水下机器人发展趋势
外文文献翻译----机器人技术发展趋势

机器人技术发展趋势作者:JimPinto, 圣地亚哥,美国中部.美国谈到机器人,就如同科幻一般。
但是,仅仅因为机器人在过去几十年里没有辜负自己的承诺,并不表示它们不会早到或者迟到。
事实上,一些先进技术导致的机器人的时代更近更小、更便宜、更实用、更具成本效益。
肌肉,骨骼与大脑任何机器人都有三方面:∙肌肉:有效联系物理载荷以便机器人运动。
∙骨骼:机器人的物理结构与决定于其所从事的工作; 考虑到有效载荷这就决定了机器人的大小和重量。
∙大脑:机器人智能; 它可以独立思考和做什么; 需要多少人工互动。
由于机器人已经被描绘于科幻世界,许多人期望机器人的外表更人性化。
其实机器人的外表决定于它的功能和任务。
不少机器,一点也不像人也明确地列为机器人。
同样,有些像人的机器人也脱离不了机械结构或者玩具。
起初的机器人是又大,又只有很小的力。
老水流动力机器人被用于三D环境:阴暗、肮脏、危险。
由于第一产业的技术进步,已经完全改进了机器人的能力、业绩和战略利益。
例如,80年代机器人由水流驱动过渡成为电力驱动单位。
改进了性能和准确性。
工业机器人已在工作在当今世界机器人数量已接近100万,有将近一半的在日本,仅有15%在美国。
数十年前,90%的机器人用于汽车制造业,通常用于做大量重复的工作。
今天只有50%用于汽车厂,而另一半分布于工厂、实验室、仓库、发电厂、医院和其他许多行业。
机器人用于产品装配、危险物品处理、油漆喷雾、切割、抛光、产品的检验。
那些被用于各式各样的任务的机器人数量,例如下水道清理,查找炸弹和操作日趋复杂的手术,在将来将持续上涨。
机器人智能即使原始的智力,机器人已经被证明在生产力、效率和质量方面能够创造良好收益。
除此之外,一些"聪明"机器人没有用于制造业; 他们被用于太空探险、外科遥控,甚至宠物,就像索尼的Aibo机械狗。
从某种意义上说,一些其他应用表明机器人可能的用途,如果生产厂家认识到,工业机器人并不是要局限于一个方面,或者受限制昨日机械概念。
2024年消防机器人市场调查报告

2024年消防机器人市场调查报告引言消防机器人是一种应用于消防领域的机器人技术,可以在火灾等危险环境中执行救援任务。
本报告旨在对消防机器人市场进行全面调查和分析,以了解其市场规模、发展趋势以及可能的机会与挑战。
市场规模根据调查数据显示,消防机器人市场正在快速增长。
据统计,全球消防机器人市场在2019年的总产值达到X亿美元,并预计未来五年内将以每年X%的复合年增长率增长。
这一增长主要受到对自动化和智能化消防救援技术的不断需求推动。
市场分析消防机器人类型消防机器人市场主要可以分为以下几类: 1. 空中消防机器人:具备飞行能力,可在高空进行火灾监测和物资投送。
2. 地面消防机器人:主要用于危险地带内的火灾扑灭和人员救援。
3. 水下消防机器人:主要用于水下火灾的扑灭和救援任务。
4. 人形消防机器人:模拟人体形态,可在火灾现场执行各种任务。
市场应用领域消防机器人市场的主要应用领域包括: - 建筑物火灾救援:消防机器人可以进入被火灾包围的建筑物内进行搜索和救援工作,减少人员伤亡。
- 工业火灾:工厂火灾是一种常见的危险情况,消防机器人可以在火灾现场进行灭火和探测,保障工人安全。
- 交通事故救援:消防机器人可以在交通事故现场执行救援任务,如剪断车身、救援被困人员等。
市场机会与挑战消防机器人市场存在着一些机会和挑战: - 机会:随着科技的发展,消防机器人的功能和智能化程度不断提高,将为市场带来更多的机会。
此外,政府机构和消防部门对消防技术的重视也将促进市场发展。
- 挑战:高昂的研发和制造成本、技术难题以及法规和安全标准等方面的限制,是消防机器人市场面临的主要挑战。
市场前景与趋势随着消防机器人技术的不断进步和市场需求的增加,预计消防机器人市场有望继续保持良好的增长势头。
未来,市场将呈现以下趋势: 1. 智能化程度提升:消防机器人将更加智能化,通过先进的传感器和算法,实现自主导航和智能救援。
2. 多样化应用场景:消防机器人将应用于更多不同的场景,如油田、航空航天、海洋等,扩大市场规模。
机器人基础知识培训ppt课件精选全文完整版

第一代:示教再现型机器人 该种机器人没有装备任何传感器,对环境无感知能力,智能按照人类编写的 固化程序工作。世界上第一台机器人即属此类。
第二代:感觉型机器人 此种机器人拥有简单的传感器,可以感知外部参数变化,有部分适应外部环 境的能力。即可以根据外部环境的不同改变工作内容。
2.虚实结合 机器人不是孤立的,通过大量仿真、虚拟现实,把虚拟现实与车间实际 加工过程有机结合起来。
3.人机融合 人、机器和机器人如何有机融合?这值得业界深入思考。
10
机器人三大原则
第一条:机器人不得危害人类。此外,不可因 为疏忽危险的存在而使人类受害。
第二条:机器人必须服从人类的命令,但命令 违反第一条内容时,则不在此限。
17
18
竞赛机器人
目前最大型的机器人竞赛是机器人世界杯。机器人世界 杯(RoboCup)是一个国际合作项目,为促进人工智能、 机器人和相关领域。它为人工智能机器人研究提供了广 泛的技术标准问题,能够被综合和检验。该机器人项目 的最终目标是到2050年,开发完全自主仿人机器人队, 能赢得对人类足球世界冠军队。为了真正作为一个团队 进行机器人足球比赛,必须包含各种技术,包括:智能 体自主设计、多智能体协作、策略获娶实时推理、机器 人和传感器融合。
第三代:智能机器人 这种智能机器人可以认识周围环境和自身状态,并能进行分析和判断,然后 采取相应的策略完成任务。目前这种机器人大部分还是用于军事领域。
8
机器人发展的三大趋势
1、软硬结合 2、虚实结合 3、人机融合
9
1.软硬融合 机器人软件更重要,因为人工智能技术体现在软件上,数字化车间的轨 迹规划、车间布局、自动化上料都需要软硬件相结合,只开发硬件还不 够,还需要大量的软件开发人员。因此,现在做智能制造,既要懂机械, 又要懂信息技术,尤其是机器人的控制技术。
焊接机器人应用与发展趋势研究

第3卷第3期2021年3月Vol.3No.3Mar2021智能建筑与工程机械Intelligent Building and Construction Machinery工程机械与智控焊接机器人应用与发展超势研究林森,厚俊臣,金子旭,岳宗言,瞿红,史丽翠(哈尔滨工业大学,黑龙江哈尔滨150000)摘要:随着机籌人技术在各舒业中的迅猛发展,以及人工费用的逐年提高,机器替换人类工作已成为促进社会离速发展的必然趋势。
为促进焊接机器人在焊接领域实现优质、髙效、成本低廉的自动化、柔性化及智能化焊接JOL,同时适应未来发展需求本文结合最前沿科技,综述了国内外堺接机器人技术应用柢况玖及烬接机器人的未来发展方向,以供參考。
关键词:焊接机器人;技术;智能;发展方向中图分类号:TP242文献标识码:A文章编号:2096-6903(2021)03-0046-030前盲焊接工作是一项工作环境恶劣、工作强度大、专业技能要求严格且对操作人员会产生潜在危害,但在制造领域又不可或缺的工作山畫在此背景下焊接机器人应运而生,其出现有效解决了这种供需矛盾,并且可以节省大量人力、物力,使操作者投入到更具创造力的工作叭从20世纪60年代研发并逐渐投入使用幵始,其关键技术也得到不断提升,使其具备工作稳定性能、加工精度高、生产效率高等优点。
可代替工人在情况复杂和未知的环境下工作,基于此特点,焊接机器人在工业生产中得到推广和应用。
1焊接MS人需求分析目前世界拥有80余万台工业机器人,焊接机器人占比可达40%以上。
焊接工艺被作为工业生产的“裁缝”,是工业生产中非常重要的手段,根据CRIA公布的2019年中国机器人的市场数据显示,2019年国产焊接机器人的销量约3765台,焊接和钎焊机器人是国产机器人应用的第二大领域,销量同比增24.5%,约占总销量的16.9%。
另外70%以上的市场麵依然被国外品牌占据。
目前中国投入使用的焊接机器从要产自日本、欧洲和国内。
机器人在军事领域的应用与发展

机器人在军事领域的应用与发展机器人技术的发展日新月异,正逐渐渗透到各个领域。
军事领域作为科技创新和应用的重要领域之一,也积极探索和应用机器人技术。
机器人在军事领域的应用不仅可以提升军队的作战能力,还能减少对人员的伤害和避免军事冲突的升级。
本文将从机器人在军事作战、情报侦察、救援任务等方面的应用入手,探讨机器人在军事领域的应用与发展。
一、机器人在军事作战中的应用在现代战争中,机器人技术的应用为作战提供了更多的选择和可能性。
机器人战士可以承担一些危险、高风险的任务,例如侦察、炸弹拆除和攻坚等。
机器人作战系统可以装备各种武器和传感器,具备强大的火力和作战能力。
例如,美军的“捍卫者”无人地面车辆就可以承担火力支援、目标锁定和阻击等任务,减少士兵的伤亡风险。
此外,机器人还可以根据精确的算法进行自主决策和执行任务,提高作战效率和精度。
二、机器人在军事情报侦察中的应用军事情报侦察是军队获取战场信息、探测敌方情况的重要手段,而机器人技术在这方面有着不可替代的作用。
机器人可以携带各种传感器和侦察设备,具备高精度的情报收集能力。
无人侦察机、无人潜水器和无人水下航行器等机器人在情报侦察中发挥着重要作用。
这些机器人可以进行隐蔽、长时间、大范围的侦察任务,获取敌方的情报,并将数据及时传回指挥部,为军队的决策提供科学依据。
三、机器人在军事救援中的应用在灾难和战争中,军事救援是保障人员安全的重要任务,机器人在这方面的应用也愈发重要。
机器人可以应对各种危险环境,例如火灾、核辐射等无法人类直接处理的场景。
机器人可以携带救援设备,例如搜救器械、医疗器械等,在紧急情况下进行救援行动。
此外,机器人还可以用于物资运送和通信中继等任务,提高军队的快速反应能力和救援效率。
四、机器人在军事领域的发展趋势机器人在军事领域的应用前景广阔,其发展趋势也呈现出以下几方面的特点:1. 智能化发展:机器人将逐渐实现智能化,并具备自主感知、自主决策和自主执行任务的能力。
智能巡线机器人设计

关键词:机器人;巡线;光电检测;PWM驱动。
Abstract
In recent years, research and design of robot has not been limited just in military field. Many technologies, which had been used in the military field cuccessfully, have been used in the field of civilian robot. Based on the industrial robot, and by applyingsensor interface control and SCM intelligent control, this project has designed one kind of biranpower line walking robot that is able to carry the goods by itself.
摘
近年来机器人的研究和应用已经不仅仅局限于军用领域。许多应用于军用机器人上的成功技术已经在民用机器人中得到了一定的应用。在工业机器人的基础上,运用了传感器技术和单片机智能控制技术,设计出了一种能自动运送货物的职能巡线机器人。
论文首先对智能巡线机器人总体设计方案进行叙述,阐述其各要素的工作原理,然后就整个智能巡线机器人系统划分为五个模块,分章节对各个模块设计制作进行阐述。
××××学院
毕业设计说明书
题目智能巡线机器人设计
学生
系别机电工程系
四自由度机械臂的运动规划和物体搬运系统【文献综述】

毕业设计文献综述电气工程及其自动化四自由度机械臂的运动规划和物体搬运系统一、设计四自由度机械臂的意义尽管对于机械操作臂的研究已不是一个全新的课题,但是,如何在机械手臂高位置精度的条件下,尽可能地降低制造成本和缩短制造周期,这仍是值得不断探索的问题。
传统工业机械臂,其设计方法多为串联形式,即通过将驱动与传动元(如电机、减速器等)直接安装在转动副附近,这样的设计虽然简单直接,但是由于驱动件自身成为了机械臂负载,能大大减少机械臂的有效载荷,同时也会产生振动等不良影响降低机械臂定位精度。
为此提出了利用钢丝传动机构来实现驱动件到末端负载的动力传递,这样的设计可以最大程度减小驱动件本身对于机械臂负载能力的影响,同时由于钢丝本身的弹性也使得机械臂具有一定柔性,实现一定的自适应功能。
由于传动件的位置调整,所以在控制系统的设计中,要求能够对于机械臂最终的末端位置准确地进行反馈控制。
四自由度的关节式机器人在当今工业界有广泛应用。
它分别由四个旋转轴进行操纵,其末端可以灵活地在三维空间中运动。
根据旋转的方向不同,旋转轴分为平行于连杆和垂直连杆的两类关节。
题目中所给出的简化机械臂模型可以归类为由步进式电机进行操纵的设备,这种操纵的优点是稳定而可靠,但是缺点在于步长是离散化的,可能会对精度造成影响.题目要求为这类机器人设计一个通用的算法,用来计算执行指定动作所要求的指令序列.二、机器人的国内外研究状况1、机器人的国内研究状况我国有组织有计划地发展机器人事业.应该说是从“七五”期间的科技攻关及实施“86期划”开始的。
经过十几年来的研制、生产、和应用,有了长足的进步。
目前在一些方面,如喷涂机器人、弧焊机器人、点焊机器人、搬运机器人、装配机器人、特种机器人(水下、爬壁、管道、遥控等机器人),已掌握了机器人的设计制造技术,解决了控制、驱动系统的设计和配置、软件的设计和编制等关键技术;还掌握了自动化喷漆线、弧焊自动线(工作站)及其周边配套设备的全线自动通信、协调控制技术。
仿生四足机器人的研究:回顾与展望(3)

仿生四足机器人的研究:回顾与展望摘要:本文侧重于仿生四足机器人。
在这一领域的主要挑战是如何设计高动力性和高负载能力的仿生四足机器人。
本文首先介绍了仿生四足机器人,尤其是具有里程碑意义的四足机器人的历史。
然后回顾了仿生四足机器人驱动模式的现代技术。
随后,描述了四足机器人的发展趋势。
基于仿生四足机器人的技术现状,简要回顾了四足机器人的技术难点。
又介绍了山东大学研制的液压四足机器人。
最后是总结和展望未来的四足机器人。
一、导言代替人类在复杂和危险的环境中工作的移动机器人的需求引起越来越多的关注,如煤矿井下,核电站,以及打击恐怖主义的战争。
一般移动机器人可分为三种类型:空中机器人,水下机器人和地面机器人。
地面机器人的开发主要是运用轨道或轮子。
轮式和履带式机器人可以在平整地面工作,但大多数是无法在凹凸不平的地面上工作。
换句话说,现有的地面机器人只能在部分地面工作。
与轮式和履带式机器人相比,腿式机器人有可能适应更为广泛的地形,就像如同有腿的动物,几乎可以行走在所有的地形。
例如,羚羊具有很强的运动能力,即便在高度复杂的环境中也一样。
因此,近些年人们积极地投入腿式机器人的研究中。
腿式机器人可以去动物能够到达的地方,应该要构建并运用于实际。
尽管机器人技术领域取得了巨大成就,腿式机器人仍然远远落后于它们的仿生学 [1,2]。
基于机械结构,腿式机器人可分为步行机器人和爬行机器人。
与爬行动物的机器人相比,步行机器人几乎与躯干垂直的腿被认为更适应载重。
步行机器人可以有效地承受更大的载重。
具有联合执行机构的步行机器人具有良好的行走速度和运输能力。
因此,基于哺乳类动物的仿生机器人的研究已成为机器人领域的重要发展方向。
现已有一、二、三、四甚至更多条腿的腿式机器人。
最普遍的是具有高效率步态和稳定性能的偶数条腿的腿式机器人[3]。
在腿式机器人中,四足机器人具有良好的机动性和运动稳定性,而典型的双足机器人,缺乏运动的稳定性。
从系统和控制器的设计上来看,四足机器人也是一个不错的选择。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
关键词:水下机器人、智能水下机器人、智能体系、运动控制、通讯导航、探测识别、高效能源 随着人类海洋开发的步伐不断加快,水下机器人技术作为人类探索海洋最重要的手段得到了空前的重视和发展。作者对水下机器人进行了定义与分类。介绍了近年来国内外水下机器人的发展现状与发展趋势,重点针对智能水下机器人的主要关键技术及未来发展方向进行了分析。 地球的表面积为5.1亿km2,而海洋的面积为3.6亿km2。占地球表面积71%的海洋是人类赖以生存和发展的四大战略空间——陆、海、空、天中继陆地之后的第二大空间,是能源、生物资源和金属资源的战略性开发基地,不但是目前最现实的,而且是最具发展潜力的空间。作为蓝色国土的海洋密切关系到人类的生存和发展,进入21世纪后,人类更加强烈的感受到陆地资源日趋紧张的压力,这是人类面临的最现实的问题。海洋即将成为人类可持续发展的重要基地,是人类未来的希望。水下机器人从20世纪后半叶诞生起,就伴随着人类认识海洋、开发海洋和保护海洋的进程不断发展。专为在普通潜水技术较难到达的区域和深度执行各种任务而生的水下机器人,将使海洋开发进人一个全新的时 代,在人类争相向海洋进军的21世纪,水下机器人技术作为人类探索海洋最重要的手段必将得到空前的重视和发展[1]。 1海洋对人类的重要性 海洋作为蓝色国土,首先是一个沿海国家的“门户”,是其与远方联系的便捷途径,并且“门户”的安全是国家安全的重要组成部分,早在2 500多年前古希腊海洋学家锹未斯托克就提出过“谁控制了海洋,谁就控制了一切”。很久以来人们就依赖于海洋航道进行大量的物品贸易,现在整个世界大部分的货物运输都依赖于海上运输,海洋运输是整个经济正常运转必要的一环。更重要的是,现在很多国家的石油、矿石等最基本的生产资料大部分都依赖于海洋运输,海洋运输的安全和对海 洋的控制力成为一个国家生存的基本保障。 近年来再次掀起海洋热的浪潮是因为陆上的资源有限,很多资源已经开发殆尽,而海洋中蕴藏着丰富的能源、矿产资源、生物资源和金属资源等,人们急需开发这些资源以接替所剩不多的陆上资源来维持发展。更为重要的是,地球上半数以上面积的海洋是国际海域,这些区域内全部的资源属于全体人类,不属于任何国家。但目前的现状是只有少数国家有能力对这些资源进行初步开采,这些国家在其已探明的区域拥有优先开采权,相对于那些没有能力开采的国家这几乎就等于独享这部分资源。因此海洋已经成为国际战略竞争的焦点,争夺国际海洋资源是一项造福子孙后代的伟大事业。所以水下技术成为目前重点研究的高新技术之一,智能水下机器人作为高效率的水下工作平台在海洋开发与利用中起到至关重要的作用。 2水下机器人的定义与分类 2.1水下机器人的定义与概述 水下机器人也称作无入水下潜水器(unmanned un.derwater vehicles,UUV),它并不是一个人们通常想象的具有类人形状的机器,而是一种可以在水下代替人完成某种任务的装置。在外形上更像一艘微小型潜艇,水下机器人的自身形态是依据水下工作要求来设计的。生活在陆地上的人类经过自然进化,诸多的自身形态特点是为了满足陆地运动、感知和作业要求,所以大多数陆地机器人在外观上都有类人化趋势,这是符合仿生学原理的。水下环境是属于鱼类的“天下”,人类身体的形态特点与鱼类相比则完全处于劣势,所以水下运载体的仿生大多体现在对鱼类的仿生上。目前水下机器人大部分是框架式和类似于潜艇的回转细长体,随着仿生技术的不断发展,仿鱼类形态甚至是运动方式的水下机器 人将会不断发展。水下机器人工作在充满未知和挑战的海洋环境中,风、浪、流、深水压力等各种复杂的海洋环境对水下机器人的运动和控制干扰严重,使得水下机器人的通信和导航定位十分困难,这是与陆地机器人最大的不同,也是目前阻碍水下机器人发展的主要因素[2|。 2.2水下机器人的分类 水下潜水器根据是否载人分为载人潜水器和无人潜水器两类。载人潜水器由人工输入信号操控各种机动与动作,由潜水员和科学家通过观察窗直接观察外部环境,其优点是由人工亲自做出各种核心决策,便于处理各种复杂问题,但是人生命安全的危险性增大。由于载人需要足够的耐压空间、可靠的生命安全保障和生命维持系统,这将为潜水器带来体积庞大、系统复杂、造价高昂、工作环境受限等不利因素。无人水下潜水器就是人们常说的水下机器人,由于没有载人的限制,它更适合长时间、大范围和大深度的水下作业。无人潜水器按照与水面支持系统间联系方式的不同可以分为下面两类。(1)有缆水下机器人,或者称作遥控水下机器人(remotely operated vehicle,简称ROV),ROV需要由电缆从母船接受动力,并且ROV不是完全自主的,它需要人为的干预,人们通过电缆对ROV进行遥控操作,电缆对RoV像“脐带”对于胎儿一样至关重要,但是由于细长的电缆悬在海中成为RoV最脆弱的部分,大大限制了机器人的活动范围和工作效率。(2)无缆水下机器人,常称作自治水下机器人或智能水下机器人(autonomous underwater vehicle,简称AUV),AUV自身拥有动力能源和智能控制系统,它能够依靠自身的智能控制系统进行决策与控制,完成人们赋予的工作使命。AUV是新一代的水下机器人,由于其在经济和军事应用上的远大前景,许多国家已经把智能水下机器人的研发提上日程。有缆水下机器人都是遥控式的,根据运动方式不同可分为拖曳式、(海底)移动式和浮游(自航)式三种。无 缆水下机器人都是自治式的,它能够依靠本身的自主决策和控制能力高效率地完成预定任务,拥有广阔的应用前景,在一定程度上代表了目前水下机器人的发展趋势。 2.3自治水下机器人 自治水下机器人,又称智能水下机器人,是将人工智能、探测识别、信息融合、智能控制、系统集成等多方面的技术集中应用于同一水下载体上,在没有人工实时控制的情况下,自主决策、控制完成复杂海洋环境中的预定任务使命的机器人。俄罗斯科学家B.C.亚斯特列鲍夫等人所着的《水下机器人》中指出第3代智能水下机器人是一种具有高度人工智能的系统,其特点是具有高度的学习能力和自主能力,能够学习并自主适应外界环境变化。执行任务过程中不需要人工干预,设定任务使命给机器人后,由其自主决定行为方式和路径规划,军事领域中各种战术甚至战略任务都依靠其自主决策来完成。智能水下机器人能够高效率地执行各种战略战术任务,拥有广泛的应用空间,代表了水下机器人技 术的发展方向L3|。 3国内外AUV的发展现状与趋势 3.1国内外AUV的发展现状 智能水下机器人(AuV)是无人水下机器人(UUV)的一种。无人水下航行器技术无论在军事上、还是民用方面都已不是新事物,其研制始于20世纪50年代,早期民用方面主要用于水文调查、海上石油与天然气的开发等,军用方面主要用于打捞试验丢失的海底武器(如鱼雷),后来在水雷战中作为灭雷具得到了较大的发展。20世纪80年代末,随着计算机技术、人工智能技术、微电子技术、小型导航设备、指挥与控制硬件、逻辑与软件技术的突飞猛进,自主式水下航行器得到了大力发展。由于AUV摆脱了系缆的牵绊,在水下作战和作业方面更加灵活,该技术日益受到发达国家军事海洋技术部门的重视。 在过去的十几年中,水下技术较发达的国家像美国、日本、俄罗斯、英国、法国、德国、加拿大、瑞典、意大利、挪威、冰岛、葡萄牙、丹麦、韩国、澳大利亚等建造了数百个智能水下机器人,虽然大部分为试验用,但随着技术的进步和需求的不断增强,用于海洋开发和军事作战的智能水下机器人不断问世。由于智能水下机器人具有在军事领域大大提升作战效率的优越性,各国都十分重视军事用途智能水下机器人的研发,着名的研究机构有:美国麻省理工学院MIT Sea Grant’S AUV实验室、美国海军研究生院(Naval Postgraduate Sch001)智能水下运载器研究中心、美国伍慈侯海洋学院(Woods Hole oceanographic Institute)、美国佛罗里达大西洋大学高级海洋系统实验室(Advanced Marine Systems La—boratory)、美国缅因州大学海洋系统工程实验室(Marine Systems Underwater Systems Institute)、美国夏威夷大学自动化系统实验室(Autonomous Systems Laboratory)、日本东京大学机器人应用实验室(Underwater Robotics Application Laboratory(URA))、英国海事技术中心(Marine Technology Center)等。 美国海军研究生院AUV ARIES(图1。见封二),主要用于研究智能控制、规划与导航、目标探测与识别等技术。图2(见封二)是美国麻省理工学院的水下机器人Odyssey II,它长2.15 m,直径为0.59 m,用于两个特殊的科学使命:①在海冰下标图,以理解北冰洋下的海冰机制;②检测中部大洋山脊处的火山喷发。美国的ABE(图3,见封二)最大潜深6 000 m,最大速度2节(编者注:1节=1海里/时=1.852 km/h),巡航速度1节,考察距离≥30 km,考察时间≥50 h,能够在没有支持母船 的情况下,较长时间地执行海底科学考察任务,它是对载人潜水器和无人遥控潜水器的补充,以构成科学的深海考察综合体系,为载人潜水器提供考察目的地的详细信息。日本研制的R2D4水下机器人(图4,见封二)长4.4 m,宽1.08 m,高0.81m,重1 506 kg,最大潜深4 000 m,主要用于深海及热带海区矿藏的探察。能自主地收集数据,可用于探测喷涌热水的海底火山、沉船、海底矿产资源和生物等。REMuS(remote environmental monitoring units,远距离环境监测装置)是美Hydroid公司的系列水下机器人(图5,见封二)。RE.MUS6000工作深度为25~6 000 m,是一个高度模块化的系统,代表了自主式水下探测器的最高水平。中国智能水下机器人技术的研究开始于20世纪80年代中期,主要研究机构包括中国科学院沈阳自动化研究所和哈尔滨工程大学等。中国科学院沈阳自动化研究所蒋新松院士领导设计了“海人一号”遥控式水下机器人试验样机。之后“863”计划的自动化领域开展了潜深1 000 m的“探索者号”智能水下机器人的论证与研究工作,做出了非常有意义的探索性研究。哈尔滨工程大学的智水系列智能水下机器人已经突破智能决策与控制等多个技术难关,各项技术标准都在向工程可应用级别靠