位圆x2+z2=1相切时,截距取得最值,令=1,解得m=0或m=4.∴的取值范围是[0,4].【点评】本题考查了平面向量的数量积运算,属于中档题.三.解答题23.(10分)(2017•浙江学业考试)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知cosA=.(1)求角A的大小;(2)若b=2,c=3,求a的值;(3)求2sinB+cos()的最大值.【分析】(1)根据cosA=,求得A的值.(2)由题意利用余弦定理,求得a的值.(3)利用两角和差的三角公式化简解析式,再利用正弦函数的定义域和值域,求得2sinB+cos()的最大值.【解答】解:(1)△ABC中,∵cosA=,∴A=.(2)若b=2,c=3,则a===.(3)2sinB+cos()=2sinB+cosB﹣sinB=sinB+cosB=sin(B+),∵B∈(0,),∴B+∈(,),故当B+=时,2sinB+cos()取得最大值为.【点评】本题主要考查根据三角函数的值求角,余弦定理,两角和差的三角公式,正弦函数的定义域和值域,属于基础题.24.(10分)(2017•浙江学业考试)如图,抛物线x2=y与直线y=1交于M,N两点,Q为该抛物线上异于M,N的任意一点,直线MQ与x轴、y轴分别交于点A,B,直线NQ与x轴,y轴分别交于点C,D.(1)求M,N两点的坐标;(2)证明:B,D两点关于原点O的对称;(3)设△QBD,△QCA的面积分别为S1,S2,若点Q在直线y=1的下方,求S2﹣S1的最小值.【分析】(1)由得M,N两点的坐标为M(﹣1,1),N(1,1)(2)设点Q的坐标为(),得点B坐标为(0,x0),点D坐标为(0,﹣x0),可得B,D两点关于原点O的对称.(3)由(2)得|BD|=2|x0|,S1=|BD||x0|=x02.在直线MQ的方程中令y=0,得点A坐标为(,0),在直线NQ的方程中令y=0,得点C坐标为(,0),S2═|AC||x02|=,令t=1﹣x02,t∈(0,1],则S2﹣S1=2t+﹣3≥2﹣3即可.【解答】解:(1)由得或∴M,N两点的坐标为M(﹣1,1),N(1,1)(2)设点Q的坐标为(),直线MQ的方程为:y=(x0﹣1)(x+1)+1,令x=0,得点B坐标为(0,x0),直线NQ的方程为:y=((x0+1)(x﹣1)+1,令x=0,得点D坐标为(0,﹣x0),∴B,D两点关于原点O的对称.(3)由(2)得|BD|=2|x0|,S1=|BD||x0|=x02.在直线MQ的方程中令y=0,得点A坐标为(,0),在直线NQ的方程中令y=0,得点C坐标为(,0),∴|AC|=||=,S2═|AC||x02|=∴令t=1﹣x02,﹣1<x0<1,可得t∈(0,1]则S2﹣S1=2t+﹣3≥2﹣3当且仅当t=时,即时取等号.综上所述,S2﹣S1的最小值为2﹣3.【点评】本题考查了抛物线的性质,直线与抛物线的位置关系,考查了计算能力,属于中档题.25.(11分)(2017•浙江学业考试)已知函数g(x)=﹣t•2x+1﹣3x+1,h(x)=t•2x ﹣3x,其中x,t∈R.(1)求g(2)﹣h(2)的值(用t表示);(2)定义[1,+∞)上的函数f(x)如下:f(x)=(k∈N*).若f(x)在[1,m)上是减函数,当实数m取最大值时,求t的取值范围.【分析】(1)直接代数计算;(2)根据g(2)≥h(2),h(3)≥g(3)求出t的范围,判断g(4)与h(4)的大小关系即可得出m的最大值,判断g(x)和h(x)的单调性得出t的范围.【解答】解:(1)g(2)﹣h(2)=﹣8t﹣27﹣(4t﹣9)=﹣12t﹣18.(2)∵f(x)是[1,m)上的减函数,∴g(2)≥h(2),h(3)≥g(3),g(4)≥h(4),∴,解得﹣≤t≤﹣,而g(4)﹣h(4)=﹣48t﹣162=﹣48(t+4)<0,∴g(4)<h(4),与g(4)≥h(4)矛盾,∴m≤4.当﹣≤t≤﹣时,显然h(x)在[2,3)上为减函数,故只需令g(x)在[1,2)和[3,4)上为减函数即可.设1≤x1<x2,则g(x1)﹣g(x2)=2[t+()]﹣2[t+()],∵()+t>t+()+t≥0,2>2>0,∴2[t+()]>2[t+()],即g(x1)>g(x2),∴当﹣≤t≤﹣时,g(x)在[1,+∞)上单调递减,符合题意.综上,m的最大值为4,此时t的范围是[﹣,﹣].【点评】本题考查了分段函数的单调性,属于中档题.。

相关文档
最新文档