信号与系统复习题库以及答案
信号与系统复习题答案

信号与系统复习题答案1. 信号的分类有哪些?信号可以分为连续时间信号和离散时间信号。
连续时间信号是指在时间上连续变化的信号,而离散时间信号是指在时间上以离散点变化的信号。
2. 什么是线性时不变系统?线性时不变系统是指满足叠加性和时间不变性的系统。
叠加性意味着系统对多个输入信号的响应等于对各个输入信号单独响应的和;时间不变性意味着系统对输入信号的响应不随时间变化。
3. 傅里叶变换的性质有哪些?傅里叶变换的性质包括线性、时移、频移、尺度、对称性、卷积定理等。
线性性质表明,信号的线性组合的傅里叶变换等于各个信号傅里叶变换的线性组合;时移性质表明,信号的时间平移会导致其傅里叶变换的相位变化;频移性质表明,信号的频率平移会导致其傅里叶变换的幅度变化;尺度性质表明,信号的尺度变化会导致其傅里叶变换的频率变化;对称性性质表明,实信号的傅里叶变换是共轭对称的;卷积定理表明,时域的卷积对应于频域的乘积。
4. 拉普拉斯变换与傅里叶变换的关系是什么?拉普拉斯变换是傅里叶变换的推广,它通过引入复频率变量s来扩展傅里叶变换的应用范围。
当s的虚部趋于无穷大时,拉普拉斯变换退化为傅里叶变换。
5. 什么是采样定理?采样定理指出,如果一个连续时间信号的频谱只包含在一定频率范围内,那么可以通过在一定采样率下对该信号进行采样来完全恢复原信号。
采样率必须大于信号最高频率的两倍,即奈奎斯特率。
6. 什么是系统的频率响应?系统的频率响应是指系统对不同频率的输入信号的响应。
它可以通过系统的传递函数在频域内进行分析,反映了系统对不同频率成分的放大或衰减情况。
7. 什么是系统的稳定性?系统的稳定性是指当输入信号为有界信号时,系统输出信号也保持有界的性质。
线性时不变系统可以通过其传递函数的极点位置来判断其稳定性。
8. 什么是系统的因果性?系统的因果性是指系统的输出在任何时刻只取决于当前和过去的输入,而不依赖于未来的输入。
因果系统的传递函数在频域内表现为左半平面的极点。
信号与系统复习试题(含答案)

76.某二阶LTI系统的频率响应H (j)
A.y2y3y
B。y3y2yf2
D。y3y2yf
H(s)的共轭极点在虚轴上,则它的
2,-1,H ()1,则系统函数H(s)为(
C。(s1)(s2)
(t)的傅氏变换是(
B。j(
D。j(2
A.系统在(t)作用下的全响应
C.系统单位阶跃响应的导数
6。对于一个三阶常系数线性微分方程描述的连续时间系统进行系统的时域模拟时,所需积
分器数目最少是__3个_____个。
7。一线性时不变连续因果系统是稳定系统的充分且必要条件是系统函数的极点位于S平面
的___左半平面_______。
8.如果一线性时不变系统的单位冲激响应为h(t),则该系统的阶跃响应g(t)为
其中x(0)是初始状态,
f(t)为激励,y(t)为全响应,试回答该系统是否是线性的?[答案:非线性]
2.y'(t)sinty(t)f(t)试判断该微分方程表示的系统是线性的还是非线性的,
是时变的还是非时变的?[答案:线性时变的]
3.已知有限频带信号f(t)的最高频率为100Hz,若对f(2t)*f(3t)进行时域取样,
B。f(t)f(t8)
12
C.f(t)f(t8)
D。f(t3)f(t1)
69.已知一连续系统在输入f(t)的作用下的零状态响应为yzs(t)f(4t),则该系统为()
70.已知f(t)是周期为T的函数,f(t)-f (t
T)的傅里叶级数中,只可能有(
71.一个线性时不变的连续时间系统,其在某激励信号作用下的自由响应为(e
h(t)=(1et)(t),则其系统函数
15.已知一信号f(t)的频谱F(j)的带宽为,则f(2t)的频谱的带宽为
信号与系统试题及答案(大学期末考试题)

信号与系统试题及答案(大学期末考试题)一、选择题(每题2分,共40分)1. 下列哪个信号是周期信号?A. 方波B. 单位冲激信号C. 随机信号D. 正弦信号答案:A2. 信号x(t)的拉普拉斯变换为X(s)。
若x(t)的区间平均功率为P,则X(s)的区间平均功率是多少?A. PB. 2πPC. P/2D. πP答案:D3. 系统的冲激响应为h(t)=e^(-2t)sin(3t)u(t)。
则该系统为什么类型的系统?A. 线性非时变系统B. 线性时不变系统C. 非线性非时变系统D. 非线性时不变系统答案:B4. 信号x(t)通过系统h(t)并得到输出信号y(t)。
若x(t)为周期为T的信号,则y(t)也是周期为T的信号。
A. 正确B. 错误答案:A5. 下列哪个信号不是能量有限信号?A. 常值信号B. 正弦信号C. 方波D. 三角波答案:B...二、填空题(每题4分,共40分)1. 离散傅里叶变换的计算复杂度为$O(NlogN)$。
答案:NlogN2. 系统函数$H(z) = \frac{1}{1-0.5z^{-1}}$的极点为0.5。
答案:0.5...三、简答题(每题10分,共20分)1. 请简要说明信号与系统的基本概念和关系。
答案:信号是波动的物理量的数学描述,而系统是对信号进行处理的方式。
信号与系统的关系在于信号作为系统的输入,经过系统处理后得到输出信号。
信号与系统的研究可以帮助我们理解和分析各种现实世界中的波动现象。
2. 请简要说明周期信号和非周期信号的区别。
答案:周期信号是在一定时间间隔内重复出现的信号,具有周期性。
非周期信号则不能被表示为简单的周期函数,不存在固定的重复模式。
...以上是关于信号与系统试题及答案的文档。
希望能对您的大学期末考试复习有所帮助。
祝您考试顺利!。
信号与系统概念复习题参考答案

信号与系统复习题1、描述某系统的微分方程为 y ”(t) + 5y ’(t) + 6y(t) = f (t)y(0_)=2,y ’(0_)= -1 y(0_)= 1,y ’(0_)=0 求系统的零输入响应。
求系统的冲击相应求系统的单位阶跃响应。
解:2、系统方程 y (k)+ 4y (k – 1) + 4y (k – 2) = f (k)已知初始条件y (0)=0,y (1)= – 1;激励kk f 2)(=,k ≥0。
求方程的解。
解:特征方程为 λ2 + 4λ+ 4=0 可解得特征根λ1=λ2= – 2,其齐次解 y h(k )=(C 1k +C 2) (– 2)k 特解为 y p(k )=P (2)k , k ≥0代入差分方程得 P (2)k +4P (2)k –1+4P (2)k –2= f (k ) = 2k , 解得 P =1/4所以得特解: y p(k )=2k –2 , k ≥0故全解为 y (k )= y h+y p = (C 1k +C 2) (– 2)k + 2k –2 , k ≥0 代入初始条件解得 C 1=1 , C 2= – 1/43、系统方程为 y (k) + 3y (k –1) + 2y (k –2) = f (k)已知激励kk f 2)(=, k ≥0,初始状态y (–1)=0, y (–2)=1/2, 求系统的零输入响应、零状态响应和全响应。
解::(1)y zi(k )满足方程y zi(k ) + 3y zi(k –1)+ 2y zi(k –2)= 0y zi(–1)= y (–1)= 0, y zi(–2) = y (–2) = 1/2 首先递推求出初始值y zi(0), y zi(1), y zi(k )= – 3y zi(k –1) –2y zi(k –2) y zi(0)= –3y zi(–1) –2y zi(–2)= –1 y zi(1)= –3y zi(0) –2y zi(–1)=3 特征根为λ1= –1 ,λ2= – 2解为 y zi(k )=C zi1(– 1)k + C zi2(–2)k 将初始值代入 并解得 C zi1=1 , C zi2= – 2y zi(k )=(– 1)k – 2(– 2)k , k ≥0(2)零状态响应y zs(k ) 满足:y zs(k ) + 3y zs(k –1) + 2y zs(k –2) = f (k ) y zs(–1)= y zs(–2) = 0 递推求初始值 y zs(0), y zs(1),y zs(k ) = – 3y zs(k –1) – 2y zs(k –2) + 2k , k ≥0 y zs(0) = – 3y zs(–1) – 2y zs(–2) + 1 = 1 y zs(1) = – 3y zs(0) – 2y zs(–1) + 2 = – 1分别求出齐次解和特解,得y zs(k ) = C zs1(–1)k + C zs2(–2)k + y p(k )= C zs1(– 1)k + C zs2(– 2)k + (1/3)2k 代入初始值求得C zs1= – 1/3 , C zs2=1y zs(k )= – (– 1)k /3+ (– 2)k + (1/3)2k ,k ≥0 4、系统的方程:()()()()()12213 -+=-+-+k f k f k y k y k y()()()()()0102==-=y y k k f k ε求系统的零输入响应。
信号与系统复习题与答案

习题答案1.1 选择题(每小题可能有一个或几个正确答案,将正确的题号填入[ ]内) 1.f (5-2t )是如下运算的结果————————( 3 ) (1)f (-2t )右移5 (2)f (-2t )左移5(3)f (-2t )右移25 (4)f (-2t )左移251.2 是非题(下述结论若正确,则在括号内填入√,若错误则填入×)1.偶函数加上直流后仍为偶函数。
( √ ) 2. 不同的系统具有不同的数学模型。
( × ) 3. 任何信号都可以分解为偶分量与奇分量之和。
( √ ) 4.奇谐函数一定是奇函数。
( × ) 5.线性系统一定满足微分特性 ( × ) 1.3 填空题 1.=⋅t t cos )(δ()t δ=+t t 0cos )1(ωδ0cos (1)t ωδ+=-⋅)(cos )(0τωδt t=--)2()cos 1(πδt t ()2t πδ-=--⎰∞∞-dt t t )2()cos 1(πδ 1⎰+∞∞-=⋅tdt t cos )(δ 1⎰+∞∞-=tdt t 0cos )(ωδ 1⎰∞-=td ττωτδ0cos )(()u t⎰+∞∞-=+tdt t 0cos )1(ωδ0c o s ω⎰∞-=+td ττωτδ0c o s )1(0c o s (1)u t ω+ 2.=⋅-at e t )(δ()t δ=⋅-t e t )(δ()t δ⎰∞--=td e ττδτ)(()u t⎰∞∞--=--dt t e t t )1(][22δ21e --⎰∞∞--=dt e t at )(δ 11.4 简答题1.信号f (t )如题图四所示,试求)(t f '表达式,并画出)(t f '的波形。
答案:因为 ()[(f t t u t =所以 ()(1)(f t u t u '=+-2.f (t )波形如题图五所示,试写出其表达式(要求用阶跃信号表示)。
信号与系统复习题含答案

试题一一. 选择题(共10题,20分) 1、n j n j een x )34()32(][ππ+=,该序列是 。
A.非周期序列B.周期3=NC.周期8/3=ND. 周期24=N 2、一连续时间系统y(t)= x(sint),该系统是 。
A.因果时不变B.因果时变C.非因果时不变D.非因果时变3、一连续时间LTI 系统的单位冲激响应)2()(4-=-t u e t h t ,该系统是。
A.因果稳定B.因果不稳定C.非因果稳定D. 非因果不稳定4、若周期信号x[n]是实信号和奇信号,则其傅立叶级数系数a k 是 。
A.实且偶B.实且为奇C.纯虚且偶D. 纯虚且奇 5、一信号x(t)的傅立叶变换⎩⎨⎧><=2||02||1)(ωωω,,j X ,则x(t)为 。
A. t t 22sinB. tt π2sin C. t t 44sin D.t t π4sin6、一周期信号∑∞-∞=-=n n t t x )5()(δ,其傅立叶变换)(ωj X 为 。
A. ∑∞-∞=-k k )52(52πωδπ B. ∑∞-∞=-k k )52(25πωδπC. ∑∞-∞=-k k )10(10πωδπD. ∑∞-∞=-k k)10(101πωδπ7、一实信号x[n]的傅立叶变换为)(ωj e X ,则x[n]奇部的傅立叶变换为 。
A.)}(Re{ωj e X j B. )}(Re{ωj e XC. )}(Im{ωj e X jD. )}(Im{ωj e X8、一信号x(t)的最高频率为500Hz ,则利用冲激串采样得到的采样信号x(nT)能唯一表示出原信号的最大采样周期为 。
A. 500B. 1000C. 0.05D. 0.0019、一信号x(t)的有理拉普拉斯共有两个极点s=-3和s=-5,若)()(4t x e t g t=,其傅立叶变换)(ωj G 收敛,则x(t)是 。
A. 左边B. 右边C. 双边D. 不确定10、一系统函数1}Re{1)(->+=s s e s H s,,该系统是 。
信号与系统复习题及答案
1. 系统的激励是)t (e ,响应为)t (r ,若满足dt)t (de )t (r =,则该系统为 线性、时不变、因果。
(是否线性、时不变、因果?) 2. 求积分dt )t ()t (212-+⎰∞∞-δ的值为 5 。
3. 当信号是脉冲信号f(t)时,其 低频分量 主要影响脉冲的顶部,其 高频分量 主要影响脉冲的跳变沿。
4. 若信号f(t)的最高频率是2kHz ,则t)f(2的乃奎斯特抽样频率为 8kHz 。
5. 信号在通过线性系统不产生失真,必须在信号的全部频带内,要求系统幅频特性为 一常数相频特性为_一过原点的直线(群时延)。
6. 系统阶跃响应的上升时间和系统的 截止频率 成反比。
7. 若信号的3s F(s)=(s+4)(s+2),求该信号的=)j (F ωj 3(j +4)(j +2)ωωω。
8. 为使LTI 连续系统是稳定的,其系统函数)s (H 的极点必须在S 平面的 左半平面 。
9. 已知信号的频谱函数是))00(()j (F ωωδωωδω--+=,则其时间信号f(t)为01sin()t j ωπ。
10. 若信号f(t)的211)s (s )s (F +-=,则其初始值=+)(f 0 1 。
二、判断下列说法的正误,正确请在括号里打“√”,错误请打“×”。
(每小题2分,共10分)1.单位冲激函数总是满足)()(t t -=δδ ( √ )2.满足绝对可积条件∞<⎰∞∞-dt t f )(的信号一定存在傅立叶变换,不满足这一条件的信号一定不存在傅立叶变换。
( × )3.非周期信号的脉冲宽度越小,其频带宽度越宽。
( √ )4.连续LTI 系统的冲激响应的形式取决于系统的特征根,于系统的零点无关。
( √ )5.所有周期信号的频谱都是离散谱,并且随频率的增高,幅度谱总是渐小的。
( × )三、计算分析题(1、3、4、5题每题10分,2题5分, 6题15分,共60分)1.信号)t (u e )t (f t -=21,信号⎩⎨⎧<<=其他,01012t )t (f ,试求)t (f *)t (f 21。
信号与系统复习题含答案
试题一一. 选择题(共10题,20分) 1、n j n j een x )34()32(][ππ+=,该序列是 。
A.非周期序列B.周期3=NC.周期8/3=ND. 周期24=N2、一连续时间系统y(t)= x(sint),该系统是 。
A.因果时不变B.因果时变C.非因果时不变D.非因果时变3、一连续时间LTI 系统的单位冲激响应)2()(4-=-t u e t h t ,该系统是。
A.因果稳定B.因果不稳定C.非因果稳定D. 非因果不稳定 4、若周期信号x[n]是实信号和奇信号,则其傅立叶级数系数a k 是 。
A.实且偶B.实且为奇C.纯虚且偶D. 纯虚且奇 5、一信号x(t)的傅立叶变换⎩⎨⎧><=2||02||1)(ωωω,,j X ,则x(t)为 。
A. t t 22sinB. tt π2sin C. t t 44sin D.t t π4sin6、一周期信号∑∞-∞=-=n n t t x )5()(δ,其傅立叶变换)(ωj X 为。
A. ∑∞-∞=-k k )52(52πωδπ B. ∑∞-∞=-k k )52(25πωδπC. ∑∞-∞=-k k )10(10πωδπD. ∑∞-∞=-k k)10(101πωδπ7、一实信号x[n]的傅立叶变换为)(ωj e X ,则x[n]奇部的傅立叶变换为 。
A.)}(Re{ωj e X j B. )}(Re{ωj e XC. )}(Im{ωj e X jD. )}(Im{ωj e X8、一信号x(t)的最高频率为500Hz ,则利用冲激串采样得到的采样信号x(nT)能唯一表示出原信号的最大采样周期为 。
A. 500B. 1000C. 0.05D.0.0019、一信号x(t)的有理拉普拉斯共有两个极点s=-3和s=-5,若)()(4t x e t g t =,其傅立叶变换)(ωj G 收敛,则x(t)是 。
A. 左边B. 右边C. 双边D. 不确定10、一系统函数1}Re{1)(->+=s s e s H s,,该系统是 。
信号与系统考试题及答案
信号与系统考试题及答案一、选择题1. 在信号与系统中,周期信号的傅里叶级数展开中,系数\( a_n \)表示:A. 基频的振幅B. 谐波的振幅C. 直流分量D. 相位信息答案:B2. 下列哪个不是线性时不变系统的主要特性?A. 线性B. 时不变性C. 因果性D. 可逆性答案:D二、简答题1. 简述傅里叶变换与拉普拉斯变换的区别。
答案:傅里叶变换主要用于处理周期信号或至少是定义在实数线上的信号,而拉普拉斯变换则可以处理更广泛类型的信号,包括非周期信号和定义在复平面上的信号。
傅里叶变换是拉普拉斯变换的一个特例,当\( s = j\omega \)时,拉普拉斯变换退化为傅里叶变换。
2. 解释什么是系统的冲激响应,并举例说明。
答案:系统的冲激响应是指系统对单位冲激信号的响应。
它是系统特性的一种表征,可以用来分析系统对其他信号的响应。
例如,一个简单的RC电路的冲激响应是一个指数衰减函数。
三、计算题1. 已知连续时间信号\( x(t) = e^{-|t|} \),求其傅里叶变换\( X(f) \)。
答案:\[ X(f) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-|t|}e^{-j2\pi ft} dt \]\[ X(f) = \frac{1}{2\pi} \left[ \int_{-\infty}^{0} e^{t} e^{-j2\pi ft} dt + \int_{0}^{\infty} e^{-t} e^{-j2\pi ft} dt\right] \]\[ X(f) = \frac{1}{2\pi} \left[ \frac{1}{1+j2\pi f} -\frac{1}{1-j2\pi f} \right] \]\[ X(f) = \frac{1}{\pi} \frac{j2\pi f}{1 + (2\pi f)^2} \]2. 给定一个线性时不变系统的系统函数\( H(f) = \frac{1}{1+j2\pi f} \),求该系统对单位阶跃信号\( u(t) \)的响应。
信号与系统复习题(答案全)
1、 若系统的输入f (t)、输出y (t) 满足()3()4t y t e ft -=,则系统为 线性的 (线性的、非线性的)、 时变的 (时变的、时不变)、 稳定的 (稳定的、非稳定的)。
2、 非周期、连续时间信号具有 连续 、非周期频谱;周期、连续时间信号具有离散、非周期 频谱;非周期、离散时间信号具有 连续 、周期频谱;周期、离散时间信号具有离散、 周期 频谱。
3、 信号f(t)的占有频带为0-10KHz,被均匀采样后,能恢复原信号的最大采样周期为 5×10-5 s . 4、 )100()(2t Sa t f =是 能量信号 (功率信号、能量信号、既非功率亦非能量信号)。
5、 ()2cos()f t t =+是 功率信号 (功率信号、能量信号、既非功率亦非能量信号)。
6、 连续信号f(t)=sint 的周期T 0= 2π ,若对f(t)以fs=1Hz 进行取样,所得离散序列f(k)=sin(k) ,该离散序列是周期序列? 否 。
7、 周期信号2sin(/2)()j n tn n f t e n ππ+∞=-∞=∑,此信号的周期为 1s 、直流分量为 2/π 、频率为5Hz 的谐波分量的幅值为 2/5 。
8、 f (t) 的周期为0.1s 、傅立叶级数系数**03355532F F F F F j --=====、其余为0。
试写出此信号的时域表达式f (t) = 5 + 6 cos ( 60 π t ) - 4 sin (100 π t ) 。
9、 f (k) 为周期N=5的实数序列,若其傅立叶级数系数()205=F ()52511,πjeF -+=()54512πjeF -+=、 则F 5 (3 )= ()54512πjeF +=- 、F 5 (4 )= ()52511πj eF +=- 、F 5 (5 )= 2 ;f(k) =())1.7254cos(62.052)9.3552cos(62.152525140525︒-⨯+︒-⨯+=∑=k k e n F n k jn πππ。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 试分别指出以下波形是属于哪种信号?
2 试写出题1图中信号的函数表达式。
3 试求下列积分:
⑴ dttttx)()(0 ⑵ dtttutt)2()(00
⑶ dttttetj)]()([0 ⑷ dttt)2(sin
⑸ dtttt)1()2(3 ⑹ 112)4(dtt
4 试求下列积分:
⑴ tdtx)()1()(1 ⑵ tdtx)()1()(2
⑶ tduutx)]1()([)(3
5 下列各式中,)(x是系统的输入,)(y是系统的响应。是判断各系统是否是线性的、
时不变的和因果的。
⑴ btaxty)()( (ba、均为常数) ⑵ )()(txety ⑶ )2()(txty
⑷ )1()1()(txtxty ⑸ 2)()(tdxty ⑹ )2()(nxny
⑺ )()(nnxny ⑻ )1()()(nxnxny
22
TT2T
E
t
)(tx
)(a
t
)(tx
)(b
1
3
1
2
4
0
234
12
t
)(tx
)(c
n
)(nx
)(d
221301
2
1
1
2
3
4
4
6 已知一线性时不变系统无起始储能,当输入信号)()(ttx时,响应)()(tuetyt,
试求出输入分别为)(t与)(tu时的系统响应。
7 试计算下列各对信号的卷积积分:)()()(thtxty。
⑴ )()(tuetxt )()(tuetht (对与两种情况)
⑵ 1)(tx )()(3tuetht
⑶ )()()(tututx )()()(tututh
⑷ )2()2()(tututx )()()(tututh
⑸ )()()(tututx )2()()(tututh
⑹ )]1()([)(tututtx )2()()(tututh
8 设已知LTI系统的单位冲激响应 )()(2tuetht,试求在激励
)]2()([)(tutuetx
t
作用下的零状态响应。
9 已知系统的微分方程和起始条件,试求系统的零输入响应。
⑴ 1)0( ,1)0( , )()(3)(4)(yytxtytyty
⑵ 1)0( ,1)0( , )()(4)(4)(yytxtytyty
⑶ 2)0( ,1)0( , )()(8)(4)(yytxtytyty
10 已知系统的差分方程和起始条件,试求系统的零输入响应。
⑴ 1)2( ,1)1( , )()2(2)1(3)(yynxnynyny
⑵ 1)2( ,1)1( , )()2(4)1(4)(yynxnynyny
⑶ 2)2( ,1)1( , )()2(61)1(65)(yynxnynyny
11 已知系统的微分方程,试求系统的单位冲激响应。
⑴ )()(3)(4)(txtytyty
⑵ )()()(3)(4)(txtxtytyty
⑶ )()()(2)(txtxtyty
12 周期性矩形信号的波形如图,试将其展成三角形式和指数形式的傅里叶级数。
13 设有一周期信号x(t),其复振幅为:
0)21(02nj
n
A
n
n
⑴ x(t)是实函数吗? ⑵ x(t)是偶函数吗? ⑶ dttdx)(是偶函数吗?
14 试求以下信号的傅里叶变换:
15 试利用傅里叶变换的对称性质,求下列傅里叶变换的反变换:
⑴ )()(0jX ⑵)]()([)(cccuujX
⑶ )()(SgnjX
)(tx
t
0
2
E
2
T
2
T
T2ETT2
t)(3tx)(ct)(2tx)(bt
)(1tx
)(a
2
121
答案
1 (a) (b) (c) 是连续时间信号,(d) 是离散时间信号。
2 (a)2)1(2022)(TktkTkTtkTEtx,2,1,0k
(b)ktkktx)1( )(,2,1,0k
(c)ttttx0)(
(d)nnx)(
3 ⑴ )(0tx ⑵ 0,1 ; 0,000tt ⑶ 01tje
⑷ 1 ⑸ 4 ⑹ 0
4 ⑴ )()()(1tuttx ⑵ )()(2tutx
⑶ )1(21)]1()([2)(23tutututtx
5 ⑴ 非线性、时不变、非因果;
⑵ 非线性、时不变、非因果;
⑶ 线性、时变、非因果;
⑷ 线性、时变、非因果;
⑸ 线性、时变、非因果;(设)2()(tty )
⑹ 线性、时变、非因果;
⑺ 线性、时变、因果;
⑻ 非线性、时不变、因果;
6 )()()(tuettyt ,)()1(1)(tuetyt
7 ⑴ )()(1tueett,当)(tutet ;⑵ 31 ;
⑶ 其它0220tttt ;⑷ 其它0232)23(22)2(tttt ;
⑸ 其它032320ttttt ;⑹ 其它032)34(21212110222tttttt ;
8 )2(][)()()1(22tueetueetttt 。
9 ⑴ ttee32 ; ⑵ tet2)31( ; ⑶ )2sin22(cos2ttet 。
10 ⑴ nn)2(8)1(3 ; ⑵ nn)2)(68( ; ⑶ nn)31(34)21(25 。
11 ⑴ )()(213tueett ; ⑵ )(3tuet ; ⑶ )()(2tuett
12
ok
ktkEtx)12(
)12sin(
)(
1
,2,1,0k
;
k
tkjekjE1)12(
)12(12
,2,1,0k
。
13 ⑴ 不是实函数,⑵ 偶函数,⑶ 奇函数。
14 (a))2(Sa ,(b)2)]2([Sa ,(c)2)2(jeSa 。
15 ⑴ tje021 ,⑵ )(tSac ,⑶ tj 。