量子化学-基本原理和从头计算法第二版上册教学设计

合集下载

极品高斯教程——量子化学计算方法汇总.

极品高斯教程——量子化学计算方法汇总.

命令更改权限,将所安装的g03对所有用户开放。
2.G03程序的运行:
(1).对Windows平台: a.对于刚安装好的g03,先检查环境设置情况:
需设置正确, 否则运行将出错!
左侧至上而下依次为:默认的文本编辑器;g03可执行文件所在目录; 计算中间结果存放目录;缺省的计算结果存储目录;缺省的输入文件 所在目录;PDB分子构型浏览器; 右侧至上而下依次为:设置显示属性(如背景色等);设置文本编辑器 属性;计算过程控制属性(尤其是批作业过程);Default.Rou文件的编 辑(该文件内容为默认情况下,计算所花费的内存及硬盘大小)
计算模型和方法的选取是保证计算结果可靠性的关键,
理想的情况是:1.所选取的计算模型与实际情形一致;2.采用 高级别的计算方法。但是,由于受到计算软硬件的限制,在多数 情况下,很难同时做到上述两点要求,实际操作中,当计算模 型较大时,只能选择精确度较低的计算方法,只有对较小的模 型才能选取高级的计算方法。 因此,当确定了一种计算模型和方法后,最好对其进行验证, 以保证计算结果的可靠性。假设当前的研究对象是化合物A, 可通过下列途径进行验证: 1. 与A化合物现有实验结果之间的比较; 2. 若无实验方面的报道,可对与A类似的化合物B进行研究,此 时以B的实验结果作为参照; 3. 当上述方法行不通时,可以采用较大模型和较为高级的计算 方法得到的计算结果作为参照,该方法主要用于系列化合物 的研究:如对A1, A2, A3,先用大模型和基组对A1进行研究, 然后以该结果为参照,确定计算量适中的模型和方法并应用 于A1,A2,A3。
Gaussian03程序的使用
G03的安装和运行; G03的功能和程序结构; 输入文件的编写与主要功能的使用; 补充说明;

量子化学计算方法 HF, MP2, DFT

量子化学计算方法 HF, MP2, DFT

E(2)
同样,
ψ ( 0 ) | ( H 0 − E ( 0) ) | ψ ( 2 ) = ψ ( 0 ) | ( E (1) − V ) | ψ (1) + E ( 2 ) ψ ( 0 ) | ψ ( 0)
⇒ E ( 2 ) = ψ ( 0 ) | (V − E (1) ) | ψ (1) = ψ ( 0) | V | ψ (1)
i i
上面方程有非零解的条件,是下列久期行列 式为零: i
′ Fµν − ε iδν = 0
从这个久期行列式可以求出一系列能量本征值, 将其代入Rothaan方程,就可以解出一组系数 {cni},从而属于本征能量εi的分子轨道就得到了。
求解Roothaan方程的困难
困难: 1. 非线性二次方程组,要用自洽的方法求 解 2. 计算矩阵元时要计算大量的积分,积分 的数量与方程阶数n的4次方成正比;尤其 是这些积分一般都是较难处理的多中心积 分。
⋮ 1 ψ (r ) = n! φ1 (ri )α (i ) φ1 (ri )β (i ) ⋯ φ n (ri )α (i ) φ n (ri )β (i ) 2 2 ⋮ ⋮ ⋮ ⋮ ⋯ ⋮ ⋮ ⋯
2 2

φ1 (rn )α (n ) φ1 (rn )β (n )⋯φ n (rn )α (n ) φ n (rn )β (n )
H µν = ∫ φµ (r1 )(−∇ − ∑
* 2 1 p =1
A
2Z p rip
)φν (r1 )dr1
动能积分 核吸引积分
Fock矩阵
(µν | λσ ) = ∫ φµ* (r1 )φν (r1 ) 2 φλ* (r2 )φσ (r2 )dr1dr2
r12

量子化学计算研究进展

量子化学计算研究进展

量子化学计算研究进展摘要:量子化学以理论化学为基础,量子力学与化学相结合,可以预测和解释分子结构和各种化学变化。

该文对量子化学计算的发展进行了简单的概述,并用半经验算法计算了吡啶及其取代物、喹啉及其取代物、以及苯甲酸及其取代物,这些取代物的logPpass值。

具有很好的相关性。

关键词:量子化学计算半经验算法渗透性1 量子化学概述量子假说是在1900年由普朗克提出来的,他假定电磁场和物质交换能量是以间断的形式(能量子)实现的,得出了黑体辐射能量分布公式,成功地解释了黑体辐射现象。

由于微观粒子具有波粒二象性,微观粒子所遵循的运动规律就不同于宏观物体的运动规律,描述微观粒子运动规律的量子力学也就不同于描述宏观物体运动规律的经典力学。

当粒子的大小由微观过渡到宏观时,它所遵循的规律也由量子力学过渡到经典力学。

2 量子化学计算方法密度泛函理论[1](DFT=Density Functional Theory),是在1964年由Kohn提出来的,指出电子密度决定分子的一切性质,体系的能量是电子密度的泛函[2]。

这种计算方法的特点在于计算结果精确,并且计算出结果比较快。

其他方法还有从头计算方法、半经验方法等。

3 量子化学计算运用量子化学计算能帮助阐明含能材料的分子结构和性能的关系,可应用在了解大幅度构象变化的机理,设计高效、高选择性的药物分子、固体材料化学、配位化学、催化作用本质的研究、多相催化中的吸附、检验反应机理[3]等方面。

本文主要研究用遗传算法建立QSPR模型预测药物的渗透性,利用度的大小是成为候选药物的主要参数[4]。

药物渗透性用被动渗透性Ppass来表征,最常用的衡量这个值大小的方法是用通过测量药物分子通过平行人工膜的渗透性可以得到一个logPpass值,值越大说明渗透性越好,所以我们可以通过建立模型来预测未知化合物的logPpass值。

本文计算了吡啶及其取代物、喹啉及其取代物、以及苯甲酸及其取代物,这些取代物的logPpass值是由Achary等[5]的工作组计算所得。

量子化学计算

量子化学计算

物理化学专业博士研究生课程教学大纲课程名称:量子化学计算(Computational Quantum Chemistry)课程编号:B07030411学分:3总学时数:72开课学期:第2学期考核方式:学习论文课程说明:(课程性质、地位及要求的描述)。

《量子化学计算》是在学习了《结构化学》、《量子化学》之后,为物理化学专业博士研究生开设的一门方向课,在每学年第二学期讲授。

如果说《结构化学》、《量子化学》还有更多的抽象,那么《量子化学计算》则直接对各研究体系进行可与实验对比的计算机模拟。

近二十年来,随着计算机硬件和软件水平的迅速发展,计算化学已成为理论化学的重要分支,主要通过量子化学方法、分子力学方法以及分子动力学模拟来解决与化学相关的问题。

目前,计算化学已广泛应用于化学及相关交叉学科的各个领域,迅速成为定量预测分子的结构、性质以及反应性能的有力工具。

本课程计划安排72个学时。

采用授课与上机演习相结合的教学方法,使学生在较短时间内掌握当今国际流行的常用计算软件的原理、使用方法及技巧,着重培养同学们解决化学实际问题的能力。

要求同学们通过本课程的学习,能对计算化学的原理和方法有一个初步的了解,并能够在化学合成、反应机理、生物、材料等各个领域中得到应用。

教学内容、要求及学时分配:第一章绪论内容:1.1量子力学历史背景 1.221世纪的理论化学计算机模拟要求:了解量子化学的背景知识、国际国内发展现状及其未来方向学时:4第二章从头计算法的基本原理和概念内容:2.1量子力学基本假设2.2定态近似2.3从头计算法的“头”2.4自洽场方法2.5变分法和LCAO-MO近似2.6量子化学中的一些基本原理和概念2.7量子化学中的基本近似要求:了解从头计算法的基础知识、计算化学中的一些基本原理、概念和近似。

学时:12第三章布居分析和基组专题内容:3.1布居分析 3.2基组专题要求:理解基组概念及选择的原则,掌握布居分析的计算方法和基组的计数,了解Mulliken布居分析的优缺点及改进的思路。

量子力学第一性原理介绍

量子力学第一性原理介绍

第一性原理,英文First Principle,是一个计算物理或计算化学专业名词,广义的第一性原理计算指的是一切基于量子力学原理的计算。

我们知道物质由分子组成,分子由原子组成,原子由原子核和电子组成。

量子力学计算就是根据原子核和电子的相互作用原理去计算分子结构和分子能量(或离子),然后就能计算物质的各种性质。

从头算(ab initio)是狭义的第一性原理计算,它是指不使用经验参数,只用电子质量,光速,质子中子质量等少数实验数据去做量子计算。

但是这个计算很慢,所以就加入一些经验参数,可以大大加快计算速度,当然也会不可避免的牺牲计算结果精度。

量子力学第一性原理:仅需五个物理基本常数——电子质量、电子电量、普郎克常数、光速和玻耳兹曼常数,通过求薛定谔方程得到材料的电子结构,而不依赖于任何经验常数即可以预测微观体系的状态和性质,预测材料的组分、结构、性能之间的关系,进一步设计具有特定性能的新材料。

作为评价事物的依据,第一性原理和经验参数是两个极端。

第一性原理是某些硬性规定或推演得出的结论,而经验参数则是通过大量实例得出的规律性的数据,这些数据可以来自第一性原理(称为理论统计数据),也可以来自实验(称为实验统计数据)。

如果某些原理或数据来源于第一性原理,但推演过程中加入了一些假设(这些假设当然是很有说服力的),那么这些原理或数据就称为“半经验的”。

量子化学的第一性原理是指多电子体系的Schrödinger方程,但是光有这个方程是无法解决任何问题的,量子力学能够准确的解决的问题很少很少,绝大多数都是有各种各样的近似,为此计算量子力学提出一个称为“从头计算”的原理作为第一性原理,除了Schrödinger 方程外还允许使用下列参数和原理:(1) 物理常数,包括光速c、Planck常数h、电子电量e、电子质量me以及原子的各种同位素的质量,尽管这些常数也是通过实验获得的。

(在国际单位值中,光速是定义值,Planck 常数是测量值,在原子单位制中则相反。

第四章 分子动力学

第四章 分子动力学

分子动力学与分子力学不同,它求解的是随时间变化的分子的状态、行为和过程。

分子动力学将原子看作为一连串的弹性球,原子在某一时刻由于运动而发生坐标变化。

在运动的任一瞬间,通过计算每个原子上的作用力和加速度,来测定它们的位置和运动速度。

由于一个原子的位置相对于其他原子的位置不断变化着,同时力也在变化,可用适当的力场方法,通过评价体系的能量,计算出任一特定原子的力。

分子动力学模拟可作瞬时的、通常为皮秒级(10-12s)的分析,由此模拟计算而获得以一定位置和速度存在的原子的运动轨迹。

计算中根据分子体系的大小、特点和要求来决定模拟时间的长短。

分子动力学方法是一通用的全局优化低能构象的方法。

用分子动力学模拟可使分子构象跨越较大的能垒,因此可以通过升温搜寻构象空间,势能的波动对应着分子构象的变化,当总能量出现最小值时,在常温下(300K)平衡,即可求得低能构象。

在常温下的分子动力学模拟需要很长的时间来克服能量势垒,因此分子动力学对分子构象空间的取样相当缓慢。

提高分子体系的温度,可加大样本分子构型空间的取样效率。

分子动力学计算中,常使用蒙特卡洛算法和模拟退火算法。

蒙特卡洛算法:是一种统计抽样方法。

其基本思想是在求解的空间中随机采样并计算目标函数,以在足够多的采样点中找到一个较高质量的最优解作为最终解。

在动力学计算全局优化低能构象时,以经验势函数随机抽样,不断抽取体系构象,使其逐渐趋于热力学平衡。

该方法需要大量采样才能得到较精确的结果,因此收敛速度较慢。

模拟退火算法:退火是将金属或其他固体材料加热至熔化后,再非常缓慢地冷却的过程。

缓慢冷却是为了凝固成规则的处于最稳态的坚硬晶体状态。

模拟退火算法用于分子动力学计算时,可有效地求得分子的全局优势构象。

过程为:先使体系升温,在高温下进行分子动力学模拟,使分子体系有足够的能量,克服柔性分子中存在的各种旋转能垒和顺反异构能垒,搜寻全部构象空间,在构象空间中选出一些能量相对极小的构象;然后逐渐降温,再进行分子动力学模拟,此时较高的能垒已无法越过,在极小化后去除能量较高的构象,最后可以得到相应的能量最小的优势构象。

第一章_薛定谔方程

第一章_薛定谔方程

山东大学研究生教材量子化学讲义山东大学理论化学所冯大诚张冬菊2010年9月目录绪论第一章:薛定谔方程第二章:量子化学的基本理论第三章:角动量第四章:微扰与变分第五章:多电子原子第六章:分子轨道法第七章:电子相关和后SCF方法第八章:密度泛函理论第九章:分子性质的计算绪论1.什么是量子化学?化学是研究物质的组成、结构、性质及其变化规律的一门学科。

我们主要在原子-分子这个层次上研究物质的化学性质和化学反应。

电子、原子核这些微观物体的相互作用使原子组成了分子、形成了晶体、液体等形态的物质。

所以,化学学科的研究对象归根结底是电子、原子核等微观物体的相互作用。

而微观物体的运动规律,我们已经了解清楚,这就是在1925到1926年间发展起来的量子力学。

量子化学就是用量子力学的理论和方法来研究化学问题。

由于量子力学是微观化学物质所遵循的根本规律,所以,量子化学是整个化学学科的理论基础。

实际上,量子化学的研究成果也已经深入到化学学科的各个分支。

2.量子化学的发展简况1927年, W. Heitler和F. London用量子力学方法研究了氢分子,人们往往把这作为量子化学的发端。

几十年来,量子化学的发展可以分为两个阶段。

第一阶段是1960年代以前。

该阶段量子化学的主要成果在形成概念和理论方面,其中包括Pauling的价键理论;以Hunt, Slater及Mulliken为代表的分子轨道理论、配位场理论;Eyring的过渡态理论; 在具体计算方面则有Hartree等对原子轨道能量的计算。

第二阶段,1960年代至今。

在这个阶段,由于电子计算机技术的飞速发展,人们可以把分子轨道理论的计算应用于几乎所有的各类分子,计算它们的性质、分析它们的反应。

另一方面,新的理论如密度泛函理论和新的计算方法也得到了广泛的应用。

现在,量子化学的理论和计算已经深入到化学的各个分支学科。

●物理化学、量子化学被用于计算:(1)分子的各种热力学函数,如熵、焓和自由能等;(2)分子构型和性质,如键长、键角、电偶极距、转动势垒、异构化能等;(3)计算化学反应的速率常数;(4)解释分子间相互作用以及分子和固体中的成键情况。

量子化学理论方法

量子化学理论方法

量子化学理论方法量子化学理论方法分子轨道理论:分子体系中的电子用统一的波函数来描述,这种统一的波函数类似于原子体系中的原子轨道,被称作分子轨道,分子轨道理论是目前应用最为广泛的量子化学理论方法。

HF自洽场方法:用迭代法解HF方程,是其他高级分子轨道理论方法的基础CI方法:即组态相互作用方法,是一种考虑了组态间相互作用的理论方法,用HFSCF方法计算获得的多电子体系基态波函数和各级激发态波函数为基组展开体系波函数,但是计算量巨大,应用较不广泛,在实际应用中场采用截断CI 方法,如DCI、SDCI等方法MP方法:即多体微扰方法,将多电子体系电子间的相互作用看做是体系哈密顿算子的微扰项,应用MP微扰理论进行处理,一级微扰可以达到HFSCF方法的精度水平,二级微扰可以达到甚至超过DCI方法的精度水平,但计算量远远小于DCI。

多组态自洽场方法:将HF方程的求解方法用于多电子基函数展开的电子波函数中,本质上是CI方法的一个变种。

半经验计算方法:在计算过程中根据实验数据,将一些波函数积分用经验常数替代,可以上千倍地减少计算量,采用的经验常数不同,半经验算法的应用范围也不同,应用时需要根据研究体系的具体情况进行选择。

价键理论方法密度泛函理论方法:当分子体系各原子核空间位置确定后,电子密度在空间中的分布也确定,可以将体系的能量表示为电子密度的泛函,密度泛函分析变分法求出能量最低时的电子密度分布和体系能量。

量子化学中的基组量子化学中的基组是在量子化学中用于描述体系波函数的若干具有一定性质的函数,基组是量子化学从头计算的基础,在量子化学中有着非常重要的意义。

基组的概念最早脱胎于原子轨道,随着量子化学的发展,现在量子化学中基组的概念已经大大扩展,不局限于原子轨道的原始概念了。

在量子化学计算中,根据体系的不同,需要选择不同的基组,构成基组的函数越多,基组便越大,对计算的限制就越小,计算的精度也越高,同时计算量也会随基组的增大而剧增。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

量子化学-基本原理和从头计算法第二版上册教学设计
1. 引言
量子化学是化学领域中的一个重要分支,涉及到分子和化学反应的计算分析。

随着计算机的不断发展,量子化学在理论模拟和实验研究中都发挥越来越重要的作用。

本教学设计将着重介绍从头计算法,即基于量子力学原理的计算化学方法,并介绍其在化学研究中的应用和实践。

2. 教学内容
2.1 基本原理
在本教学设计中,我们将首先介绍量子力学和量子化学的基本原理,包括:•波粒二象性
•斯特恩-格拉赫实验
•薛定谔方程
•原子轨道和分子轨道
•壳层理论和电子互斥原理
•常见基组的介绍和特点
通过对这些基本原理的学习,帮助学生了解量子化学的理论基础,为后续计算方法和应用的学习打下基础。

2.2 从头计算法
本教学设计的重点是从头计算法。

从头计算法是基于量子力学原理的计算化学方法,它可以高精度地预测分子结构和性质。

本部分的教学内容包括:
•哈特里-福克方程和密度泛函理论的介绍和应用
•去除基组效应的多级别方法
•量子力学分子动力学方法的介绍
•能带理论和密度泛函周期性体系计算方法。

2.3 应用案例
本教学设计将结合实际应用案例,让学生深入了解从头计算法在化学研究中的
应用和实践。

案例可以包括:
•分子结构和构象的预测
•化学反应和反应动力学的预测
•机理研究和催化剂设计
•性质计算和电子注入等。

3. 教学方法
本教学设计采用课堂讲授和案例分析相结合的教学方法。

具体做法如下:•采用清晰明了的PPT,帮助学生快速掌握基本原理和从头计算法的概念和方法。

•利用实验室和计算机模拟软件,进行物理实验和计算模拟,巩固学生的理论知识,并提高学生的计算化学实践能力。

•分组讨论并汇报案例研究,帮助学生深入了解从头计算法在不同领域的实际应用和价值。

4. 教学评估
为了确保教学效果,本教学设计采用以下评估方法:
•考试成绩:对学生在基本原理和从头计算法的知识掌握情况进行考察。

题目类型包括选择题、填空题、简答题、综合题等。

•实验报告:对学生在物理实验和计算模拟中的表现进行评估,包括实验准备、实验操作、数据处理和结论等。

•案例分析:对学生在案例研究和讨论中的表现进行评估,包括分组报告和个人思考。

5. 结论
通过本教学设计的学习,学生将获得从头计算化学的基本方法和应用技巧,以及进一步了解和认识化学研究中量子化学的重要性和战略性价值。

相关文档
最新文档