二叉树的递归与非递归算法

合集下载

中国农业大学_821数据结构_《数据结构》习题(6)

中国农业大学_821数据结构_《数据结构》习题(6)

第6章 二叉树与树一、回答题1. 图6-1所示的树的叶子结点、非中端结点、每个结点的度及树的深度各是多少?图6-1 树2. 已知一棵树边的集合表示为:{ ( L, N ), ( G, K ), ( G, L ), ( G, M ), ( B, E ), ( B, F ), ( D, G ), ( D, H ), ( D, I ), ( D, J ), ( A, B ), ( A, C ), ( A, D ) },画出这棵树,并回答以下问题:(1) 树的根结点是哪个?哪些是叶子结点?哪些是非终端结点? (2) 树的度是多少?各个结点的度是多少? (3) 树的深度是多少?各个结点的层数是多少?(4) 对于结点G ,它的双亲结点、祖先结点、孩子结点、子孙结点、兄弟和堂兄弟分别是哪些结点?3. 如果一棵度为m 的树中,度为1的结点数为n 1,度为2的结点数为n 2,……,度为m 的结点数为n m ,那么该树中含有多少个叶子结点?有多少个非终端结点?ABECDFGHJI4. 任意一棵有n 个结点的二叉树,已知有m 个叶子结点,能否证明度为2结点有m-1个?5. 已知在一棵含有n 个结点的树中,只有度为k 的分支结点和度为0的叶子结点,那么该树含有的叶子结点的数目是多少?6. 一棵含有n 个结点的k 叉树,可能达到的最大深度和最小深度各为多少?7. 对于3个结点A 、B 、C ,可以过程多少种不同形态的二叉树?8. 深度为5的二叉树至多有多少个结点?9. 任何一棵二叉树的叶子结点在先序、中序和后序遍历中的相对次序是发生改变?不发生改变?不能确定?10. 设n 、m 为一棵二叉树上的两个结点,在中序遍历时,n 在m 前的条件是什么? 11. 已知某二叉树的后续遍历序列是dabec ,中序遍历序列是debac ,那么它的前序遍历序列是什么?12. 对一棵满二叉树,m 个树叶,n 个结点,深度为h ,则n 、m 和h 之间的关系是什么? 13. 对图6-2(a)和(b)所示的二叉树,它们的经过先序、中序和后序遍历后得到的结点序列分别是什么?画出它们的先序线索二叉树和后序线索二叉树。

完全二叉树非递归无堆栈先序遍历算法的研究

完全二叉树非递归无堆栈先序遍历算法的研究

又 被 Mateti等人于 1988年改进 0 。国内也一直有 学者在做 相 关 的 研 究 。可 从 文 献 [4.12]的研 究 主 题 可 以看 出 ,近 10年 来 对 此 主 题 的研 究 从 未 间 断 ,并 且 近 几 年 的 关 注 度 更 高 。
0 引 言
二 叉 树 作 为 一种 重 要 的 数 据 结 构 是 工农 业 应 用 与 开 发 的 重要工 具。满 二叉树 的中序序列 能够与一 条有 向连续 曲线上 的 点 列 建 立 自起 点 到 终 点 的 一 一 对 应 的 关 系 ;二 叉 树 的 先 序 序 列 ,能 与 植 物 从 根 部 向枝 叶 的生 长 发 育 过 程 建 立 关 联 ,可 作 为 植 物 生 产 建 模 的 基 本 数 据 结 构 模 型 。因 此 ,研 究 二 叉 树 的 先 序 、中序 相 关 算 法 成 为 工 农 业 信 息 技 术 领 域 的关 注 点 。
Abstract: Through a study on the analytic relationship am ong a full binary tree, its sequential storage sequence a n d its preorder-traversal sequence, a algorithms is obtained,which can conve ̄ a full binary t ree a n d its sequential storage sequence into its preorder-traversal se· quence. Consequentl ̄ non—recursive and stack-free algorithms are deduced for preorder t raversal ofa complete binary tree and for inter- conversionsbetweenthe sequential storage sequen ce andthepreorder-tmversal seque n ce. The algor ithms carla1]SWe r a quer y ofanode in constant tim e an d perform a traversal in linear tim e. Being derived from exact m athem atical a n alysis and inosculated with deductions ofbinary encodes that naturally fit the bitwise operation, the algorithms are available for both conventional programming and professional developments such as embedded system and SO on. A sample example is presented to demonstrate the application of the algorithms in virtual-plants modeling. Key words: binary t ree; sequential storage m odel; preorder traversal; non--recursive and stack--free; virtual pla n ts

实验报告二叉树

实验报告二叉树
p->data);PreOrder(p->lchild);PreOrder(p->rchild);}}void InOrder(BiTree p){ /* 中序遍历二叉树*/ if( p!= NULL ) {InOrder( p->lchild ) ;printf("%c", p->data);InOrder( p->rchild) ; } }void PostOrder(BiTree p){ /* 后序遍历二叉树*/ if ( p!= NULL ) {PostOrder( p->lchild ) ;PostOrder( p->rchild) ;printf("%c", p->data); } }void Preorder_n(BiTree p){ /*先序遍历的非递归算法*/ BiTree stack[MAX],q; int top=0,i;for(i=0;i while(q!=NULL){printf("%c",q->data);if(q->rchild!=NULL) stack[top++]=q->rchild;if(q->lchild!=NULL) q=q->lchild;elseif(top>0) q=stack[--top]; else q=NULL; } }void release(BiTree t){ /*释放二叉树空间*/ if(t!=NULL){release(t->lchild); release(t->rchild);
递归遍历右子树输出根结点数data}void postOrder1 (struct btnode *bt){概念栈,结点参数p,prebt入栈While(栈或p是不是为空){提取栈顶元素值if判定p是不是为空或是pre的根结点输出根结点数data栈顶元素出栈栈顶元素p赋给pre记录else if右结点非空将右结点压栈if左结点将左结点压栈}}void main(){struct btnode *root=NULL;root=createbt(root);preOrder(root); midOrder(root); postOrder(root);preOrder1(root); midOrder1(root); postOrder1(root);

树-二叉树

树-二叉树

信息学奥赛培训之『树——二叉树』树——二叉树为何要重点研究二叉树? 引 : 为何要重点研究二叉树 ? (1)二叉树的结构最简单,规律性最强; (2)可以证明,所有树都能转为唯一对应的二叉树,不失一般性。

一、二叉树基础1. 二叉树的定义 二叉树是一类非常重要的树形结构,它可以递归地定义如下: 二叉树 T 是有限个结点的集合,它或者是空集,或者由一个根结点以及分别称为左 子树和右子树的两棵互不相交的二叉树。

因此,二叉树的根可以有空的左子树或空的右子树,或者左、右子树均为空。

二叉树有 5 种基本形态,如图 1 所示。

图1 二叉树的 5 种基本形态在二叉树中,每个结点至多有两个儿子,并且有左、右之分。

因此任一结点的儿子 不外 4 种情况:没有儿子;只有一个左儿子;只有一个右儿子;有一个左儿子并且有一 个右儿子。

注意:二叉树与树和有序树 的区别 二叉树与度数不超过 2 的树不同,与度数不超过 2 的有序树也不同。

在有序树中,11如果将树中结点的各子树看成从左至右是有次序的,则称该树为有序树,否则称为无序树。

-1-信息学奥赛培训之『树——二叉树』虽然一个结点的儿子之间是有左右次序的,但若该结点只有一个儿子时,就无须区分其 左右次序。

而在二叉树中,即使是一个儿子也有左右之分。

例如图 2-1 中(a)和(b)是两棵 不同的二叉树。

虽然它们与图 2-2 中的普通树(作为无序树或有序树)很相似,但它们却 不能等同于这棵普通的树。

若将这 3 棵树均看作是有序树,则它们就是相同的了。

图2-1 两棵不同的二叉树图2-2 一棵普通的树由此可见,尽管二叉树与树有许多相似之处,但二叉树不是树的特殊情形。

不是 ..2. 二叉树的性质图3 二叉树性质1: 在二叉树的第 i 层上至多有 2 i −1 结点(i>=1)。

性质2: 深度为 k 的二叉树至多有 2 k − 1 个结点(k>=1)。

性质3: 对任何一棵二叉树 T,如果其终端结点数为 n0,度为 2 的结点数为 n2,则 n0=n2+1。

二叉树

二叉树

我们也可以把递归过程改成用栈实现的非递归过程,下面给出先序 遍历的非递归过程: procedure inorder(bt:tree); var stack:array[1..n] of tree; {栈} top:integer; {栈顶指针} p:tree; begin top:=0; while not ((bt=nil)and(top=0)) do begin
• ⑴如果i=1,则结点i为根,无父结点;如果i>1,则其 父结点编号为trunc(i/2)。 • ⑵如果2*i>n,则结点i为叶结点;否则左孩子编号为 2*i。 • ⑶如果2*i+1>n,则结点i无右孩子;否则右孩子编号 为2*i+1。
存储结构
• 二叉树的存储结构和普通树的存储结构基本相同,有链 式和顺序存储两种方法。 • ⑴链式存储结构:有单链表结构或双链表结构,基本数 据结构定义如下: type tree=^node;{单链表结构} node=record data:char;{数据域} lchild,rchild:tree;{指针域:分别指向左、右孩子} end; var bt:tree;
• 输入: • 其中第一行一个整数n,表示树的结点数。接下来的n行 每行描述了一个结点的状况,包含了三个整数,整数之 间用空格分隔,其中:第一个数为居民人口数;第二个 数为左链接,为0表示无链接;第三个数为右链接。 • 输出: • 只有一个整数,表示最小距离和。

• • • • • • • •
样例 输入: 5 13 2 3 4 0 0 12 4 5 20 0 0 40 0 0
2、删除二叉树 procedure dis(var bt:tree); begin if bt<>nil then begin dis(bt^.lchild); dis(bt^.rchild); dispose(bt); end; end;

数据结构A卷(2014)

数据结构A卷(2014)
1.以下算法完成操作:
a)输入一个数列,以零为结束标志,按“先进先出”的方式生成单链表;
b)输出表中的节点;
c)逆置表中的节点,并输出逆置后表中的节点;
d)输出表中的节点,释放全部节点所占的空间。
例如:执行时输入1 2 3 4 0,其输出结果如下:
输出所有节点:1 2 3 4
逆序输出所有节点:4 3 2 1
9.两个串相等的充分必要条件是两个串的 且对应位置的 。
10.8层完全二叉树至少有 个节点,拥有100个节点的完全二叉树的最大层数为 。
11.采用顺序查找法查找长度为n的线性表,成功查找时的平均查找长度为。
12.设用希尔排序对数序{98,36,-9,0,47,23,1,8,10,7}进行排序,给出的步长(也称增量序列)依次是4、2、1,则排序需 ,写出第一趟结束后,数序中数据的排列次序为 。
q->next=L->next;
;
q=p;
}
printf(“逆序输出所有节点:”);
p=L->next; //输出表中的节点
while(p!=NULL)
{ printf(“%d”,p->data);
p=p->next; //沿next下移节点指针
}
printf(“\n”);
printf(“释放所有节点:\n”);
q=L->next;
while(q!=NULL)
{printf(“释放%d节点\n”,q->data);
p=q;
;
free(p);
}
printf(“释放头节点\n”);
free(L);
}
2.以下为二叉树中序遍历的递归算法和非递归算法。请将算法补充完整。

树和二叉树——精选推荐

第6章 树和二叉树内容概要:本章主要介绍树,二叉树,最优二叉树的相关概念和操作,存储结构和相应的操作,并在综合应用设计中,给出了对应算法的C 语言实现。

教学目标1.理解各种树和森林与二叉树的相应操作。

2.熟练掌握二叉树的各种遍历算法,并能灵活运用遍历算法实现二叉树的其他操作。

3.熟练掌握二叉树和树的各种存储结构及其建立的算法。

4.掌握哈夫曼编码的方法。

5.通过综合应用设计,掌握各种算法的C 语言实现过程。

基本知识点:树和二叉树的定义、二叉树的存储表示、二叉树的遍历以及其它操作的实现、树和森林的存储表示、树和森林的遍历以及其它操作的实现、最优树和赫夫曼编码重点:二叉树的性质、二叉树的遍历及其应用,构造哈夫曼树。

难点:编写实现二叉树和树的各种操作的递归算法。

本章知识体系结构:课时安排:6个课时树的定义 树树的性质 树的逻辑表示法 树形表示法 树的存储结构 双亲存储结构 文氏表示法凹入表示法 括号表示法 孩子存储结构 孩子双亲存储结构二叉树二叉树的定义 二叉树的性质二叉树的逻辑表示法(采用树的逻辑表示法)二叉树的存储结构二叉树的顺序存储结构先序遍历 中序遍历 后序遍历二叉树的遍历 二叉树的链式存储结构(二叉链) 由先序序列和中序序列构造二叉树 由中序序列和后序序列构造二叉树二叉树的构造 二叉树的线索化 哈夫曼树二叉树和树之间的差别 二叉树与树、森林之间的转换二叉树和树课程数据结构教学教具多媒体课件学时2班级06网络教学日期/课时 /2课时教学单元第6章树和二叉树教学方法讲授(PPT)教学目标掌握树、二叉树的基本概念和术语,二叉树的性质教学重点二叉树的定义、二叉树的性质、链式存储结构教学难点二叉树的性质、链式存储二叉树的基本操作组织教学一、树的定义二、树的基本概念三、二叉树的定义、性质四、二叉树的顺序存储结构和链式存储结构五、小结作业复习本讲内容并预习下一讲内容课堂情况及课后分析课程数据结构教学教具多媒体课件学时2班级06网络教学日期/课时 /2课时教学单元第6章树和二叉树教学方法讲授(PPT)教学目标掌握二叉树遍历的三种方法及二叉树的基本操作教学重点二叉树的遍历算法教学难点中序与后序遍历的非递归算法组织教学一、复习二叉树的定义二、遍历二叉树的三种方法三、递归法遍历二叉树四、二叉树的基本操作五、总结作业复习本讲内容并预习下一讲内容课堂情况及课后分析课程数据结构教学教具多媒体课件学时2班级06网络教学日期/课时 /2课时教学单元第6章树和二叉树教学方法讲授(PPT)教学目标理解树与森林的转换,掌握哈夫曼树教学重点哈夫曼树教学难点树与森林的转换组织教学一、导入二、树与森林三、哈夫曼树四、小结作业习题6课堂情况及课后分析前面几章讨论的数据结构都属于线性结构,线性结构的特点是逻辑结构简单,易于进行查找、插入和删除等操作,可用于描述客观世界中具有单一前驱和后继的数据关系。

中序遍历二叉树的算法实现

TElemType data;
A,B A,B,D A.B
struct BiTNode*lchild.*rchild:,/左 右 孩 子 指 针

l BiTNode,*BiTree; 基 于 二叉 树 的递 归 定 义 .可 得 下 述 中序 遍 历 二 叉 树 的 递 归 算 法 : 若 二 叉 树 为空 。则 空 操 作 ;否 则
【关键词 】二又树 ;遍历 ;递归 ;栈;算法
The Algorithm of ln0 rder-traversing BinaryTree M a Xiangfen
(puyang vocational and techincal college,puyang,henan,457000) 【Abstract]The text deeply analysis the process of binary tree,giving the recursive and non-recursive algorithms of inoider—traversing binary tree.It analyses the running course of working stack in recursive algorithm.The important points an d difficult points are discussed deeply in non— recursive a lgor ithm. 【Key words]binary tree;traversing;recursive;stack;algorithm
被访 问,而且 仅 被 访 问一 次 。“访 问”可 以是 对 结 点 作 各 种 处 理 ,如 输 出
表 1 递 归 过 程栈 内变 化 表

递归算法及其转化为非递归算法的分析

E CHN0L00Y l递 归 算 法 及 其 转 化 为 非 递 归 算 法 的 分析
高 鹭 周李 涌
( 内蒙古科技大 学信息 工程 学 院 内蒙古包 头

0 0 ) 1 1 4 0
要 : 归是 程序设 计中 强有 力的工 具, 递 同时也 有 着鲜 明的优缺 点 , 曩 学习的难点 。本文从递 归 的概念 、递 归的实现和递 归 与非递 也
必须 具 备 终 止 递 归 的 条 件 。 程 序 中 只 能 出 现 有 限次 的 ,有 终 止 的递 归调 用 。 即 通过 转 化 过程 , 在某 一 特定 的 条件 下 , 以 得到 可 定 解 ,而 不再 使用 递 归 定 义 。 2. 递 归算法 设计 的实质 2 设 计 递 归 算 法 时 ,通 常 可 以 写 出 问题 求 解 的 递 归 定 义 ,递 归 定 义 由 基 本项 和 归 纳 项 组 成 。基 本 项 描 述 了 一 个 或 几 个 递 归 过 程 的 终 结 状 态 。 归 纳 项 描 述 了如 何 实 现 从当前状态到终结状态的转化 。 递 归设 计 的实 质是 :当一 个 复 杂 的 问 题 可 以 分 解 成若 干子 问 题 来 处 理 时 ,其 中 某 些 子 问 题 与 原 问 题 有 相 同 的 特 征 属性 , 则可利用和原 问题相 同的分析处理方 法 ; 反之 , 些 子 问题 解决 了 , 这 原问 题就 迎 刃 而 解 了 。递 归定 义 的 归 纳 项 就 是 描 述 这 种 原 问 题 和 子 问题 之 间的 转 化 关 系 。以 递 归方 法求 n! 例 , 以把 它分 解成 两个 子 问题 : 为 可 ①求 0 1 或 的阶乘 ; ②求 n与( 1 !的 乘积。 n ) 其 中( n一1 !的子 问题 和 原 问题 特征 属性 ) 相 同, 只是参 数( -l n 不 同, n 和 ) 由此实现 了 递 归 。递 归算 法 如 下 : ln a ( n )/ o g fc1 g n { /递 归实现 n! o i n O f< ) ( rt r ro ; eu n e r r in 01= ) r un 1 / f == 1 =1 e r ; /终 ( n t

第六章-树和二叉树



树 和 二 叉 树 13
1 2 3 A B C
4 5 6 7 0 D E F
8 0
9 10 0 G
¾ 二叉树顺序存储的算法描述
数 据 结 构
¾ 初始化二叉树

树 和 二 叉 树 14
#define Max_Size 100 typedef int TElemType; typedef TElemType SqBT[Max_Size+1]; void InitBT(SqBT bt){//设置空树 int i; for(i=1;i<=Max_Size;i++) bt[i]=0; }
数 据 结 构

树 和 二 叉 树 19
¾ 后序遍历顺序二叉树算法 void PostBT(SqBT bt,int i){ if(i>Max_Size||!bt[i]) return; PostBT(bt,2*i); PostBT(bt,2*i+1); printf("%3d ",bt[i]); }
数 据 结 构

树 和 二 叉 树 4
5. 孩子结点、双亲结点、兄弟结点、堂兄弟 结点、祖先结点、子孙结点…… 6. 结点的层次从根开始,根为第一层,根的 孩子为第二层;若某结点在第L层,则其 子树的根就在第L+1层。 7. 树的深度或高度:树中结点的最大层次。 8. 有序树:如果将树中结点的各子树看成是 从左至右有次序的;反之,则是无序树。 9. 森林:是m棵互不相交的树的集合。
数 据 结 构

树 和 二 叉 树 25
¾ 打印一维数组 void printSq(SqBT bt){ int i; printf("\nSeqArray:"); for(i=1;i<=Max_Size;i++) printf("%3d ",bt[i]); }
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二叉树的非递归遍历 二叉树的非递归遍历

二叉树是一种非常重要的数据结构,很多其它数据结构都是基于二叉树的基础演变而来的。对于二叉树,有前序、中序以及后序三种遍历方法。因为树的定义本身就是递归定义,因此采用递归的方法去实现树的三种遍历不仅容易理解而且代码很简洁。而对于树的遍历若采用非递归的方法,就要采用栈去模拟实现。在三种遍历中,前序和中序遍历的非递归算法都很容易实现,非递归后序遍历实现起来相对来说要难一点。

一.前序遍历 前序遍历按照“根结点-左孩子-右孩子”的顺序进行访问。 1.递归实现

void preOrder1(BinTree *root) //递归前序遍历 { if(root!=NULL) { coutlchild); preOrder1(root->rchild); } }

2.非递归实现 根据前序遍历访问的顺序,优先访问根结点,然后再分别访问左孩子和右孩子。即对于任一结点,其可看做是根结点,因此可以直接访问,访问完之后,若其左孩子不为空,按相同规则访问它的左子树;当访问其左子树时,再访问它的右子树。因此其处理过程如下:

对于任一结点P: 1)访问结点P,并将结点P入栈; 2)判断结点P的左孩子是否为空,若为空,则取栈顶结点并进行出栈操作,并将栈顶结点的右孩子置为当前的结点P,循环至1);若不为空,则将P的左孩子置为当前的结点P;

3)直到P为NULL并且栈为空,则遍历结束。

void preOrder2(BinTree *root) //非递归前序遍历 { stack s; BinTree *p=root; while(p!=NULL||!s.empty()) { while(p!=NULL) { coutlchild; } if(!s.empty()) { p=s.top(); s.pop(); p=p->rchild; } } }

二.中序遍历 中序遍历按照“左孩子-根结点-右孩子”的顺序进行访问。 1.递归实现

void inOrder1(BinTree *root) //递归中序遍历 { if(root!=NULL) { inOrder1(root->lchild); coutrchild); } }

2.非递归实现 根据中序遍历的顺序,对于任一结点,优先访问其左孩子,而左孩子结点又可以看做一根结点,然后继续访问其左孩子结点,直到遇到左孩子结点为空的结点才进行访问,然后按相同的规则访问其右子树。因此其处理过程如下:

对于任一结点P, 1)若其左孩子不为空,则将P入栈并将P的左孩子置为当前的P,然后对当前结点P再进行相同的处理;

2)若其左孩子为空,则取栈顶元素并进行出栈操作,访问该栈顶结点,然后将当前的P置为栈顶结点的右孩子;

3)直到P为NULL并且栈为空则遍历结束

void inOrder2(BinTree *root) //非递归中序遍历 { stack s; BinTree *p=root; while(p!=NULL||!s.empty()) { while(p!=NULL) { s.push(p); p=p->lchild; } if(!s.empty()) { p=s.top(); coutrchild; } } }

三.后序遍历 后序遍历按照“左孩子-右孩子-根结点”的顺序进行访问。 1.递归实现

void postOrder1(BinTree *root) //递归后序遍历 { if(root!=NULL) { postOrder1(root->lchild); postOrder1(root->rchild); cout

2.非递归实现 后序遍历的非递归实现是三种遍历方式中最难的一种。因为在后序遍历中,要保证左孩子和右孩子都已被访问并且左孩子在右孩子前访问才能访问根结点,这就为流程的控制带来了难题。下面介绍两种思路。

第一种思路:对于任一结点P,将其入栈,然后沿其左子树一直往下搜索,直到搜索到没有左孩子的结点,此时该结点出现在栈顶,但是此时不能将其出栈并访问,因此其右孩子还为被访问。所以接下来按照相同的规则对其右子树进行相同的处理,当访问完其右孩子时,该结点又出现在栈顶,此时可以将其出栈并访问。这样就保证了正确的访问顺序。可以看出,在这个过程中,每个结点都两次出现在栈顶,只有在第二次出现在栈顶时,才能访问它。因此需要多设置一个变量标识该结点是否是第一次出现在栈顶。

void postOrder2(BinTree *root) //非递归后序遍历 { stack s; BinTree *p=root; BTNode *temp; while(p!=NULL||!s.empty()) { while(p!=NULL) //沿左子树一直往下搜索,直至出现没有左子树的结点 { BTNode *btn=(BTNode *)malloc(sizeof(BTNode)); btn->btnode=p; btn->isFirst=true; s.push(btn); p=p->lchild; } if(!s.empty()) { temp=s.top(); s.pop(); if(temp->isFirst==true) //表示是第一次出现在栈顶 { temp->isFirst=false; s.push(temp); p=temp->btnode->rchild; } else //第二次出现在栈顶 { coutdata<<" "; p=NULL; } } } }

第二种思路:要保证根结点在左孩子和右孩子访问之后才能访问,因此对于任一结点P,先将其入栈。如果P不存在左孩子和右孩子,则可以直接访问它;或者P存在左孩子或者右孩子,但是其左孩子和右孩子都已被访问过了,则同样可以直接访问该结点。若非上述两种情况,则将P的右孩子和左孩子依次入栈,这样就保证了每次取栈顶元素的时候,左孩子在右孩子前面被访问,左孩子和右孩子都在根结点前面被访问。

void postOrder3(BinTree *root) //非递归后序遍历 { stack s; BinTree *cur; //当前结点 BinTree *pre=NULL; //前一次访问的结点 s.push(root); while(!s.empty()) { cur=s.top(); if((cur->lchild==NULL&&cur->rchild==NULL)|| (pre!=NULL&&(pre==cur->lchild||pre==cur->rchild))) { coutrchild!=NULL) s.push(cur->rchild); if(cur->lchild!=NULL) s.push(cur->lchild); } } }

四.整个程序完整的代码

/*二叉树的遍历* 2011.8.25*/ #include #include #include using namespace std;

typedefstruct node { char data; struct node *lchild,*rchild; }BinTree;

typedefstruct node1 { BinTree *btnode; boolisFirst; }BTNode;

void creatBinTree(char *s,BinTree *&root) //创建二叉树,s为形如A(B,C(D,E))形式的字符串 { inti; boolisRight=false; stack s1; //存放结点 stack s2; //存放分隔符 BinTree *p,*temp; root->data=s[0]; root->lchild=NULL; root->rchild=NULL; s1.push(root); i=1; while(i{ if(s[i]=='(') { s2.push(s[i]); isRight=false; } else if(s[i]==',') { isRight=true; } else if(s[i]==')') {

相关文档
最新文档