内蒙古赤峰市2014年中考数学试卷
2014年内蒙古包头市中考数学试卷

2014年内蒙古包头市中考数学试卷2014年内蒙古包头市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)(2014•包头)下列实数是无理数的是()A.﹣2 B.C.D.2.(3分)(2014•包头)下列计算正确的是()A.(﹣1)﹣1=1 B.(﹣1)0=0 C.|﹣1|=﹣1 D.﹣(﹣1)2=﹣13.(3分)(2014•包头)2013年我国GDP总值为56.9万亿元,增速达7.7%,将56.9万亿元用科学记数法表示为()A.56.9×1012元 B.5.69×1013元C.5.69×1012元D.0.569×1013元4.(3分)(2014•包头)在一次信息技术考试中,抽得6名学生的成绩(单位:分)如下:8,8,10,8,7,9,则这6名学生成绩的中位数是()A.7 B.8 C.9 D.10经过的路径为,则图中阴影部分的面积是()A.﹣1 B.﹣C.﹣D.π﹣210.(3分)(2014•包头)如图,在△ABC中,点D,E,F分别在边AB,AC,BC上,且DE∥BC,EF∥AB.若AD=2BD,则的值为()A.B.C.D.11.(3分)(2014•包头)已知下列命题:①若a>b,则ac>bc;②若a=1,则=a;③内错角相等;④90°的圆周角所对的弦是直径.其中原命题与逆命题均为真命题的个数是()A.1个B.2个C.3个D.4个12.(3分)(2014•包头)关于x的一元二次方程x2+2(m﹣1)x+m2=0的两个实数根分别为x1,x2,且x1+x2>0,x1x2>0,则m的取值范围是()A.m≤ B.m≤且m≠0 C.m<1 D.m<1且m≠0二、填空题(本大题共8小题,每小题3分,共24分)13.(3分)(2014•包头)计算:﹣=.14.(3分)(2014•包头)如图,已知∠1=∠2,∠3=73°,则∠4的度数为度.15.(3分)(2014•包头)某学校举行演讲比赛,5位评委对某选手的打分如下(单位:分)9.5,9.4,9.4,9.5,9.2,则这5个分数的平均分为分.16.(3分)(2014•包头)计算:(x+1)2﹣(x+2)(x﹣2)=.17.(3分)(2014•包头)方程﹣=0的解为x=.18.(3分)(2014•包头)如图,AB是⊙O的直径,BC是弦,点E是的中点,OE交BC于点D.连接AC,若BC=6,DE=1,则AC的长为.19.(3分)如图,在平面直角坐标系中,Rt△ABO 的顶点O与原点重合,顶点B在x轴上,∠ABO=90°,OA与反比例函数y=的图象交于点D,且OD=2AD,过点D作x轴的垂线交x轴于点C.若S四边形ABCD=10,则k的值为.20.(3分)(2014•包头)如图,在矩形ABCD 中,点E为AB的中点,EF⊥EC交AD于点F,连接CF(AD>AE),下列结论:①∠AEF=∠BCE;②AF+BC>CF;③S△CEF=S△EAF+S△CBE;④若=,则△CEF≌△CDF.其中正确的结论是.(填写所有正确结论的序号)三、解答题(本大题共6小题,共60分)21.(8分)(2014•包头)有四张正面分别标有数字2,1,﹣3,﹣4的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上,洗匀后从四张卡片中随机地摸取一张不放回,将该卡片上的数字记为m,再随机地摸取一张,将卡片上的数字记为n.(1)请画出树状图并写出(m,n)所有可能的结果;(2)求所选出的m,n能使一次函数y=mx+n 的图象经过第二、三、四象限的概率.22.(8分)(2014•包头)如图,在梯形ABCD 中,AD∥BC,∠ABC=90°,∠BCD=45°,点E在BC上,且∠AEB=60°.若AB=2,AD=1,求CD和CE的长.(注意:本题中的计算过程和结果均保留根号)23.(10分)(2014•包头)甲、乙两个商场出售相同的某种商品,每件售价均为3000元,并且多买都有一定的优惠.甲商场的优惠条件是:第一件按原售价收费,其余每件优惠30%;乙商场的优惠条件是:每件优惠25%.设所买商品为x件时,甲商场收费为y1元,乙商场收费为y2元.(1)分别求出y1,y2与x之间的关系式;(2)当甲、乙两个商场的收费相同时,所买商品为多少件?(3)当所买商品为5件时,应选择哪个商场更优惠?请说明理由.24.(10分)(2014•包头)如图,已知AB,AC 分别是⊙O的直径和弦,点G为上一点,GE⊥AB,垂足为点E,交AC于点D,过点C 的切线与AB的延长线交于点F,与EG的延长线交于点P,连接AG.(1)求证:△PCD是等腰三角形;(2)若点D为AC的中点,且∠F=30°,BF=2,求△PCD的周长和AG的长.25.(12分)(2014•包头)如图,已知∠MON=90°,A是∠MON内部的一点,过点A作AB⊥ON,垂足为点B,AB=3厘米,OB=4厘米,动点E,F同时从O点出发,点E以1.5厘米/秒的速度沿ON方向运动,点F以2厘米/秒的速度沿OM方向运动,EF与OA交于点C,连接AE,当点E到达点B时,点F随之停止运动.设运动时间为t秒(t>0).(1)当t=1秒时,△EOF与△ABO是否相似?请说明理由;(2)在运动过程中,不论t取何值时,总有EF⊥OA.为什么?(3)连接AF,在运动过程中,是否存在某一时刻t,使得S △AEF=S四边形AEOF?若存在,请求出此时t 的值;若不存在,请说明理由.26.(12分)(2014•包头)已知抛物线y=ax2+x+c (a≠0)经过A(﹣1,0),B(2,0)两点,与y轴相交于点C,该抛物线的顶点为点M,对称轴与BC相交于点N,与x轴交于点D.(1)求该抛物线的解析式及点M的坐标;(2)连接ON,AC,证明:∠NOB=∠ACB;(3)点E是该抛物线上一动点,且位于第一象限,当点E到直线BC的距离为时,求点E的坐标;(4)在满足(3)的条件下,连接EN,并延长EN交y轴于点F,E、F两点关于直线BC对称吗?请说明理由.2014年内蒙古包头市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)(2014•包头)下列实数是无理数的是()A.﹣2 B.C.D.【分析】根据无理数是无限不循环小数,可得答案.【解答】解;A、是有理数,故A错误;B、是有理数,故B错误;C、是有理数,故C错误;D、是无理数,故D正确.故选:D.【点评】本题考查了无理数,无理数是无限不循环小数.2.(3分)(2014•包头)下列计算正确的是()A.(﹣1)﹣1=1 B.(﹣1)0=0 C.|﹣1|=﹣1 D.﹣(﹣1)2=﹣1【分析】根据负整指数幂,可判断A,根据非0的0次幂,可判断B,根据负数的绝对值是正数,可判断C,根据相反数,可判断D.【解答】解:A、(﹣1)﹣1=﹣1,故A错误;B、(﹣1)0=1,故B错误;C、|﹣1|=1,故C错误;D、﹣(﹣1)2=﹣1,故D正确;故选:D.【点评】本题考查了负整指数幂,负整数指数为正整数指数的倒数;任何非0数的0次幂等于1.3.(3分)(2014•包头)2013年我国GDP总值为56.9万亿元,增速达7.7%,将56.9万亿元用科学记数法表示为()A.56.9×1012元 B.5.69×1013元C.5.69×1012元D.0.569×1013元【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:56.9万亿元=5.69×1013元,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2014•包头)在一次信息技术考试中,抽得6名学生的成绩(单位:分)如下:8,8,10,8,7,9,则这6名学生成绩的中位数是()A.7 B.8 C.9 D.10【分析】根据中位数的定义,把把这组数据从小到大排列,找出最中间的数即可.【解答】解:把这组数据从小到大排列为:7,8,8,8,9,10,最中间两个数的平均数是(8+8)÷2=8,则中位数是8.故选:B.【点评】本题考查了中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).5.(3分)(2014•包头)计算sin245°+cos30°•tan60°,其结果是()A.2 B.1 C.D.【分析】根据特殊角的三角函数值计算即可.【解答】解:原式=()2+×=+=2.故选:A.【点评】此题比较简单,解答此题的关键是熟记特殊角的三角函数值.6.(3分)(2014•包头)长为9,6,5,4的四根木条,选其中三根组成三角形,选法有()A.1种B.2种C.3种D.4种【分析】要把四条线段的所有组合列出来,再根据三角形的三边关系判断能组成三角形的组数.【解答】解:四根木条的所有组合:9,6,5和9,6,4和9,5,4和6,5,4;根据三角形的三边关系,得能组成三角形的有9,6,5和9,6,4和6,5,4.故选:C.【点评】本题考查了三角形的三边关系,熟记三角形的任意两边之和大于第三边,两边之差小于第三边是解题的关键.7.(3分)(2014•包头)下列说法正确的是()A.必然事件发生的概率为0B.一组数据1,6,3,9,8的极差为7 C.“面积相等的两个三角形全等”这一事件是必然事件D.“任意一个三角形的外角和等于180°”这一事件是不可能事件【分析】根据必然事件、不可能事件、随机事件的概念可区别各类事件,可得答案.【解答】解:A、必然事件发生的概率为1,故A错误;B、一组数据1,6,3,9,8的极差为8,故B 错误;C、面积相等两个三角形全等,是随机事件,故C错误;D、“任意一个三角形的外角和等于180°”是不可能事件,故D正确;故选:D.【点评】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事.8.(3分)(2014•包头)在平面直角坐标系中,将抛物线y=3x2先向右平移1个单位,再向上平移2个单位,得到的抛物线的解析式是()A.y=3(x+1)2+2 B.y=3(x+1)2﹣2 C.y=3(x﹣1)2+2 D.y=3(x﹣1)2﹣2【分析】先根据抛物线的顶点式得到抛物线y=3x2的对称轴为直线x=0,顶点坐标为(0,0),则抛物线y=3x2向右平移1个单位,再向上平移2个单位得到的抛物线的对称轴为直线x=1,顶点坐标为(1,2),然后再根据顶点式即可得到平移后抛物线的解析式.【解答】解:∵抛物线y=3x2的对称轴为直线x=0,顶点坐标为(0,0),∴抛物线y=3x2向右平移1个单位,再向上平移2个单位得到的抛物线的对称轴为直线x=1,顶点坐标为(1,2),∴平移后抛物线的解析式为y=3(x﹣1)2+2.故选:C.【点评】本题考查了二次函数图象与几何变换:先把抛物线的解析式化为顶点式y=a(x﹣k)2+h,其中对称轴为直线x=k,顶点坐标为(k,h),若把抛物线先右平移m个单位,向上平移n 个单位,则得到的抛物线的解析式为y=a(x﹣k ﹣m)2+h+n;抛物线的平移也可理解为把抛物线的顶点进行平移.9.(3分)(2014•包头)如图,在正方形ABCD 中,对角线BD的长为.若将BD绕点B旋转后,点D落在BC延长线上的点D′处,点D 经过的路径为,则图中阴影部分的面积是()A.﹣1 B.﹣C.﹣D.π﹣2【分析】首先根据正方形的性质可得∠DBD′=45°,BC=CD,然后根据勾股定理可得BC、CD长,再计算出扇形BDD′和△BCD 的面积可得阴影部分面积.【解答】解:∵四边形ABCD是正方形,∴∠DBD′=45°,BC=CD,∵BD的长为,∴BC=CD=1,∴S 扇形BDD′==,S △CBD=1×1=,∴阴影部分的面积:﹣.故选:C.【点评】此题主要考查了正方形的性质,扇形的面积和三角形的面积计算,关键是掌握扇形的面积公式:S=.10.(3分)(2014•包头)如图,在△ABC中,点D,E,F分别在边AB,AC,BC上,且DE∥BC,EF∥AB.若AD=2BD,则的值为()A.B.C.D.【分析】根据平行线分线段成比例定理得出===2,即可得出答案.【解答】解:∵DE∥BC,EF∥AB,AD=2BD,∴==2,==2,∴=,故选:A.【点评】本题考查了平行线分线段成比例定理的应用,注意:一组平行线截两条直线,所截得的对应线段成比例.11.(3分)(2014•包头)已知下列命题:①若a>b,则ac>bc;②若a=1,则=a;③内错角相等;④90°的圆周角所对的弦是直径.其中原命题与逆命题均为真命题的个数是()A.1个B.2个C.3个D.4个【分析】先对原命题进行判断,再判断出逆命题的真假即可.【解答】解;①若a>b,则ac>bc是假命题,逆命题是假命题;②若a=1,则=a是真命题,逆命题是假命题;③内错角相等是假命题,逆命题是假命题;④90°的圆周角所对的弦是直径是真命题,逆命题是真命题;其中原命题与逆命题均为真命题的个数是1个;故选:A.【点评】主要考查命题与定理,用到的知识点是互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题,判断命题的真假关键是要熟悉课本中的性质定理.12.(3分)(2014•包头)关于x的一元二次方程x2+2(m﹣1)x+m2=0的两个实数根分别为x1,x2,且x1+x2>0,x1x2>0,则m的取值范围是()A.m≤ B.m≤且m≠0 C.m<1 D.m<1且m≠0【分析】先由根的判别式可得方程有两个实数根则△≥0,根据根与系数的关系得出x1+x2=﹣2(m ﹣1),x1x2=m2,再由x1+x2>0,x1x2>0,解出不等式组即可.【解答】解:∵△=[2(m﹣1)]2﹣4m2=﹣8m+4≥0,∴m≤,∵x1+x2=﹣2(m﹣1)>0,x1x2=m2>0∴m<1,m≠0∴m≤且m≠0.故选:B.【点评】此题考查了根的判别式和根与系数的关系,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根,根与系数的关系是x 1+x2=﹣,x 1x2=.二、填空题(本大题共8小题,每小题3分,共24分)13.(3分)(2014•包头)计算:﹣=.【分析】首先化简二次根式进而合并同类二次根式进而得出答案.【解答】解:﹣=×2﹣×=﹣=.故答案为:.【点评】此题主要考查了二次根式的加减运算,正确化简二次根式是解题关键.14.(3分)(2014•包头)如图,已知∠1=∠2,∠3=73°,则∠4的度数为107度.【分析】根据已知一对同位角相等,利用同位角相等两直线平行得到a与b平行,利用两直线平行同旁内角互补得到一对角互补,再利用对顶角相等即可确定出∠4的度数.【解答】解:∵∠1=∠2,∴a∥b,∴∠5+∠3=180°,∵∠4=∠5,∠3=73°,∴∠4+∠3=180°,则∠4=107°.故答案为:107【点评】此题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.15.(3分)(2014•包头)某学校举行演讲比赛,5位评委对某选手的打分如下(单位:分)9.5,9.4,9.4,9.5,9.2,则这5个分数的平均分为9.4分.【分析】根据加权平均数的计算公式列出算式,再进行计算即可.【解答】解:这5个分数的平均分为(9.5×2+9.4×2+9.2)÷5=9.4;故答案为:9.4.【点评】此题考查了加权平均数,用到的知识点是加权平均数的计算公式,关键是根据公式列出算式.16.(3分)(2014•包头)计算:(x+1)2﹣(x+2)(x﹣2)=2x+5.【分析】原式第一项利用完全平方公式展开,第二项利用平方差公式化简,去括号合并即可得到结果.【解答】解:原式=x2+2x+1﹣x2+4=2x+5.故答案为:2x+5.【点评】此题考查了完全平方公式,以及平方差公式,熟练掌握公式是解本题的关键.17.(3分)(2014•包头)方程﹣=0的解为x=2.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:3x﹣3﹣x﹣1=0,解得:x=2,经检验x=2是分式方程的解.故答案为:2【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.18.(3分)(2014•包头)如图,AB是⊙O的直径,BC是弦,点E是的中点,OE交BC于点D.连接AC,若BC=6,DE=1,则AC的长为8.【分析】连接OC,根据圆心角与弧之间的关系可得∠BOE=∠COE,由于OB=OC,根据等腰三角形的性质可得OD⊥BC,BD=CD.在直角三角形BDO中,根据勾股定理可求出OB,进而求出OD长,再根据三角形中位线定理可得AC的长.【解答】解:连接OC,如图所示.∵点E是的中点,∴∠BOE=∠COE.∵OB=OC,∴OD⊥BC,BD=DC.∵BC=6,∴BD=3.设⊙O的半径为r,则OB=OE=r.∵DE=1,∴OD=r﹣1.∵OD⊥BC即∠BDO=90°,∴OB2=BD2+OD2.∵OB=r,OD=r﹣1,BD=3,∴r2=32+(r﹣1)2.解得:r=5.∴OD=4.∵AO=BO,BD=CD,∴OD=AC.∴AC=8.【点评】本题考查了在同圆或等圆中等弧所对的圆心角相等、等腰三角形的性质、勾股定理、三角形中位线定理等知识,有一定的综合性.19.(3分)如图,在平面直角坐标系中,Rt△ABO 的顶点O与原点重合,顶点B在x轴上,∠ABO=90°,OA与反比例函数y=的图象交于点D,且OD=2AD,过点D作x轴的垂线交x 轴于点C.若S四边形ABCD=10,则k的值为﹣16.【分析】证△DCO∽△ABO,推出===,求出=()2=,求出S△ODC=8,根据三角形面积公式得出OC×CD=8,求出OC×CD=16即可.【解答】解:∵OD=2AD,∴=,∵∠ABO=90°,DC⊥OB,∴AB∥DC,∴△DCO∽△ABO,∴===,∴=()2=,∵S四边形ABCD=10,∴S△ODC=8,∴OC×CD=8,OC×CD=16,∵双曲线在第二象限,∴k=﹣16,故答案为:﹣16.【点评】本题考查了反比例函数图象上点的坐标特征,相似三角形的性质和判定的应用,解此题的关键是求出△ODC的面积.20.(3分)(2014•包头)如图,在矩形ABCD 中,点E为AB的中点,EF⊥EC交AD于点F,连接CF(AD>AE),下列结论:①∠AEF=∠BCE;②AF+BC>CF;③S△CEF=S△EAF+S△CBE;④若=,则△CEF≌△CDF.其中正确的结论是①③④.(填写所有正确结论的序号)【分析】根据同角的余角相等可得∠AEF=∠BCE,判断出①正确,然后求出△AEF 和△BCE相似,根据相似三角形对应边成比例可得=,然后根据两组边对边对应成比例,两三角形相似求出△AEF和△ECF,再根据相似三角形对应角相等可得∠AFE=∠EFC,过点E 作EH⊥FC于H,根据角平分线上的点到角的两边距离相等可得AE=HE,利用“HL”证明△AEF和△HEF,根据全等三角形对应边相等可得AF=FH,同理可得BC=CH,然后求出AF+BC=CF,判断出②错误;根据全等三角形的面积相等可得S△CEF=S△EAF+S△CBE,判断出③正确;根据锐角三角函数的定义求出∠BCE=30°,然后求出∠DCF=∠ECF=30°,再利用“角角边”证明即可.【解答】解:∵EF⊥EC,∴∠AEF+∠BEC=90°,∵∠BEC+∠BCE=90°,∴∠AEF=∠BCE,故①正确;又∵∠A=∠B=90°,∴△AEF∽△BCE,∴=,∵点E是AB的中点,∴AE=BE,∴=,又∵∠A=∠CEF=90°,∴△AEF∽△ECF,∴∠AFE=∠EFC,过点E作EH⊥FC于H,则AE=HE,在△AEF和△HEF中,,∴△AEF≌△HEF(HL),∴AF=FH,同理可得△BCE≌△HCE,∴BC=CH,∴AF+BC=CF,故②错误;∵△AEF≌△HEF,△BCE≌△HCE,∴S△CEF=S△EAF+S△CBE,故③正确;若=,则cot∠BCE=====2×=,∴∠BCE=30°,∴∠DCF=∠ECF=30°,在△CEF和△CDF中,,∴△CEF≌△CDF(AAS),故④正确,综上所述,正确的结论是①③④.故答案为:①③④.【点评】本题考查了矩形的性质,全等三角形的判定与性质,相似三角形的判定与性质,解直角三角形,熟记各性质是解题的关键,难点在于求出△AEF和△ECF相似并得到∠AFE=∠EFC.三、解答题(本大题共6小题,共60分)21.(8分)(2014•包头)有四张正面分别标有数字2,1,﹣3,﹣4的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上,洗匀后从四张卡片中随机地摸取一张不放回,将该卡片上的数字记为m,再随机地摸取一张,将卡片上的数字记为n.(1)请画出树状图并写出(m,n)所有可能的结果;(2)求所选出的m,n能使一次函数y=mx+n 的图象经过第二、三、四象限的概率.【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)首先可得所选出的m,n能使一次函数y=mx+n的图象经过第二、三四象限的有:(﹣3,﹣4),(﹣4,﹣3),再利用概率公式即可求得答案.【解答】解:(1)画树状图得:则(m,n)共有12种等可能的结果:(2,1),(2,﹣3),(2,﹣4),(1,2),(1,﹣3),(1,﹣4),(﹣3,2),(﹣3,1),(﹣3,﹣4),(﹣4,2),(﹣4,1),(﹣4,﹣3);(2)∵所选出的m,n能使一次函数y=mx+n 的图象经过第二、三四象限的有:(﹣3,﹣4),(﹣4,﹣3),∴所选出的m,n能使一次函数y=mx+n的图象经过第二、三四象限的概率为:=.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.22.(8分)(2014•包头)如图,在梯形ABCD 中,AD∥BC,∠ABC=90°,∠BCD=45°,点E在BC上,且∠AEB=60°.若AB=2,AD=1,求CD和CE的长.(注意:本题中的计算过程和结果均保留根号)【分析】过点D作DF⊥BC,根据∠BCD=45°,得DF=CF,再由AB=2,可得DF=CF=2,由勾股定理得CD的长,因为AD=1,所以BC=2+1,根据∠AEB=60°,可得BE,进而得出CE的长.【解答】解:过点D作DF⊥BC,∵AD∥BC,∠ABC=90°,∴四边形ABFD为矩形,∵∠BCD=45°,∴DF=CF,∵AB=2,∴DF=CF=2,∴由勾股定理得CD=2;∵AD=1,∴BF=1,∴BC=2+1,∵∠AEB=60°,∴tan60°=,∴=,∴BE=2,∴CE=BC﹣BE=2+1﹣2=2﹣1.【点评】本题考查了梯形的计算以及勾股定理,是基础知识要熟练掌握.23.(10分)(2014•包头)甲、乙两个商场出售相同的某种商品,每件售价均为3000元,并且多买都有一定的优惠.甲商场的优惠条件是:第一件按原售价收费,其余每件优惠30%;乙商场的优惠条件是:每件优惠25%.设所买商品为x件时,甲商场收费为y1元,乙商场收费为y2元.(1)分别求出y1,y2与x之间的关系式;(2)当甲、乙两个商场的收费相同时,所买商品为多少件?(3)当所买商品为5件时,应选择哪个商场更优惠?请说明理由.【分析】(1)根据两家商场的优惠方案分别列式整理即可;(2)根据收费相同,列出方程求解即可;(3)根据函数解析式分别求出x=5时的函数值,即可得解.【解答】解:(1)当x=1时,y1=3000;当x>1时,y1=3000+3000(x﹣1)×(1﹣30%)=2100x+900.∴y1=;y2=3000x(1﹣25%)=2250x,∴y2=2250x;(2)当甲、乙两个商场的收费相同时,2100x+900=2250x,解得x=6,答:甲、乙两个商场的收费相同时,所买商品为6件;(3)x=5时,y1=2100x+900=2100×5+900=11400,y2=2250x=2250×5=11250,∵11400>11250,∴所买商品为5件时,应选择乙商场更优惠.【点评】本题考查了一次函数的应用,读懂题目信息,理解两家商场的优惠方案是解题的关键.24.(10分)(2014•包头)如图,已知AB,AC 分别是⊙O的直径和弦,点G为上一点,GE⊥AB,垂足为点E,交AC于点D,过点C 的切线与AB的延长线交于点F,与EG的延长线交于点P,连接AG.(1)求证:△PCD是等腰三角形;(2)若点D为AC的中点,且∠F=30°,BF=2,求△PCD的周长和AG的长.【分析】(1)连结OC,根据切线的性质得∠OCP=90°,即∠1+∠PCD=90°,由GE⊥AB 得∠GEA=90°,则∠2+∠ADE=90°,利用∠1=∠2得到∠PCD=∠ADE,根据对顶角相等得∠ADE=∠PDC,所以∠PCD=∠PDC,于是根据等腰三角形的判定定理得到△PCD是等腰三角形;(2)连结OD,BG,在Rt△COF中根据含30度的直角三角形三边的关系可计算出OC=2,由于∠FOC=90°﹣∠F=60°,根据三角形外角性质可计算出∠1=∠2=30°,则∠PCD=90°﹣∠1=60°,可判断△PCD为等边三角形;再由D为AC的中点,根据垂径定理得到OD⊥AC,AD=CD,在Rt△OCD中,可计算出OD=OC=1,CD=OD=,所以△PCD的周长为3;然后在Rt△ADE中,计算出DE=AD=,AE=DE=,根据圆周角定理由AB为直径得到∠AGB=90°,再证明Rt△AGE∽Rt△ABG,利用相似比可计算出AG.【解答】(1)证明:连结OC,如图,∵PC为⊙O的切线,∴OC⊥PC,∴∠OCP=90°,即∠1+∠PCD=90°,∵GE⊥AB,∴∠GEA=90°,∴∠2+∠ADE=90°,∵OA=OC,∴∠1=∠2,∴∠PCD=∠ADE,而∠ADE=∠PDC,∴∠PCD=∠PDC,∴△PCD是等腰三角形;(2)解:连结OD,BG,如图,在Rt△COF中,∠F=30°,BF=2,∴OF=2OC,即OB+2=2OC,而OB=OC,∴OC=2,∵∠FOC=90°﹣∠F=60°,∴∠1=∠2=30°,∴∠PCD=90°﹣∠1=60°,∴△PCD为等边三角形,∵D为AC的中点,∴OD⊥AC,∴AD=CD,在Rt△OCD中,OD=OC=1,CD=OD=,∴△PCD的周长为3;在Rt△ADE中,AD=CD=,∴DE=AD=,AE=DE=,∵AB为直径,∴∠AGB=90°,而∠GAE=∠BAG,∴Rt△AGE∽Rt△ABG,∴AG:AB=AE:AG,∴AG 2=AE•AB=×4=6,∴AG=.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了等腰三角形的判定、垂径定理、圆周角定理和三角形相似的判定与性质.25.(12分)(2014•包头)如图,已知∠MON=90°,A是∠MON内部的一点,过点A作AB⊥ON,垂足为点B,AB=3厘米,OB=4厘米,动点E,F同时从O点出发,点E以1.5厘米/秒的速度沿ON方向运动,点F以2厘米/秒的速度沿OM方向运动,EF与OA交于点C,连接AE,当点E到达点B时,点F随之停止运动.设运动时间为t秒(t>0).(1)当t=1秒时,△EOF与△ABO是否相似?请说明理由;(2)在运动过程中,不论t取何值时,总有EF⊥OA.为什么?(3)连接AF,在运动过程中,是否存在某一时刻t,使得S △AEF=S四边形AEOF?若存在,请求出此时t 的值;若不存在,请说明理由.【分析】(1)运用=和夹角相等,得出△EOF∽△ABO.(2)证明Rt△EOF∽Rt△ABO,进而证明EF⊥OA.(3)根据S△AEF=S梯形ABOF﹣S△FOE﹣S△ABE以及S四边形AEOF=S ﹣S△ABE可得到S△AEF与S四边形AEOF关于t的表达梯形ABOF式,进而可求出t的值.【解答】解:(1)∵t=1,∴OE=1.5厘米,OF=2厘米,∵AB=3厘米,OB=4厘米,∴==,==∵∠MON=∠ABE=90°,∴△EOF∽△ABO.(2)在运动过程中,OE=1.5t,OF=2t.∵AB=3,OB=4.∴.又∵∠EOF=∠ABO=90°,∴Rt△EOF∽Rt△ABO.∴∠AOB=∠EFO.∵∠AOB+∠FOC=90°,∴∠EFO+∠FOC=90°,∴EF⊥OA.(3)如图,连接AF,∵OE=1.5t,OF=2t,∴BE=4﹣1.5t∴S △FOE=OE•OF=×1.5t×2t=t2,S △ABE=×(4﹣1.5t)×3=6﹣t,S 梯形ABOF=(2t+3)×4=4t+6,∴S △AEF=S梯形ABOF﹣S△FOE﹣S△ABE=4t+6﹣t2﹣(6﹣t)=﹣t 2+t,S 四边形AEOF=S梯形ABOF﹣S△ABE=4t+6﹣(6﹣t)=t,∵S △AEF=S四边形AEOF∴﹣t 2+t=×t,(0<t<)解得t=或t=0(舍去).∴当t=时,S △AEF=S四边形AEOF.【点评】本题主要考查了相似形综合题,解题的关键是利用S △AEF=S四边形AEOF求t的值.26.(12分)(2014•包头)已知抛物线y=ax2+x+c (a≠0)经过A(﹣1,0),B(2,0)两点,与y轴相交于点C,该抛物线的顶点为点M,对称轴与BC相交于点N,与x轴交于点D.(1)求该抛物线的解析式及点M的坐标;(2)连接ON,AC,证明:∠NOB=∠ACB;(3)点E是该抛物线上一动点,且位于第一象限,当点E到直线BC的距离为时,求点E的坐标;(4)在满足(3)的条件下,连接EN,并延长EN交y轴于点F,E、F两点关于直线BC对称吗?请说明理由.【分析】方法一:(1)利用待定系数法即可求得解析式,把解析式转化成顶点式即可求得顶点坐标.(2)根据有两组对应边对应成比例且夹角相等即可求得△ABC∽△NBO,由三角形相似的性质即可求得.(3)作EQ⊥BC于Q,根据抛物线的解析式先设出E点的坐标,然后根据两直线垂直的性质求得Q点的坐标,根据勾股定理即可求得.(4)先求得直线EF的解析式,即可求得BC⊥EF,根据勾股定理求得EN=FN,即可判定E、F两点关于直线BC对称.方法二:(1)略.(2)欲证∠NOB=∠ACB,只需证明AB:BC=BN:OB,因此分别求出AB,BC,BN,OB的长度即可.(3)利用面积公式可求出点E的坐标.(4)求出点E,F,N坐标,再利用中点公式得出对称.【解答】方法一:解:(1)∵抛物线y=ax2+x+c(a≠0)经过A(﹣1,0),B(2,0)两点,∴,解得.∴抛物线为y=﹣x2+x+2;∴抛物线为y=﹣x 2+x+2=﹣(x﹣)2+,∴顶点M(,).(2)如图1,∵A(﹣1,0),B(2,0),C(0,2),∴直线BC为:y=﹣x+2,当x=时,y=,∴N(,),∴AB=3,BC=2,OB=2,BN==,。
2014年呼和浩特市中考数学试卷及答案1往年数学知识点

2014年 呼 和 浩 特 市 中 考 试 卷数学参考答案及评分标准一、选择题1.C 2.D 3.A 4.B 5.B6.C 7.D 8.C 9.B 10.C二、填空题11.160° 12.1.6 13.63°或27°14.–y(3x –y)2 15.8 16.①三、计算题17.(1)解:原式=2 × 32 + 13–2+ 12 ··············································· 3分 = 3–(3+2) + 12····················································· 4分 = –32········································································· 5分 (2)解:去分母得3x 2–6x –x 2–2x = 0 ······································································· 1分 2x 2 –8x = 0 ·················································································· 2分 ∴ x = 0或x = 4 ············································································ 3分 经检验:x = 0是增根∴ x = 4是原方程的解 ···································································· 5分18.解:过点P 作PD ⊥AB 于D ································································ 1分 由题意知∠DPB = 45°在Rt ΔPBD 中,sin 45° = PD PB ∴ PB =2PD ··················································································· 2分 ∵ 点A 在P 的北偏东65°方向上∴ ∠APD = 25°在Rt ΔPAD 中cos 25° = PD PA∴ PD = PA cos 25° = 80 cos 25° ··························································· 5分∴ PB = 80 2 cos 25° ······································································ 6分19.解:⎩⎪⎨⎪⎧–2x +3≥–3…………………①12(x –2a)+12 x < 0……………② 解①得:x ≤3··················································································· 1分 解②得:x < a ·················································································· 2分 ∵ a 是不等于3的常数∴ 当a > 3时,不等式组的解集为x ≤3 ················································· 4分 当a < 3时,不等式组的解集为x < a················································· 5分20.解:(1)中位数落在第四组 ······························································· 1分由此可以估计初三学生60秒跳绳在120个以上的人数达到一半以上 ············ 3分(2)x = 2×70+10×90+12×110+13×130+10×150+3×17050≈121 ··· 6分 (3)记第一组的两名学生为A 、B ,第六组的三名学生为1、2、3 ············· 7分 则从这5名学生中抽取两名学生有以下10种情况:AB ,A1,A2,A3,B1,B2,B3,12,13,23∴ P = 410 = 25················································································ 9分 21.证明:(1)∵ 四边形ABCD 是矩形∴ AD=BC AB=CD又∵ AC 是折痕∴ BC = CE = AD ············································································ 1分 AB = AE = CD ············································································ 2分 又DE = ED∴ ΔADE ≌ΔCED ········································································· 3分(2)∵ ΔADE ≌ΔCED∴ ∠EDC =∠DEA又ΔACE 与ΔACB 关于AC 所在直线对称∴ ∠OAC =∠CAB而∠OCA =∠CAB∴ ∠OAC =∠OCA ··········································································· 5分 ∴ 2∠OAC = 2∠DEA ······································································· 6分∴ ∠OAC =∠DEA∴ DE ∥AC ····················································································· 7分22.解:设基本电价为x 元/千瓦时,提高电价为y 元/千瓦时··························· 1分由题意得:⎩⎪⎨⎪⎧180x +150y=213180x +60y =150 ·········································································· 3分 解之得:⎩⎨⎧x=0.6y=0.7·············································································· 4分 ∴ 4月份的电费为:160×0.6=96元5月份的电费为:180×0.6+230×0.7 = 108+161 = 269元答:这位居民4、5月份的电费分别为96元和269元. ···························· 7分23.解:(1)∵ y = k x过(1,4)点 ∴ k = 4,反比例函数解析式为y = 4x·················································· 1分 (2)∵ B (m ,n ) A (1,4)∴ AC = 4–n ,BC = m –1,ON = n ,OM = 1 ········································· 2分∴ AC ON = 4–n n = 4n–1 而B (m ,n )在y = 4x上 ∴ 4n= m ∴ AC ON= m –1 而 BC OM = m –11∴ AC ON = BC OM················································································· 4分 又∵ ∠ACB =∠NOM = 90°∴ ΔACB ∽ΔNOM ·········································································· 5分(3)∵ ΔACB 与ΔNOM 的相似比为2∴ m –1 = 2∴ m = 3∴ B 点坐标为(3,43) ····································································· 6分 设AB 所在直线的解析式为y = kx +b∴ ⎩⎪⎨⎪⎧43 = 3k +b 4 = k +b∴ k = –43 b = 163∴ 解析式为y = –43 x +163······························································· 8分 24.证明:(1)连接OC ········································································· 1分∵ AB 为⊙O 的直径∴ ∠ACB = 90°∴ ∠ABC +∠BAC = 90°又∵ CM 是⊙O 的切线∴ OC ⊥CM∴ ∠ACM +∠ACO = 90° ······························································ 2分 ∵ CO = AO∴ ∠BAC =∠ACO∴ ∠ACM =∠ABC ··········································································· 3分(2)∵ BC = CD∴ OC ∥AD又∵ OC ⊥CE∴ AD ⊥CE∴ ΔAEC 是直角三角形∴ ΔAEC 的外接圆的直径为AC ························································· 4分 又∵ ∠ABC +∠BAC = 90°∠ACM +∠ECD = 90°而∠ABC =∠ACM∴ ∠BAC =∠ECD又∠CED =∠ACB = 90°∴ ΔABC ∽ΔCDE∴ AB CD = BC ED而⊙O 的半径为3∴ AB = 6∴ 6CD = BC 2∴ BC 2 = 12∴ BC = 2 3 ·················································································· 6分 在Rt ΔABC 中∴ AC = 36–12 = 2 6 ·································································· 7分 ∴ ΔAEC 的外接圆的半径为 6 ························································· 8分25.解:(1)∵ y = ax 2+bx +2经过点B 、D∴ ⎩⎪⎨⎪⎧4a +2b +2 = 0a +b +2 = 54 解之得:a =–14,b =–12∴ y =–14 x 2 –12x +2 ······································································· 2分 ∵ A (m ,0)在抛物线上∴ 0 =–14 m 2 –12m +2 解得:m =–4∴ A (–4,0) ··············································································· 3分 图像(略)······················································································ 4分(2)由题设知直线l 的解析式为y = 12x –1 ∴ S = 12AB ·PF = 12×6·PF = 3(–14 x 2 –12 x +2+1–12x ) ·················································· 5分 = –34x 2 –3x +9 = –34(x +2)2 +12 ·································································· 6分 其中–4 < x < 0 ················································································ 7分 ∴ S 最大= 12,此时点P 的坐标为(–2,2) ·········································· 9分(3)∵ 直线PB 过点P (–2,2)和点B (2,0)∴ PB 所在直线的解析式为y =–12x +1 ············································· 10分 设Q (a ,12 a –1)是y = 12x –1上的任一点则Q 点关于x 轴的对称点为(a ,1–12a ) 将(a ,1–12 a )代入y =–12x +1显然成立 ·········································· 11分 ∴ 直线l 上任意一点关于x 轴的对称点一定在PB 所在的直线上 ··············· 12分 注:本卷中各题如有不同解法,可依据情况酌情给分。
2014年呼和浩特市中考数学参考答案

2014 年 呼 和 浩 特 市 中 考 试 卷 数学参考答案及评分标准
一、选择题 1.C 2.D 6.C 7.D 二、填空题 11.160° 14.–y(3x–y)2 三、计算题 17.(1)解:原式=2 × = 3 + 2 1 1 + · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·3 分 2 3–2 1 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 4分 2
3.A 8.C 12.1.6 15.8
ห้องสมุดไป่ตู้
4.B 9.B
5.B 10.C 13.63° 或 27° 16.①
–2x+3≥–3…………………① 19.解:1 1 2 (x–2a)+2 x < 0……………②
解①得:x≤3· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1分 解②得:x < a· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 2分 ∵ a 是不等于 3 的常数 ∴ 当 a > 3 时,不等式组的解集为 x≤3· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 4分 当 a < 3 时,不等式组的解集为 x < a· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 5分 20.解:(1)中位数落在第四组 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·1 分 由此可以估计初三学生 60 秒跳绳在 120 个以上的人数达到一半以上 · · · · · · · · · · · · 3分 (2) x = 2×70+10×90+12×110+13×130+10×150+3×170 ≈121 · · · 6分 50
2014年全国中考数学真题试卷3套卷(含答案解析) (18)

点 G.若∠1=40°,则∠EGF=( )
A.20°
B.40°
C.70°
5.(3 分)把 ax2﹣4axy+4ay2 分解因式正确的是( )
D.110°
A.a(x2﹣4xy+4y2)
B.a(x﹣4y)2
C.a(2x﹣y)2 6.(3 分)函数 y= +
D.a(x﹣2y)2 的自变量 x 的取值范围是( )
万表示为( )
A.3.61×108
B.361×106
C.3.61×104
D.361×102
3.(3 分)下列运算中,正确的是( )
A.a(a+1)=a2+1
B.(a2)3=a6
C.a3+4a3=5a6
D.a6÷a2=a3
4.(3 分)如图,AB∥CD,EF 交 AB、CD 于点 E、F、EG 平分∠BEF,交 CD 于
21.(8 分)反比例函数 y= 和 y= (k≠0)在第一象限内的图象如图所示,点 P 在 y= 的图象上,PC⊥x 轴,垂足为 C,交 y= 的图象于点 A,PD⊥y 轴, 垂足为 D,交 y= 的图象于点 B.已知点 A(m,1)为线段 PC 的中点.
(1)求 m 和 k 的值; (2)求四边形 OAPB 的面积.
第 4 页(共 30 页)
19.(8 分)在结束了 380 课时初中阶段数学内容的学习后,陈老师安排数学兴 趣小组自制一份满分 120 分的检测试卷,要求“数与代数”、“图形与几何”、“ 统计和概率”、“综合与实践”各部分内容所占的分值与其所用的课时比保持一 致,陈老师根据数学内容所用课时比例绘制了如图的统计表,请根据图标提 供的信息,解答下列问题:
A.﹣4≤x<2 B.x>2
内蒙古赤峰二中2014-2015学年高一上学期第二次月考数学(文)试题Word版无答案

赤峰二中2014级高一上学期第二次月考文科数学试题一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共60分)。
1. 把-1 485°转化为α+k·360°(0°≤α<360°,k ∈Z)的形式是( )A .45°-4×360°B .-45°-4×360°C .-45°-5×360°D .315°+(-5)×360°2. 函数y =x-1的零点是( ).A .0B .(0,0)C .(1,0)D .13. 函数12x y +=的图象是 ( )4. 已知3()log f x x =,则f = ( )A.12 B.13 C.35. 函数 ()(1)x f x a =+是R 上的减函数,则a 的取值范围是( )A .0a <B .10a -<<C .01a <<D .1a <-6. 下列判断正确的是( )A .35.27.17.1>B .328.08.0<C .22ππ<D .3.03.09.07.1>7. 函数214log (23)y x x =+-的单调递增区间是( )A .[)1,3B .(]1,1- C. ()1,∞- D. ()+∞,18. 若函数m y x +=-|1|)21(的图象与x 轴有公共点,则m 的取值范围是( )A .m ≤-1B .-1≤m<0C .m ≥1D .0<m ≤19. 在下列区间中,函数()43x f x e x =+-的零点所在的区间为( )A.1,04⎛⎫- ⎪⎝⎭B. 10,4⎛⎫ ⎪⎝⎭C. 11,42⎛⎫ ⎪⎝⎭D.13,24⎛⎫ ⎪⎝⎭ 10. 已知函数22,2,()3,2,x f x x x x ⎧≥⎪=⎨⎪-<⎩若关于x 的方程()f x k =有三个不等的实根,则实数k 的取值范围是( )A.(3,1)-B. (0,1)C. (2,2)-D. (0,)+∞11. 已知函数)(x f 是R 上的增函数,(0,2)-A ,(3,2)B 是其图象上的两点,那么2|)1(|<+x f 的解集是 ( )A .(1,4)B .(-1,2)C .),4[)1,(+∞⋃-∞D .),2[)1,(+∞⋃--∞12.某同学为了研究函数)10()1(11)(22≤≤-+++=x x x x f 的性质,构造了如图所示的两个边长为1的正方形ABCD 和BEFC ,点P 是边BC 上的一个动点,设x CP =,则PF AP x f +=)(.那么,可推知方程222)(=x f 解的个数是 ( ) A .0. B .1. C .2. D .4.二、填空题:(每小题5分,共20分)。
2024年内蒙古自治区赤峰市中考数学试题(含解析)

2024年赤峰市初中毕业、升学统一考试试卷数学温馨提示:1.本试卷卷面分值150分,共8页,考试时间120分钟.2.答题前,考生务必将姓名、座位号、考生号填写在答题卡的相应位置上,并仔细阅读答题卡上的“注意事项”.3.答题时,请将答案填涂在答题卡上,写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.一、选择题(每小题给出的选项中只有一个符合题意,请将符合题意的选项序号,在答题卡的对应位置上按要求涂黑.每小题3分,共42分)1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A. B. C. D.2.央视新闻2024年5月31日报道,世界最大清洁能源走廊今年一季度累计发电超52000000000度,为我国经济社会绿色发展提供了强劲动能.将数据52000000000用科学记数法表示为()A.95.210⨯ B.110.5210⨯ C.95210⨯ D.105.210⨯3.将一副三角尺如图摆放,使有刻度的两条边互相平行,则1∠的大小为()A.100︒B.105︒C.115︒D.120︒4.下列计算正确的是()A.235a a a+= B.222()a b a b+=+ C.632a a a÷= D.()236a a=5.在数据收集、整理、描述的过程中,下列说法错误..的是()A.为了解1000只灯泡的使用寿命,从中抽取50只进行检测,此次抽样的样本容量是50B.了解某校一个班级学生的身高情况,适合全面调查C.了解商场的平均日营业额,选在周末进行调查,这种调查不具有代表性D.甲、乙二人10次测试的平均分都是96分,且方差2 2.5S=甲,2 2.3S=乙,则发挥稳定的是甲6.解不等式组()322211x x x x -<⎧⎪⎨+≥-⎪⎩①②时,不等式①和不等式②的解集在数轴上表示正确的是()A.B.C.D.7.如图,是正n 边形纸片的一部分,其中l m ,是正n 边形两条边的一部分,若l m ,所在的直线相交形成的锐角为60︒,则n 的值是()A.5B.6C.8D.108.某市为了解初中学生的视力情况,随机抽取200名初中学生进行调查,整理样本数据如下表.根据抽样调查结果,估计该市16000名初中学生中,视力不低于4.8的人数是()视力 4.7以下 4.7 4.8 4.9 4.9以上人数3941334047A.120B.200C.6960D.96009.等腰三角形的两边长分别是方程210210x x -+=的两个根,则这个三角形的周长为()A.17或13B.13或21C.17D.1310.如图,AD 是O 的直径,AB 是O 的弦,半径OC AB ⊥,连接CD ,交OB 于点E ,42BOC ∠=︒,则OED ∠的度数是()A.61︒B.63︒C.65︒D.67︒11.用1块A 型钢板可制成3块C 型钢板和4块D 型钢板;用1块B 型钢板可制成5块C 型钢板和2块D 型钢板.现在需要58块C 型钢板、40块D 型钢板,问恰好用A 型钢板、B 型钢板各多少块?如果设用A 型钢板x 块,用B 型钢板y 块,则可列方程组为()A.32404558x y x y +=⎧⎨+=⎩ B.35404258x y x y +=⎧⎨+=⎩ C.35584240x y x y +=⎧⎨+=⎩ D.34585240x y x y +=⎧⎨+=⎩12.如图,ABC 中,1AB BC ==,72C ∠=︒.将ABC 绕点A 顺时针旋转得到AB C ''△,点B'与点B 是对应点,点C '与点C 是对应点.若点C '恰好落在BC 边上,下列结论:①点B 在旋转过程中经过的路径长是15π;②B B A C '∥;③BD C D '=;④AB B B AC BD'=.其中正确的结论是()A.①②③④B.①②③C.①③④D.②④13.如图,数轴上点A ,M ,B 分别表示数a a bb +,,,若AM BM >,则下列运算结果一定是正数的是()A.a b +B.a b -C.abD.a b-14.如图,正方形ABCD 的顶点A ,C 在抛物线24y x =-+上,点D 在y 轴上.若A C ,两点的横坐标分别为m n ,(0m n >>),下列结论正确的是()A.1m n +=B.1m n -=C.1mn = D.1mn=二、填空题(请把答案填写在答题卡对应的横线上.每小题3分,共12分)15.请写出一个比小的整数_____________16.因式分解:233am a -=______.17.综合实践课上,航模小组用无人机测量古树AB 的高度.如图,点C 处与古树底部A 处在同一水平面上,且10AC =米,无人机从C 处竖直上升到达D 处,测得古树顶部B 的俯角为45︒,古树底部A 的俯角为65︒,则古树AB 的高度约为________米(结果精确到0.1米;参考数据:sin 650.906︒≈,cos650.423︒≈,tan 65 2.145︒≈).18.编号为A ,B ,C ,D ,E 的五台收割机,若同时启动其中两台收割机,收割面积相同的田地所需时间如下表:收割机编号A ,B B ,C C ,D D ,E A ,E 所需时间(小时)2319202218则收割最快的一台收割机编号是________.三、解答题(在答题卡上解答,答在本试卷上无效,解答时要写出必要的文字说明、证明过程或演算步骤.共8题,满分96分)19.(1()0π12sin 602+++︒+-;(2)已知230a a --=,求代数式2(2)(1)(3)a a a -+-+的值.20.如图,在ABC 中,D 是AB 中点.(1)求作:AC 的垂直平分线l (要求:尺规作图,不写作法,保留作图痕迹);(2)若l 交AC 于点E ,连接DE 并延长至点F ,使2EF DE =,连接BE CF ,.补全图形,并证明四边形BCFE 是平行四边形.21.某校田径队为了调动队员体育训练的积极性,计划根据成绩情况对队员进行奖励.为确定一个适当的成绩目标,进行了体育成绩测试,统计了每个队员的成绩,数据如下:收集数据777876728475918578798278767991917674758575918077757587857677整理、描述数据成绩/分72747576777879808284858791人数/人11a433b111314分析数据样本数据的平均数、众数、中位数如下表:平均数众数中位数80c78解决问题(1)表格中的=a ______;b =______;c =______;(2)分析平均数、众数、中位数这三个数据,如果想让一半左右的队员都能达到成绩目标,你认为成绩目标应定为______分,如果想确定一个较高的成绩目标,这个成绩目标应定为______分;(3)学校要从91分的A ,B ,C ,D 四名队员中,随机抽取两名队员去市里参加系统培训.请利用画树状图法或列表法,求A ,B 两名队员恰好同时被选中的概率.22.一段高速公路需要修复,现有甲、乙两个工程队参与施工,已知乙队平均每天修复公路比甲队平均每天修复公路多3千米,且甲队单独修复60千米公路所需要的时间与乙队单独修复90千米公路所需要的时间相等.(1)求甲、乙两队平均每天修复公路分别是多少千米;(2)为了保证交通安全,两队不能同时施工,要求甲队的工作时间不少于乙队工作时间的2倍,那么15天的工期,两队最多能修复公路多少千米?23.在平面直角坐标系中,对于点()11,M x y ,给出如下定义:当点()22,N x y ,满足1212x x y y +=+时,称点N 是点M 的等和点.(1)已知点()1,3M ,在()14,2N ,()23,1N -,()30,2N -中,是点M 等和点的有_____;(2)若点()3,2M -的等和点N 在直线y x b =+上,求b 的值;(3)已知,双曲线1ky x=和直线22y x =-,满足12y y <的x 取值范围是4x >或20x -<<.若点P 在双曲线1ky x=上,点P 的等和点Q 在直线22y x =-上,求点P 的坐标.24.如图,ABC 中,90ACB ∠=︒,AC BC =,O 经过B ,C 两点,与斜边AB 交于点E ,连接CO 并延长交AB 于点M ,交O 于点D ,过点E 作EF CD ∥,交AC 于点F .(1)求证:EF 是O 的切线;(2)若42BM =,1tan 2BCD ∠=,求OM 的长.25.如图,是某公园的一种水上娱乐项目.数学兴趣小组对该项目中的数学问题进行了深入研究.下面是该小组绘制的水滑道截面图,如图1,人从点A 处沿水滑道下滑至点B 处腾空飞出后落入水池.以地面所在的水平线为x 轴,过腾空点B 与x 轴垂直的直线为y 轴,O 为坐标原点,建立平面直角坐标系.他们把水滑道和人腾空飞出后经过的路径都近似看作是抛物线的一部分.根据测量和调查得到的数据和信息,设计了以下三个问题,请你解决.(1)如图1,点B 与地面的距离为2米,水滑道最低点C 与地面的距离为78米,点C 到点B 的水平距离为3米,则水滑道ACB 所在抛物线的解析式为______;(2)如图1,腾空点B 与对面水池边缘的水平距离12OE =米,人腾空后的落点D 与水池边缘的安全距离DE 不少于3米.若某人腾空后的路径形成的抛物线BD 恰好与抛物线ACB 关于点B 成中心对称.①请直接写出此人腾空后的最大高度和抛物线BD 的解析式;②此人腾空飞出后的落点D 是否在安全范围内?请说明理由(水面与地面之间的高度差忽略不计);(3)为消除安全隐患,公园计划对水滑道进行加固.如图2,水滑道已经有两条加固钢架,一条是水滑道距地面4米的点M 处竖直支撑的钢架MN ,另一条是点M 与点B 之间连接支撑的钢架BM .现在需要在水滑道下方加固一条支撑钢架,为了美观,要求这条钢架与BM 平行,且与水滑道有唯一公共点,一端固定在钢架MN 上,另一端固定在地面上.请你计算出这条钢架的长度(结果保留根号).26.数学课上,老师给出以下条件,请同学们经过小组讨论,提出探究问题.如图1,在ABC 中,AB AC =,点D 是AC 上的一个动点,过点D 作DE BC ⊥于点E ,延长ED 交BA 延长线于点F .请你解决下面各组提出的问题:(1)求证:AD AF =;(2)探究DF DE 与ADDC的关系;某小组探究发现,当13AD DC =时,23DF DE =;当45AD DC =时,85DF DE =.请你继续探究:①当76AD DC =时,直接写出DFDE 的值;②当AD m DC n =时,猜想DFDE的值(用含m ,n 的式子表示),并证明;(3)拓展应用:在图1中,过点F 作FP AC ⊥,垂足为点P ,连接CF ,得到图2,当点D 运动到使ACF ACB ∠=∠时,若AD m DC n =,直接写出APAD的值(用含m ,n 的式子表示).参考答案一、选择题(每小题给出的选项中只有一个符合题意,请将符合题意的选项序号,在答题卡的对应位置上按要求涂黑.每小题3分,共42分)1.【答案】A【解析】A .是轴对称图形,故A 选项正确;B .不是轴对称图形,故B 选项错误;C .不是轴对称图形,故C 选项错误;D .不是轴对称图形,故D 选项错误.故选:A .2.【答案】D【解析】解:1052000000000 5.210=⨯,故选:D .3.【答案】B【解析】解:如图所示:由题意得:3230∠=∠=︒∴1180345105∠=︒-∠-︒=︒故选:B .4.【答案】D【解析】解:A 、2a 与3a 不是同类项,不能合并,故此选项不符合题意;B 、()222222a b a ab b a b +=++≠+,故此选项不符合题意;C 、6332a a a a ÷=≠,故此选项不符合题意;D 、()236a a =,故此选项符合题意.故选:D .5.【答案】D【解析】解:A 、为了解1000只灯泡的使用寿命,从中抽取50只进行检测,此次抽样的样本容量是50,说法正确,本选项不符合题意;B 、了解某校一个班级学生的身高情况,适合全面调查,说法正确,本选项不符合题意;C 、了解商场的平均日营业额,选在周末进行调查,这种调查不具有代表性,说法正确,本选项不符合题意;D 、甲、乙二人10次测试的平均分都是96分,且方差22.5S =甲,22.3S =乙,则发挥稳定的是乙,故原说法错误,符合题意;故选:D .6.【答案】C【解析】解:()322211x x x x -<⎧⎪⎨+≥-⎪⎩①②解不等式①得,2x <,解不等式②得,3x ≥-,所以,不等式组的解集为:32x -≤<,在数轴上表示为:故选:C .7.【答案】B【解析】解:如图,直线l m 、相交于点A ,则60A ∠=︒,∵正多边形的每个内角相等,∴正多边形的每个外角也相等,∴1806012602︒-︒∠=∠==︒,∴360660n ︒==︒,故选:B.8.【答案】D 【解析】解:334047160009600200++⨯=,∴视力不低于4.8的人数是9600,故选:D .9.【答案】C【解析】解:由方程210210x x -+=得,13x =,27x =,∵337+<,∴等腰三角形的底边长为3,腰长为7,∴这个三角形的周长为37717++=,故选:C .10.【答案】B【解析】解:∵半径OC AB ⊥,∴ AC BC=,∴42AOC BOC ∠=∠=︒,84AOB ∠=︒,∵ AC AC=,∴1212D AOC ∠=∠=︒,∴63OED AOB D ∠=∠-∠=︒,故选:B .11.【答案】C【解析】解:设用A 型钢板x 块,用B 型钢板y 块,由题意得:35584240x y x y +=⎧⎨+=⎩,故选:C .12.【答案】A【解析】解:∵AB BC =,72C ∠=︒,∴72BAC C ∠=∠=︒,180236ABC C ∠︒=︒-∠=,由旋转的性质得36AB C ABC ︒'∠=∠=,72B AC BAC ︒''∠=∠=,72AC B C ''∠︒=∠=,72AC B ADC ︒''∠=∠=,AC AC '=,∴72AC C C '∠=∠=︒,∴36CAC '∠=︒,∴36CAC BAC ''∠=∠=︒,∴723636B AB '∠=︒-︒=︒,由旋转的性质得AB AB '=,∴()118036722ABB AB B ''∠=∠=︒-︒=︒,①点B 在旋转过程中经过的路径长是36111805ππ⋅=;①说法正确;②∵36B AB ABC '∠=∠=︒,∴B B A C '∥;②说法正确;③∵18027236DC B '∠=︒-⨯︒=︒,∴36DC B ABC '∠=∠=︒,∴BD C D '=;③说法正确;④∵36BB D ABC '∠=∠=︒,72B BD BAC '∠=∠=︒,∴B BD BAC '∽△△,∴AB B B AC BD'=.④说法正确;综上,①②③④都是正确的,故选:A .13.【答案】A【解析】解:数轴上点A ,M ,B 分别表示数a a bb +,,,∴AM a b a b =+-=、()BM b a b a =-+=-,∵AM BM >,∴原点在A ,M 之间,由它们的位置可得a<0,0b >且a b <,∴0a b +>,0a b -<,00ab a b <-<,,故运算结果一定是正数的是a b +.故选:A .14.【答案】B【解析】解:如图,连接AC 、BD 交于点E ,过点A 作MN y ⊥轴于点M ,过点B 作BN MN ⊥于点N ,四边形ABCD 是正方形,AC ∴、BD 互相平分,AB AD =,90BAD ∠=︒,90BAN DAM ∴∠+∠=︒,90DAM ADM ∠+∠=︒,BAN ADM ∴∠=∠.90BNA AMD ∠=∠=︒ ,BA AD =,(AAS)ANB DMA ∴ ≌.AM NB ∴=,DM AN =.点A 、C 的横坐标分别为m 、n ,24(,)A m m ∴+-,2()4,C n n -+.(2m n E +∴,2282m n -+-,2(0,)4M m +-,设(0,)D b ,则22(,)8B m n m n b ++---,2()4,N m n m ++-,24BN n b ∴=-+-,AM m =,AN n =,24DM m b =-+.又AM NB =,DM AN =,24n m b +--∴=,24n m b =-+.24b n m ∴=--+.2244n m n m ∴=---+.∴()()m n m n m n +-=+.点A 、C 在y 轴的同侧,且点A 在点C 的右侧,0m n ∴+≠.1m n ∴-=.故选:B .二、填空题(请把答案填写在答题卡对应的横线上.每小题3分,共12分)15.【答案】1(或2)【解析】23=<<= ,满足条件的数为小于或等于2的整数均可.16.【答案】()()311a m m +-【解析】解:()()()223331311am a a m a m m -=-=+-,故答案为:()()311a m m +-.17.【答案】11.5【解析】解:如图,过点D 作DM AB ⊥,交AB 的延长线于点M ,∴四边形ACDM 是矩形,∴10DM AC ==米,∵45BDM ∠=︒,65ADM ∠=︒,90M ∠=︒,∴BDM 是等腰直角三角形,∴10BM DM ==米,在Rt ADM △中,tan 10tan 6510 2.14521.45AM DM ADM =⋅∠=⋅︒≈⨯≈(米),∴21.451011.4511.5AB AM BM =-=-=≈(米),∴古树AB 的高度约为11.5米.故答案为:11.5.18.【答案】C【解析】解:同时启动A ,B 两台收割机,所需的时间为23小时,同时启动B ,C 两台收割机,所需的时间为19小时,得到C 比A 快;同时启动B ,C 两台收割机,所需的时间为19小时,同时启动C ,D 两台收割机,所需的时间为20小时,得到B 比D 快;同时启动A 、B 两台收割机,所需的时间为23小时,同时启动A ,E 两台收割机,所需的时间为18小时,得到E 比B 快;同时启动C ,D 两台收割机,所需的时间为20小时,同时启动D ,E 两台收割机,所需的时间为22小时,得到C 比E 快.综上,收割最快的一台收割机编号是C .故答案为:C .三、解答题(在答题卡上解答,答在本试卷上无效,解答时要写出必要的文字说明、证明过程或演算步骤.共8题,满分96分)19.【答案】(1)6;(2)7.【解析】解:(1)原式331222=++⨯+42=+-,6=;(2)∵230a a --=,∴23a a -=,∴()()()2213a a a -+-+224423a a a a =-+++-,2221a a =-+,()221a a =-+,231=⨯+,7=.20.【答案】(1)见解析(2)见解析【解析】【小问1详解】解:直线l 如图所示,;【小问2详解】证明:补全图形,如图,由(1)作图知,E 为AC 的中点,∵D ,E 分别为AB ,AC 的中点,∴DE BC ∥,12DE BC =,∵2EF DE =,即:12DE EF =,∴EF BC =,∵EF BC ∥,∴四边形BCFE 是平行四边形.21.【答案】(1)5;2;75(2)78;80(3)A ,B 两名队员恰好同时被选中的概率为16.【解析】【小问1详解】解:根据收集的数据知5a =;2b =;出现最多的是75分,有5人,众数为75分,则75c =;故答案为:5;2;75;【小问2详解】解:∵由统计图可知中位数为78分,∴如果想让一半左右的队员都能达到成绩目标,成绩目标应定为78分,如果想确定一个较高的目标,成绩目标应定为80分,因为在样本的众数,中位数和平均数中,平均数最大,可以估计,如果成绩目标定为80分,努力一下都能达到成绩目标.故答案为:78;80;【小问3详解】解:画树状图表示所有等可能结果如图所示,共有12种等可能结果,A ,B 两名队员恰好同时被选中的情况有2种,∴A ,B 两名队员恰好同时被选中的概率为21126==,答:A ,B 两名队员恰好同时被选中的概率为16.22.【答案】(1)甲队平均每天修复公路6千米,则乙队平均每天修复公路9千米;(2)15天的工期,两队最多能修复公路105千米.【解析】【小问1详解】解:设甲队平均每天修复公路x 千米,则乙队平均每天修复公路()3x +千米,由题意得60903x x =+,解得6x =,经检验,6x =是原方程的解,且符合题意,39x +=,答:甲队平均每天修复公路6千米,则乙队平均每天修复公路9千米;【小问2详解】解:设甲队的工作时间为m 天,则乙队的工作时间为()15m -天,15天的工期,两队能修复公路w 千米,由题意得()69153135w m m m =+-=-+,()215m m ≥-,解得10m ≥,∵30-<,∴w 随m 的增加而减少,∴当10m =时,w 有最大值,最大值为310135105w =-⨯+=,答:15天的工期,两队最多能修复公路105千米.23.【答案】(1)()14,2N 和()30,2N -;(2)5b =;(3)()4,2--或()2,4.【解析】【小问1详解】解:由()1,3M ,()14,2N 得,12125x x y y +=+=,∴点()14,2N 是点M 的等和点;由()1,3M ,()23,1N -得,124x x +=,122y y +=,∵1212x x y y +≠+,∴()23,1N -不是点M 的等和点;由()1,3M ,()30,2N -得,12121x x y y +=+=,∴()30,2N -是点M 的等和点;故答案为:()14,2N 和()30,2N -;【小问2详解】解:设点N 的横坐标为a ,∵点N 是点()3,2M -的等和点,∴点N 的纵坐标为()325a a +--=+,∴点N 的坐标为(),5a a +,∵点N 在直线y x b =+上,∴5a a b +=+,∴5b =;【小问3详解】解:由题意可得,0k >,双曲线分布在一、三象限内,设直线与双曲线的交点分别为点A B 、,如图,由12y y <时x 的取值范围是4x >或20x -<<,可得点A 的横坐标为4,点B 的横坐标为2-,把4x =代入2y x =-得,422y =-=,∴()4,2A ,把()4,2A 代入1k y x =得,24k =,∴8k =,∴反比例函数解析式为18y x =,设8,P m m ⎛⎫ ⎪⎝⎭,点Q 的横坐标为n ,∵点Q 是点P 的等和点,∴点Q 的纵坐标为8m n m +-,∴8,Q n m n m ⎛⎫+- ⎪⎝⎭,∵点Q 在直线22y x =-上,∴82m n n m +-=-,整理得,820m m -+=,去分母得,2280m m +-=,解得14m =-,12m =,经检验,4,2m m =-=是原方程的解,∴点P 的坐标为()4,2--或()2,4.24.【答案】(1)见解析(2)5OM =【解析】【小问1详解】证明:连接OE ,延长EO ,交O 于点P ,连接,,PD BD 如图,∵,90,AB BC ACB =∠=︒∴ABC 是等腰直角三角形,∴45,ABC ∠=︒∵CD 是O 的直径,∴90,CBD ∠=︒∴904545,DBE CBD ABC ∠=∠-∠=︒-︒=︒∴45,EPD DBE ∠=∠=︒∴224590,DOE DPE ∠=∠=⨯︒=︒∵,EF CD ∥∴90,FEO DOE ∠=∠=︒即,OE EF ⊥∵OE 是O 的半径,∴EF 是O 的切线;【小问2详解】解:∵90DBC ∠=︒,1tan 2BCD ∠=,∴12DB BC =,∵,BC AC =∴12DB AC =,∵,DMB CMA ∠=∠A DBM ∠=∠,∴DBM ACM ∽ ,∴12BM DM DB AM CM AC ===,∵BM =,∴2AM BM ==∴AB AM BM =+=+=,在等腰直角三角形ABC 中,222AC BC AB +=,∴(2222AC AC AB +==,解得,12AC =,∴12AC BC ==,∴16,2DB BC ==在t R BDC 中,CD ==∴CO DO ==又12DM CM =,∴2,CM DM =∴2DM DM CD +==∴DM =∴OM OD DM =-==25.【答案】(1)()217388y x =++(2)①此人腾空后的最大高度是258米,解析式为()2125388y x =--+;②此人腾空飞出后的落点D 在安全范围内,理由见解析(3)这条钢架的长度为米【解析】【小问1详解】解:根据题意得到水滑道ACB 所在抛物线的顶点坐标为73,8C ⎛⎫- ⎪⎝⎭,且过点()0,2B ,设水滑道ACB 所在抛物线的解析式为()2738y a x =++,将()0,2B 代入,得:()272038a =++,即998a =,18a ∴=,∴水滑道ACB 所在抛物线的解析式为()217388y x =++;【小问2详解】解:① 人腾空后的路径形成的抛物线BD 恰好与抛物线ACB 关于点B 成中心对称,则设人腾空后的路径形成的抛物线的解析式为()218y x b c =-++,∴人腾空后的路径形成的抛物线BD 的顶点坐标与抛物线ACB 的顶点坐标73,8C ⎛⎫- ⎪⎝⎭关于点()0,2B 成中心对称,()7250233,2288⨯--=⨯-=,∴人腾空后的路径形成的抛物线BD 的顶点坐标为253,8⎛⎫ ⎪⎝⎭,即253,8b c ==,∴此人腾空后的最大高度是258米,人腾空后的路径形成的抛物线BD 的解析式为:()2125388y x =--+;由①知人腾空后的路径形成的抛物线BD 的解析式为:()2125388y x =--+,令0y =,则()21253088x --+=,即()2325x -=∴8x =或2x =-(舍去,不符合题意),∴点()8,0D ,8OD ∴=,12OE =,43DE OE OD ∴=-=>,∴此人腾空飞出后的落点D 在安全范围内;【小问3详解】解:根据题意可得M 点的纵坐标为4,令()2173488y x =++=,即()2325x +=,2x ∴=(舍去,不符合题意)或8x =-,()8,4M ∴-,设BM 所在直线的解析式为y kx b '=+,将()()8,4,0,2M B -代入得:248b k b =⎧⎨=-+''⎩,解得:214b k =-'⎧⎪⎨=⎪⎩,∴BM 所在直线的解析式为124y x =-+,如图,设这条钢架为GH ,与MN 交于点G ,与地面交于H, 这条钢架与BM 平行,∴设该钢架GH 所在直线的解析式为14y x n =-+,联立()21417388y x n y x ⎧=-+⎪⎪⎨⎪=++⎪⎩,即()21173488x n x -+=++,整理得:281680x x n ++-=,该钢架GH 与水滑道有唯一公共点,()2Δ8411680n ∴=-⨯⨯-=,∴0n =即该钢架所在直线的解析式为14y x =-,∴点H 与点O 重合, ()1824GN =-⨯-=,8NO =,90GNO ∠=︒,GH ∴==∴这条钢架的长度为米.26.【答案】(1)见解析(2)①73DF DE =②2DF DE m n=,证明见解析(3)2AP n AD m =【解析】【小问1详解】证明:∵AB AC =,∴B C ∠=∠,∵DE BC ⊥,∴90BEF CED ∠=∠=︒,∴90F B ∠=︒-∠,90CDE C ∠=︒-∠,且CDE ADF ∠=∠,∴F ADF ∠=∠,∴AD AF =;【小问2详解】解:①当13AD DC =时,23DF DE =;当45AD DC =时,85DF DE =,∴总结规律得:DF DE 是AD DC 的2倍,∴当76AD DC =时,14763DF DE ==;②当AD m DC n =时,猜想2DF DE m n =,证明:作AG EF ⊥于点G ,∵DE BC ⊥,∴AG CE ∥,∴AGD CED ∽△△,∵AD m DC n =,∴GD AD m DE DC n ==,由(1)知AD AF =,又AG EF ⊥,∴DG FG =,即2DF DG =,∴22GD m DE nDF DE ==;【小问3详解】2AP n AD m=,理由如下:过点D 作DG CF ⊥,∵ACF ACB ∠=∠,DE CE ⊥,∴DG DE =,由(2)知,当AD m DC n =时,2DF DE m n=,∴2DE n DF m =,∴2DG n DF m=,∵PF AC ⊥,∴90ACF CFP ∠+∠=︒,∵FE BC ⊥,∴90B AFD ∠+∠=︒,∵AB AC =,∴ACB B =∠∠,∴B ACF ∠=∠,∴AFD CFP ∠=∠,∴AFD PFD CFP PFD ∠-∠=∠-∠,∴AFP DFG ∠=∠,∴sin sin AFP DFG ∠=∠,∴2AP DG n AF DF m==,由(1)知AD AF =,∴2AP AP n AD AF m ==.。
内蒙古赤峰市2014届高三9月统考数学(文)试题 Word版含答案
保密★启用前内蒙古赤峰市全市优质高中2014届高三摸底考试数学试卷(文科)2013.9考生注意:1.本试卷分第I卷(选择题)和第II卷(非选择题)两部分.共150分.考试时间120分钟.2.请将各题答案凑在试卷后面的答题卡上.3.本试卷主要考试内容:高考全部内客.第工卷(选择题共60分)一、选择题.(本大题共12小题,每小题5分,共60分)1.复数2ii+-(i为虚数单位)的虚部为A、-2iB、2i C.2 D.-22、已知集合M= {x |x>x2},N={y|y=4,2xx∈M},则M∩N=A、{x|0<x<12} B、{x|12<x<1}C、{x|0<x<1}D、{x|1<x<2}3、已知向量a•(a+2b)=0,|a|=2,|b|=2,则向量a,b的夹角为4、已知“x>k”是“31x+<1”的充分不必要条件,则k的取值范围是A.[2,+∞)B、[1,+∞) C.(2,+∞) D.(一∞,-1]5.阅读如图所示的程序框图,运行相应的程序,若输入m =42,n=30,则输出m的值为A6 B.12 C. 30 D. 76.已知数列{n a }是公差为3的等差数列,且a 1,a 2,a 4成等比数列,则a 10等于A. 30B. 27C.24D.337.在样本颇率分布直方图中,共有9个小长方形,若中间一个小长方形的面积等于它8个长方形的面积和的25,且祥本容量为140,则中间一组的频数为 A.28 B.40 C.56 D.60 8.已知ω>0,函数上单调递增,则ω的取值范围是9、曲线y =212x x +在点(2,4)处的切线与坐标轴围成的三角形面积为 A 、1 B 、2 C 、43 D 、23 10.已知变量x ,y 满足的值范围是11.设双曲线2218y x -=的两个焦点为F 1,F 2,P 是双曲线上的一点,且|PF 1|:|PF 2|=3:4, 则△PF 1 F 2的面积等于A.103B.83C.85D. 16512.已知矩形ABCD 的顶点都在半径为5的球O 的球面上,且AB =6, BC= 25,则棱锥O-ABCD 的侧面积为A. 20+85B. 44 C 、205 D 、46第II 卷(非选择题共90分)二、填空题(本大题共4小题,每小题5分,共20分)13.已知函数,若f (a ) =3,则a =____·14.某三棱锥的三视图如图所示.则该三棱锥的体积为____.15.已知抛物线E :y 2=2px (p >0)经过圆F :x 2+y 2-2x +4y -4=0的圆心,则抛物线E 的准线与圆F 相交所得的弦长为____.16.已知数列{n a }的前n 项和为Sn ,且Sn 十1=2n a ,则使不等式成立的n 的最大值为____.三、解答魔,(共70分)17.〔本小题满分12分)已知△ABC 的三个内角A 、B 、C 所对的边分别为a ,b ,c ,且(1)求角A 的大小,(2)若求b 的值.18、(本小题满分12分)在某次测验中,有6位同学的平均成绩为76分,用x n 表示编号为n (n =1,2,3,…、6)的同学 所得成绩,且前5位同学的成绩如下:(1)求第6位同学的成绩6x 及这6位同学成绩的标准差s ;(2)从6位同学中随机地选2位同学,求恰有1位同学成绩在区间(70,75)中的概率.19.(本小题满分12分)在四棱锥P -ABCD 中,底面ABED 为直角梯形,BC//AD 、∠ADC =90°,BC=CD=12AD ,PA=PD ,E ,F 为AD ,PC 的中点.(1)求证:PA//平面BEF ;(2)求证:AD ⊥PB20.(本小题满分12分)设函数a ,求f(x)的单调区间,(1)若1(2)当x≥0时,f(x)≥x2-x+2,求a的取值范围.21:(本小题满分12分)已知椭圆的中心在原点,焦点在x轴上,焦距为215,且经过点M(4,1),直线l: x-y十m =0交椭圆于不同的两点A,B.(1)求m的取值范围;,(2)若直线l不经过点M,求证:直线MA,MB的斜率互为相反效考生在第22,23,24题中任选一布作答,如果多做,则按所做的第一题计分.作答时请写清题号.22.(本小题满分10分)选修4-1:几何证明选讲如图,已知PA与圆O相切于点A,直径BC⊥OP,连结AB交PO于点D.(1)求证:PA=PD;(2)求证;AC ·AP=AD·OC23.(本小题满分10分)选修4-4:坐标系与参数方程已知圆C1的参数方程为为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,圆C2的极坐标方程为.(1)将圆C1的参数方程化为普通方程,将圆C2的极坐标方程化为直角坐标方程;(2)圆C1,C2是否相交?若相交,请求出公共弦长,若不相交,请说明理由.24.(本小题满分10分)选修4-5:不等式选讲巳知函数f(x)=|x-1|+|x一a|.(1)若a=2,解不等式f(x)≥2;(2)若a>1,,求实数a的取值范围.。
内蒙古赤峰市2014届高三9月统考数学(文)试题(含答案)
保密★启用前内蒙古赤峰市全市优质高中2014届高三摸底考试数学试卷(文科)2013.9考生注意:1.本试卷分第I卷(选择题)和第II卷(非选择题)两部分.共150分.考试时间120分钟.2.请将各题答案凑在试卷后面的答题卡上.3.本试卷主要考试内容:高考全部内客.第工卷(选择题共60分)一、选择题.(本大题共12小题,每小题5分,共60分)1.复数2ii+-(i为虚数单位)的虚部为A、-2iB、2i C.2 D.-22、已知集合M= {x |x>x2},N={y|y=4,2xx∈M},则M∩N=A、{x|0<x<12} B、{x|12<x<1}C、{x|0<x<1}D、{x|1<x<2}3、已知向量a•(a+2b)=0,|a|=2,|b|=2,则向量a,b的夹角为4、已知“x>k”是“31x+<1”的充分不必要条件,则k的取值范围是A.[2,+∞)B、[1,+∞) C.(2,+∞) D.(一∞,-1]5.阅读如图所示的程序框图,运行相应的程序,若输入m =42,n=30,则输出m的值为A6 B.12 C. 30 D. 76.已知数列{n a }是公差为3的等差数列,且a 1,a 2,a 4成等比数列,则a 10等于A. 30B. 27C.24D.337.在样本颇率分布直方图中,共有9个小长方形,若中间一个小长方形的面积等于它8个长方形的面积和的25,且祥本容量为140,则中间一组的频数为 A.28 B.40 C.56 D.60 8.已知ω>0,函数上单调递增,则ω的取值范围是9、曲线y =212x x +在点(2,4)处的切线与坐标轴围成的三角形面积为 A 、1 B 、2 C 、43 D 、23 10.已知变量x ,y 满足的值范围是11.设双曲线2218y x -=的两个焦点为F 1,F 2,P 是双曲线上的一点,且|PF 1|:|PF 2|=3:4, 则△PF 1 F 2的面积等于12.已知矩形ABCD 的顶点都在半径为5的球O 的球面上,且AB =6, BC= O-ABCD 的侧面积为B. 44 C 、 D 、46第II 卷(非选择题共90分)二、填空题(本大题共4小题,每小题5分,共20分)13.已知函数,若f (a ) =3,则a =____·14.某三棱锥的三视图如图所示.则该三棱锥的体积为____.15.已知抛物线E :y 2=2px (p >0)经过圆F :x 2+y 2-2x +4y -4=0的圆心,则抛物线E 的准线与圆F 相交所得的弦长为____.16.已知数列{n a }的前n 项和为Sn ,且Sn 十1=2n a ,则使不等式成立的n 的最大值为____.三、解答魔,(共70分)17.〔本小题满分12分)已知△ABC 的三个内角A 、B 、C 所对的边分别为a ,b ,c ,且(1)求角A 的大小,(2)若求b 的值.18、(本小题满分12分)在某次测验中,有6位同学的平均成绩为76分,用x n 表示编号为n (n =1,2,3,…、6)的同学 所得成绩,且前5位同学的成绩如下:(1)求第6位同学的成绩6x 及这6位同学成绩的标准差s ;(2)从6位同学中随机地选2位同学,求恰有1位同学成绩在区间(70,75)中的概率.19.(本小题满分12分)在四棱锥P-ABCD中,底面ABED为直角梯形,BC//AD、∠ADC=90°,BC=CD= 12AD,PA=PD,E,F为AD,PC的中点.(1)求证:PA//平面BEF;(2)求证:AD⊥PB20.(本小题满分12分)设函数(1)若1a ,求f(x)的单调区间,(2)当x≥0时,f(x)≥x2-x+2,求a的取值范围.21:(本小题满分12分)已知椭圆的中心在原点,焦点在x轴上,焦距为M(4,1),直线l: x-y十m=0交椭圆于不同的两点A,B.(1)求m的取值范围;,(2)若直线l不经过点M,求证:直线MA,MB的斜率互为相反效考生在第22,23,24题中任选一布作答,如果多做,则按所做的第一题计分.作答时请写清题号.22.(本小题满分10分)选修4-1:几何证明选讲如图,已知PA与圆O相切于点A,直径BC⊥OP,连结AB交PO于点D.(1)求证:PA=PD;(2)求证;AC ·AP=AD·OC23.(本小题满分10分)选修4-4:坐标系与参数方程已知圆C1的参数方程为为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,圆C2的极坐标方程为.(1)将圆C1的参数方程化为普通方程,将圆C2的极坐标方程化为直角坐标方程;(2)圆C1,C2是否相交?若相交,请求出公共弦长,若不相交,请说明理由.24.(本小题满分10分)选修4-5:不等式选讲巳知函数f(x)=|x-1|+|x一a|.(1)若a=2,解不等式f(x)≥2;(2)若a>1,,求实数a的取值范围.。
2014年内蒙古呼和浩特市中考数学试卷(附答案与解析)
数学试卷 第1页(共22页) 数学试卷 第2页(共22页)绝密★启用前内蒙古呼和浩特市2014年中考试卷数 学本试卷满分120分,考试时间120分钟.第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.下列实数是无理数的是( )A .1-B .0C .πD .132.以下问题,不适合用全面调查的是( )A .旅客上飞机前的安检B .学校招聘教师,对应聘人员的面试C .了解全校学生的课外读书时间D .了解一批灯泡的使用寿命3.已知线段CD 是由线段AB 平移得到的,点(1,4)A -的对应点为(4,7)C ,则点(4,1)B --的对应点D 的坐标为( )A .(1,2)B .(2,9)C .(5,3)D .(9,4)--4.如图是某几何体的三视图,根据图中数据,求得该几何体的体积为( )A .60πB .70πC .90πD .160π5.某商品先按批发价a 元提高10%零售,后又按零售价降低10%出售,则最后的单价是( )A .a 元B .0.99a 元C .1.21a 元D .0.81a 元6.已知O e 的面积为2π,则其内接正三角形的面积为( )A. B. CD7.实数a ,b ,c 在数轴上对应的点如图所示,则下列式子中正确的是( )A .ac bc >B .||a b a b -=-C .a b c -<-<D .a c b c --->- 8.下列运算正确的是( )AB3a C .2221111()()b a a b a b b a++÷-=-D .936()()a a a -÷=-9.已知矩形ABCD 的周长为20cm ,两条对角线AC ,BD 相交于点O ,过点O 作AC 的垂线EF ,分别交两边AD ,BC 于E ,F (不与顶点重合),则以下关于CDE △与ABF △判断完全正确的一项为 ( )A .CDE △与ABF △的周长都等于10cm ,但面积不一定相等B .CDE △与ABF △全等,且周长都为10cmC .CDE △与ABF △全等,且周长都为5cmD .CDE △与ABF △全等,但它们的周长和面积都不能确定10.已知函数1||y x =的图象在第一象限的一支曲线上有一点(,)A a c ,点(,1)B b c +在该函数图象的另外一支上,则关于一元二次方程20ax bx c ++=的两根1x ,2x 判断正确的是( )A .121x x +>,120x x g >B .120x x +<,120x x g >C .1201x x +<<,120x x g >D .12x x +与12x x g 的符号都不确定第Ⅱ卷(非选择题 共90分)二、填空题(本大题共6小题,每小题3分,共18分.把答案填在题中的横线上) 11.一个底面直径是80cm ,母线长为90cm 的圆锥的侧面展开图的圆心角的度数为 .12.某校五个绿化小组一天的植树棵数如下:10,10,12,x ,8.已知这组数据的平均数是10,那么这组数据的方差是 .13.等腰三角形一腰上的高与另一腰的夹角为36︒,则该等腰三角形的底角的度数为 .14.把多项式22369xy x y y --因式分解,最后结果为.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共22页) 数学试卷 第4页(共22页)15.已知m ,n 是方程2250x x +-=的两个实数根,则23m mn m n -++= . 16.以下四个命题:①每一条对角线都平分一组对角的平行四边形是菱形; ②当0m >时,1y mx =-+与my x=两个函数都是y 随着x 的增大而减小; ③已知正方形的对称中心在坐标原点,顶点A ,B ,C ,D 按逆时针依次排列,若A 点坐标为(1,3),则D 点坐标为(1,3)-;④在一个不透明的袋子中装有标号为1,2,3,4的四个完全相同的小球,从袋中随机摸取一个然后放回,再从袋中随机地摸取一个,则两次取到的小球标号的和等于4的概率为18.其中正确的命题有 (只需填正确命题的序号).三、解答题(本大题共9小题,共72分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分,每题5分)(1)计算:112cos30(32)||2-+++-o ;(2)解方程:2231022x x x x-=+-.18.(本小题满分6分)如图,一艘海轮位于灯塔P 的北偏东65o 方向,距离灯塔80海里的A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东45o 方向上的B 处,这时,海轮所在的B 处距离灯塔P 有多远?(结果用非特殊角的三角函数及根式表示即可)19.(本小题满分5分)已知实数a 是不等于3的常数,解不等式组233,11(2)0,22x x a x -+-⎧⎪⎨-+⎪⎩≥<并依据a 的取值情况写出其解集.20.(本小题满分9分)学校为了了解初三年级学生体育跳绳的训练情况,从初三年级各班随机抽取了50名学生进行了60秒跳绳的测试,并将这50名学生的测试成绩(即60秒跳绳的个数)从低到高分成六段记为第一到六组,最后整理成下面的频数分布直方图:请根据直方图中样本数据提供的信息解答下列问题.(1)跳绳次数的中位数落在哪一组?由样本数据的中位数你能推断出学校初三年级学生关于60秒跳绳成绩的一个什么结论?(2)若用各组数据的组中值(各小组的两个端点的数的平均数)代表各组的实际数据,求这50名学生的60秒跳绳的平均成绩(结果保留整数);(3)若从成绩落在第一和第六组的学生中随机抽取2名学生,用列举法求抽取的2名学生恰好在同一组的概率.数学试卷 第5页(共22页) 数学试卷 第6页(共22页)21.(本小题满分7分)如图,四边形ABCD 是矩形,把矩形沿AC 折叠,点B 落在点E 处,AE 与DC 的交点为O ,连接DE .(1)求证:ADE CED △≌△; (2)求证:DE AC ∥.22.(本小题满分7分)为鼓励居民节约用电,我市自2012年以来对家庭用电收费实行阶梯电价,即每月对每户居民的用电量分为三个档级收费,第一档为用电量在180千瓦时(含180千瓦时)以内的部分,执行基本价格;第二档为用电量在180千瓦时到450千瓦时(含450千瓦时)的部分,实行提高电价;第三档为用电量超出450千瓦时的部分,执行市场调节价格.我市一位同学家今年2月份用电330千瓦时,电费为213元,3月份用电240千瓦时,电费为150元.已知我市的一位居民今年4,5月份的家庭用电量分别为160和410千瓦时,请你依据该同学家的缴费情况,计算这位居民4,5月份的电费分别为多少元?23.(本小题满分8分)如图,已知反比例函数ky x=(0x >,k 是常数)的图象经过点(1),4A ,点,()B m n ,其中1m >,AM x ⊥轴,垂足为M ,BN y ⊥轴,垂足为N ,AM 与BN 的交点为C .(1)写出反比例函数解析式; (2)求证:ACB NOM △∽△;(3)若ACB △与NOM △的相似比为2,求出B 点的坐标及AB 所在直线的解析式.24.(本小题满分8分)如图,AB 是O e 的直径,点C 在O e 上,过点C 作O e 的切线CM . (1)求证:ACM ABC ∠=∠;(2)延长BC 到D ,使BC CD =,连接AD 与CM 交于点E ,若O e 的半径为3,2ED =,求ACE △的外接圆的半径.25.(本小题满分12分)如图,已知直线l 的解析式为112y x =-,抛物线22y ax bx =++经过点(,0)A m ,(2,0)B ,5(1,)4D 三点.(1)求抛物线的解析式及A 点的坐标,并在图示坐标系中画出抛物线的大致图象; (2)已知点(,)P x y 为抛物线在第二象限部分上的一个动点,过点P 作PE 垂直x 轴于点E ,延长PE 与直线l 交于点F ,请你将四边形PAFB 的面积S 表示为点P 的横坐标x 的函数,并求出S 的最大值及S 最大时点P 的坐标;(3)将(2)中S 最大时的点P 与点B 相连,求证:直线l 上的任意一点关于x 轴的对称点一定在PB 所在直线上.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________数学试卷 第7页(共22页)数学试卷 第8页(共22页)内蒙古呼和浩特市2014年中考试卷数学答案解析第Ⅰ卷一、选择题 1.【答案】C【解析】无理数就是无限不循环小数,由此可判断π是无理数,故选C. 【考点】无理数的定义 2.【答案】D【解析】选择普查还是抽样调查要根据所要调查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查了解一批灯泡的使用寿命,具有破坏性,工作量大,不适合全面调查,故选D. 【考点】抽样调查和全面调查的区别 3.【答案】A【解析】平移中点的变化规律是横坐标右移加,左移减;纵坐标上移加,下移减.因为点(1,4)A -的对应点 为()4,7C ,所以平移规律为向右平移5个单位,向上平移3个单位,又因为点()4,1B --,所以点D 的坐 标为(1,2),故选A.【考点】坐标与图形变化平移 4.【答案】B【解析】由三视图可以判断此几何体为空心圆柱,其内径为6,外径为8,高为10,圆柱的体积=⨯底面高积,所以此空心圆柱的体积为2210(4π3π70)π⨯-=,故选B.【考点】三视图计算几何体的体积 5.【答案】B【解析】原价提高10%后商品新单价为%(1)10a +元,再按新价降低10%后单价为()(110%10%)1a +-元,由题意得110%1 10% ()()0.99a a +-=g (元),故选B. 【提示】找到相应关系是解答此题的关键. 【考点】列代数式解应用题 6.【答案】C【提示】根据题意画出图形,利用数形结合求解是解答此题的关键.【考点】垂径定理,等边三角形的性质7.【答案】D【解析】∵由图可知,0a b c<<<,∴ac bc<,故A错误;∵a b<,∴0a b-<,∴||a b b a-=-,B错误;∵0a b<<,∴a b->-,C错误;∵a b->-,0c>,∴a c b c-->--,故选D.【考点】实数,数轴,绝对值,实数大小的比较8.【答案】C==A3||a=,B错误;22222222222221111()()()()()()()()a b b a b a a b a b a ba b a b a b a b a b b a b a b a++-+++÷-=÷==+--g,C正确;93936()a a a a a-÷=-÷=-,D错误,故选C.【考点】分式的混合运算,同底数幂的除法,二次根式的混合运算9.【答案】B5/ 11数学试卷 第11页(共22页)数学试卷 第12页(共22页)【考点】矩形的性质,全等三角形的判定与性质,线段垂直平分线的性质 10.【答案】C【解析】∵点,()A a c 在第一象限的一支曲线上,∴0a >,0c >,1ac =,∴点1(),B b c +在该函数图像的另外一支上,∴0b <,1()1b c -+=,∴12011x x bc b <+=-=+<,120cx x a=>,故选C. 【提示】熟练掌握根与系数的关系和反比例函数图象在各个象限点的特征的解答本题的关键. 【考点】根与系数的关系,反比例函数图像上点的坐标特征第Ⅱ卷二、填空题 11.【答案】160︒【考点】圆锥的计算 12.【答案】1.6【解析】根据题意有1010128510x ++++÷=(),10x =, ∴这组数据的方差是22223(1010)(1210)([]810)165s ⨯-+-+-==..【考点】方差 13.【答案】63︒或27︒【解析】解:在三角形ABC 中,如图所示,AB AC =,BD AC ⊥于D .①若ABC △是锐角三角形,903654A ∠=︒-︒=︒,底角(18054)263ABC C ∠=∠=︒-︒÷=︒;若ABC △是钝角三角形,3690126BAC ∠=︒+︒=︒,(180126)227ABC C ∠=∠=︒-︒÷=︒ .所以此等腰三角形底角的度数是63︒或27︒.【考点】等腰三角形的性质,三角形内角和定理 14.【答案】2(3)y x y --【解析】因式分解的一般步骤:(1)提取公因式;(2)运用公式进一步分解,所以22322269(69)(3)xy x y y y y xy x y x y --=-+=---.【考点】提取公因式法,公式法分解因式 15.【答案】8【解析】由m 、n 是方程2250x x +-=的两个实数根,得2m n +=-,5mn =-,且2250m m +-=,7 / 11而223(25)502558m mn m n m m m n -++=+-+++=-++=.【考点】根与系数的关系,一元二次方程的解 16.【答案】①【解析】当0m >时,函数my x=的图像在第一象限、第三象限,y 随着x 的增大而减小,故○2错误;正方形的对称中心在坐标原点,顶点A ,B ,C ,D 按逆时针依次排列,若A点坐标为,则D 点坐标为) 1-,故○3错误;在一个不透明的袋子中装有标号为1,2,3,4的四个完全相同的小球,从袋中随机摸取一个然后放回,再从袋中随机地摸取一个,则两次取到的小球标号的和等于4的概率为316,故○4错误. 【考点】命题与定理,菱形的性质,一次函数及反比例函数的性质,图形与坐标及概率 三、解答题 17.【答案】(1)32- (2)4x =【解析】解:(1)原式122=+12)2=+3=2-(2)去分母得223620x x x x ---=,2280x x -=∴0x =或4x =经检验,0x =是增根,∴4x =是原方程的解.【提示】对于第(2)题,分式方程要检验,这点要切记.【考点】二次根式的混合运算,负指数幂运算,解分式方程,特殊角的三角函数值 18.【答案】︒数学试卷 第15页(共22页)数学试卷 第16页(共22页)【考点】直角三角形的应用,方向角问题19.【答案】当3a >时,不等式组的解集为3x ≤;当3a <时,不等式组的解集为x a <.【解析】解:23311(2)022x x a x -+≥-⎧⎪⎨-+<⎪⎩①② 解①得3x ≤, 解②得x a <.∵a 是不等于3的常数,∴当3a >时,不等式组的解集为3x ≤; 当3a <时,不等式组的解集为x a <.【考点】一元一次不等式组20.【答案】(1)解:(1)中位数落在第四组,可以估计初三学生60秒跳绳再120个以上的人数达到一半以上. (2)121 (3)25【考点】频数(率)分布直方图21.【答案】证明:(1)∵四边形ABCD 是矩形,AD BC =,AB CD =,又∵AC 是折痕,BC CE AD ==,AB AE CD ==.又DE ED =,∴ADE CED △≌△.【解析】证明:(2)∵ADE CED △≌△,∴EDC DEA ∠=∠,ACE △与ACB △关于AC 所在直线对称, ∴OAC CAB ∠=∠,而OCA CAB ∠=∠,∴OAC OCA ∠=∠. ∴22OAC DEA ∠=∠,∴OAC DEA ∠=∠,∴DE AC ∥.9 / 11【考点】翻折变换(折叠问题),全等三角形的判定与性质,矩形的性质 22.【答案】96元、296元【解析】解:设基本电价为x 元/千瓦时,提高电价为y 元/千瓦时,由题意得18015021318060180x y x y +=⎧⎨+=⎩解得0.60.7x y =⎧⎨=⎩∴4月份的电费为1600.696⨯=(元),5月份的电费为1800.62300.7108161269⨯+⨯=+=(元).【提示】解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解. 【考点】二元一次方程组的应用 23.【答案】(1)4y x=(3)416y x =-+【考点】反比例函数的综合应用 24.【答案】(1)证明:连接OC .∵AB 为O e 的直径,∴90ACB ∠=︒,∴90ABC BAC ∠+∠=︒,又∵CM 是O e 的切线,∴OC CM ⊥, ∴90ACM ACO ∠+∠=︒.∴CO AO =,∴BAC ACO ∠=∠,∴ACM ABC ∠=∠数学试卷 第19页(共22页)数学试卷 第20页(共22页)(2【考点】切线的性质,勾股定理,圆周角定理,相似三角形 25.【答案】(1)(4,0)- (2)(2,2)P -11 / 11 其中40x <<.∴S 的最大值是12,此时点的坐标为(2,2)-.【考点】待定系数法求抛物线的解析式;待定系数法求直线的解析式,函数的最值问题,四边形的面积求法,x 轴的对称点的坐标特征。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
内蒙古赤峰市2014年中考数学试卷 1 / 33 2014年内蒙古赤峰市中考数学试卷 一、选择题(共8小题,每小题3分,共24分) 1.(3分)(2014•赤峰)有理数﹣3的相反数是( ) A. 3 B. ﹣3 C. D. ﹣
2.(3分)(2014•赤峰)下面的几何体中,主(正)视图为三角形的是( ) A. B. C. D.
3.(3分)(2014•赤峰)赤峰市改革开放以来经济建设取得巨大成就,2013年全市GDP总值为1686.15亿元,将1686.15亿元用科学记数法表示应为( ) A. 168615×102元 B. 16.8615×104元 C. 1.68615×108元 D. 1.68615×1011元
4.(3分)(2014•赤峰)下面是扬帆中学九年八班43名同学家庭人口的统计表: 家庭人口数(人) 3 4 5 6 2 学生人数(人) 15 10 8 7 3 这43个家庭人口的众数和中位数分别是( ) A. 5,6 B. 3,4 C. 3,5 D. 4,6 5.(3分)(2014•赤峰)如图,把一块含有30°角(∠A=30°)的直角三角板ABC的直角顶点放在矩形桌面CDEF的一个顶点C处,桌面的另一个顶点F与三角板斜边相交于点F,如果∠1=40°,那么∠AFE=( )
A. 50° B. 40° C. 20° D. 10° 6.(3分)(2014•赤峰)如图,AB是⊙O的直径,C,D是⊙O上两点,CD⊥AB.若∠DAB=65°,则∠BOC=( ) 内蒙古赤峰市2014年中考数学试卷 2 / 33 A. 25° B. 50° C. 130° D. 155° 7.(3分)(2014•赤峰)化简结果正确的是( ) A. ab B. ﹣ab C. a2﹣b2 D. b2﹣a2
8.(3分)(2014•赤峰)如图,一根长5米的竹杆AB斜立于墙AC的右侧,底端B与墙角C的距离为3米,当竹杆顶端A下滑x米时,底端B便随着向右滑行y米,反映y与x变化关系的大致图象是( )
A. B. C. D. 二、填空题(共8小题,每小题3分,共24分) 9.(3分)(2014•赤峰)化简:2x﹣x= . 10.(3分)(2014•赤峰)一只蚂蚁在如图所示的矩形地砖上爬行,蚂蚁停在阴影部分的概率是 .
11.(3分)(2014•赤峰)下列四个汽车图标中,既是中心对称图形又是轴对称图形的图标有 个. 内蒙古赤峰市2014年中考数学试卷 3 / 33 12.(3分)(2014•赤峰)如图,E的矩形ABCD中BC边的中点,将△ABE沿AE折叠到△AEF,F在矩形ABCD内部,延长AF交DC于G点.若∠AEB=55°,求∠DAF= 20 °.
13.(3分)(2014•赤峰)如图,反比例函数y=(k>0)的图象与以原点(0,0)为圆心的圆交于A,B两点,且A(1,),图中阴影部分的面积等于 .(结果保留π)
14.(3分)(2014•赤峰)如图所示,在象棋盘上建立平面直角坐标系,使“马”位于点(2,2),“炮”位于点(﹣1,2),写出“兵”所在位置的坐标 .
15.(3分)(2014•赤峰)直线l过点M(﹣2,0),该直线的解析式可以写为 .(只写出一个即可) 内蒙古赤峰市2014年中考数学试卷 4 / 33 16.(3分)(2014•赤峰)平移小菱形◇可以得到美丽的“中国结”图案,下面四个图案是由◇平移后得到的类似“中国结”的图案,按图中规律,第20个图案中,小菱形的个数是 个.
三、解答题(共10小题,满分102分) 17.(6分)(2014•赤峰)计算:(π﹣)0+﹣8sin45°﹣()﹣1.
18.(6分)(2014•赤峰)求不等式组的正整数解.
19.(10分)(2014•赤峰)如图,已知△ABC中AB=AC. (1)作图:在AC上有一点D,延长BD,并在BD的延长线上取点E,使AE=AB,连AE,作∠EAC的平分线AF,AF交DE于点F(用尺规作图,保留作图痕迹,不写作法); (2)在(1)的条件下,连接CF,求证:∠E=∠ACF. 内蒙古赤峰市2014年中考数学试卷
5 / 33 20.(10分)(2014•赤峰)自从中央公布“八项规定”以来,光明中学积极开展“厉行节约,反对浪费”活动,为此,学校学生会对九年八班某日午饭浪费饭菜情况进行调查,调查内容分为四种:A.饭和菜全部吃光;B.有剩饭但菜吃光;C.饭吃光但菜有剩;D.饭和菜都有剩.学生会根据统计结果,绘制了如图两个统计图,根据统计图提供的信息回答下列问题:
(1)九年八班共有多少名学生? (2)计算图2中B所在扇形的圆心角的度数,并补全条形统计图; (3)光明中学有学生2000名,请估计这顿午饭有剩饭的学生人数,按每人平均剩10克米饭计算,这顿午饭将浪费多少千克米饭?
21.(10分)(2014•赤峰)位于赤峰市宁城的“大明塔”是我国辽代的佛塔,距今已有1千多年的历史.如图,王强同学为测量大明塔的高度,在地面的点E处测得塔基BC上端C的仰角为30°,他又沿BE方向走了26米,到达点F处,测得塔顶端A飞仰角为52°,已知塔基是以OB为半径的圆内接正八边形,B点在正八边形的一个顶点上,塔基半径OB=18米,塔基高BC=11米,求大明塔的高OA(结果保留到整数,≈1.73,tan52°≈1.28). 内蒙古赤峰市2014年中考数学试卷
6 / 33 22.(10分)(2014•赤峰)某养殖专业户计划购买甲、乙两种牲畜,已知乙种牲畜的单价是甲种牲畜单价的2倍多200元,买3头甲种牲畜和1头乙种牲畜共需5700元. (1)甲、乙两种牲畜的单价各是多少元? (2)若购买以上两种牲畜50头,共需资金9.4万元,求甲、乙两种牲畜各购买多少头? (3)相关资料表明:甲、乙两种牲畜的成活率分别为95%和99%,若使这50头牲畜的成活率不低于97%且购买的总费用最低,应如何购买?
23.(12分)(2014•赤峰)如图,矩形OABC的顶点A,C分别在x轴和y轴上,点B的坐标为(﹣4,6),双曲线y=(x<0)的图象经过BC的中点D,且于AB交于点E. (1)求反比例函数解析式和E点坐标; (2)若F是OC上一点,且以∠OAF和∠CFD为对应角的△FDC、△AFO相似,求F点的坐标. 内蒙古赤峰市2014年中考数学试卷
7 / 33 24.(12分)(2014•赤峰)如图1,E是直线AB,CD内部一点,AB∥CD,连接EA,ED. (1)探究猜想: ①若∠A=30°,∠D=40°,则∠AED等于多少度? ②若∠A=20°,∠D=60°,则∠AED等于多少度? ③猜想图1中∠AED,∠EAB,∠EDC的关系并证明你的结论. (2)拓展应用: 如图2,射线FE与矩形ABCD的边AB交于点E,与边CD交于点F,①②③④分别是被射线FE隔开的4个区域(不含边界,其中区域③、④位于直线AB上方,P是位于以上四个区域上的点,猜想:∠PEB,∠PFC,∠EPF的关系(不要求证明).
25.(12分)(2014•赤峰)阅读下列材料: 如图1,圆的概念:在平面内,线段PA绕它固定的一个端点P旋转一周,另一个端点A所形成的图形叫做圆.就是说,到某个定点等于定长的所有点在同一个圆上,圆心在P(a,b),半径为r的圆的方程可以写为:(x﹣a)2+(y﹣b)2=r2,如:圆心在P(2,﹣1),半径为5的圆方程为:(x﹣2)2+(y+1)2=25 内蒙古赤峰市2014年中考数学试卷 8 / 33 (1)填空:
①以A(3,0)为圆心,1为半径的圆的方程为 ; ②以B(﹣1,﹣2)为圆心,为半径的圆的方程为 . (2)根据以上材料解决下列问题: 如图2,以B(﹣6,0)为圆心的圆与y轴相切于原点,C是⊙B上一点,连接OC,作BD⊥OC垂足为D,延长BD交y轴于点E,已知sin∠AOC=. ①连接EC,证明EC是⊙B的切线; ②在BE上是否存在一点P,使PB=PC=PE=PO?若存在,求P点坐标,并写出以P为圆心,以PB为半径的⊙P的方程;若不存在,说明理由. 内蒙古赤峰市2014年中考数学试卷
9 / 33 26.(14分)(2014•赤峰)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣1,0),B(3,0)两点,与y轴交于点C(0,﹣3).
(1)求该抛物线的解析式及顶点M坐标; (2)求△BCM面积与△ABC面积的比; (3)若P是x轴上一个动点,过P作射线PQ∥AC交抛物线于点Q,随着P点的运动,在抛物线上是否存在这样的点Q,使以A,P,Q,C为顶点的四边形为平行四边形?若存在,请求出Q点坐标;若不存在,请说明理由. 内蒙古赤峰市2014年中考数学试卷
10 / 33 2014年内蒙古赤峰市中考数学试卷 一、选择题(共8小题,每小题3分,共24分) 1.(3分)(2014•赤峰)有理数﹣3的相反数是( ) A. 3 B. ﹣3 C. D. ﹣
考点: 相反数. 专题: 计算题;压轴题. 分析: 根据相反数的意义,只有符号不同的数为相反数. 解答: 解:﹣3的相反数是3. 故选A. 点评: 本题考查了相反数的意义.只有符号不同的数为相反数,0的相反数是0.
2.(3分)(2014•赤峰)下面的几何体中,主(正)视图为三角形的是( ) A. B. C. D.
考点: 简单几何体的三视图. 分析: 主视图是从几何体的正面看所得到的图形,根据主视图所看的方向,写出每个图形的主视图及可选出答案. 解答: 解:A、主视图是长方形,故此选项错误; B、主视图是长方形,故此选项错误; C、主视图是三角形,故此选项正确; D、主视图是正方形,中间还有一条线,故此选项错误; 故选:C. 点评: 此题主要考查了简单几何体的三视图,关键是掌握主视图所看的位置.
3.(3分)(2014•赤峰)赤峰市改革开放以来经济建设取得巨大成就,2013年全市GDP总值为1686.15亿元,将1686.15亿元用科学记数法表示应为( )