2009年上海市部分学校中考数学模拟卷参考答案

合集下载

初中试卷名称

初中试卷名称

第一学期平时卷:1、高桥东陆学校2008学年第一学期预备年级11月月考试卷附答案2、浦东新区2009学年第一学期六年级数学第二次质量检测试题3、市西实验中学2009学年第一学期预备年级10月月考试卷4、2009学年第一学期六年级数学第二次月考试卷期中卷:1、黄浦区2009学年第一学期期中考试六年级数学学科试卷附答案2、娄山中学2009学年第一学期期中考试六年级数学试卷3、娄山中学2009学年度第一学期期中考试六年级数学调研交流卷4、上外附中2009学年第一学期中预年级第二次月考数学试卷5、新复兴中学2009学年度第一学期六年级数学期中试卷期末卷:1、建平实验中学2009学年第一学期预备年级《圆和扇形》期终复习题2、闵行区2009学年第一学期六年级期末质量调研考试数学试卷附答案(期末试卷)3、上海市崇明县2009学年第一学期期末考试六年级数学试卷附答案(期末试卷)4、上海市虹口区2009学年度第一学期期终中预年级数学学科教学质量监控测试题附答案(期末试卷)5、上海市嘉定区2009学年第一学期六年级数学期末试卷附答案(期末试卷)6、上海市民办新虹桥中学2009学年第一学期六年级数学期终考试试卷(期末试卷)7、上海市浦东新区2009学年度第一学期期末质量抽测六年级数学试卷附答案(期末试卷)8、松江区2009学年第一学期期末考试六年级数学试卷9、松江区2009学年第一学期期末考试六年级数学试卷(期末试卷)10、新虹桥中学2009学年第一学期六年级数学期终考试试卷平时卷:1、市西实验中学2008学年第二学期预备年级3月份月考数学试卷2、市西实验中学2008学年第二学期预备年级数学测试卷二3、市西实验中学2008学年第二学期预备年级数学测试卷一4、徐汇区2008学年第二学期六年级数学3月月考试卷期中卷:1、航华中学09学年第二学期六年级数学期中试卷2、黄浦区2009学年第二学期期中考试六年级数学试卷附答案3、上外附中2009学年第二学期中预年级数学期末试卷4、仙霞高级中学2008学年度第二学期六年级数学期中考试试卷5、七一中学小六第二学期期中20086、上海市第一中学2008学年度第二学期期中考试六年级数学试卷7、上海市华东模范中学2008学年第二学期六年级数学期中试卷8、上海市静安区2008学年第二学期期中三校联考考试预备年级数学试题9、上海外国语大学附属浦东外国语学校小六第二学期期中考试卷期末卷1、虹口区2009学年度第二学期期终中预年级数学学科期终教学质量监控测试题2、静安区2006学年度第二学期期末教学质量检测数学期末试卷(2007.6)六年級3、浦东新区2005学年度第二学期期末质量抽测六年级数学试卷4、浦东新区2006学年度六年级第二学期期末质量抽测(2007.6)5、普教院附校2008学年第二学期六年级数学期末复习卷附答案6、新会中学2008学年第二学期六年级期末数学测试卷附答案7、2007学年第二学期六年级期末考试数学试卷8、六年级第二学期期末考试数学试卷(2005.6)七年级第一学期平时卷:1、上海市市西实验中学2008学年第一学期数学年级12月月考试试卷初一2、市西初一分式期中卷:1、保德中学2008学年度第一学期七年级数学期中试卷2、朝阳中学2008学年第一学期初一年级数学学科期中模拟卷3、风华初级中学2008学年第一学期七年级期中模拟试题4、共康中学2008学年第一学期初一年级数学期中练习卷5、古田中学2008学年第一学期初一数学期中练习卷6、恒丰中学2008学年第一学期七年级期中考试数学模拟卷7、华灵中学2008学年第一学期七年级数学期中模拟卷附答案8、黄浦区2009学年第一学期期中考试七年级数学学科试卷附答案9、回民中学2008学年第一学期七年级数学期中试卷10、岭南中学2008学年第一学期初一数学期中练习卷11、怒江中学2009学年第一学期七年级数学期中复习卷(八)12、怒江中学2009学年第一学期七年级数学期中复习卷(十)13、怒江中学2009学年第一学期七年级数学期中复习卷(十一)14、怒江中学2009学年第一学期七年级数学期中复习卷(十二)15、怒江中学2009学年第一学期七年级数学期中复习卷(十三)16、怒江中学2009学年第一学期七年级数学期中复习卷(十四)17、彭浦初级中学2009学年第一学期七年级数学期中练习卷18、彭浦三中2008学年第一学期七年级数学期中练习卷19、彭浦四中2008学年第一学期七年级期中练习卷20、青云中学2008学年第一学期七年级数学学科期中练习卷附答案21、三泉中学2008年度第一学期七年级数学期中练习卷22、向东中学2008学年第一学期期中考试七年级数学试卷23、闸北二中2008学年度第一学期七年级数学期中试卷期末卷:1、上海市曹杨二中附属学校2009学年第一学期初一年级数学期末复习试卷附答案(期末试卷)2、上海市丰庄中学2009年第一学期七年级期末复习达标样题数学试卷(4套)(期末试卷)3、上海市丰庄中学2009年第一学期七年级期末复习达标样题数学试卷(4套)(期末试卷)4、上海市闵行区2008学年第一学期期终考试28校联考七年级数学试卷(期末试卷)5、上海市某中学2009-2010学年七年级上数学期末考试试卷6、上海市浦东新区2009学年度第一学期期末质量抽测七年级数学试卷(期末试卷)7、上海市七宝实验中学2009学年第一学期期终考试初一数学试卷附答案(期末试卷)8、上海市徐汇区2008学年第一学期初一年级数学学科期终学习能力诊断卷附答案(期末试卷)9、上海市杨浦区2009学年第一学期期末质量抽测初一数学试卷10、上海市杨浦区2009学年第一学期期末质量抽测初一数学试卷附答案(期末试卷)第二学期平时卷:无期中卷:1、华漕中学基地附中2009学年第二学期七年级期中考试数学试卷2、黄浦区2009学年第二学期期中考试七年级数学试卷附答案3、市三女中2008学年第二学期七年级数学期中考试4、同济二附中2008学年第二学期七年级数学科期中考试5、向明中学2008学年第二学期初一年级数学期中试题6、延安初级中学2009学年第二学期期中考试初一数学试卷7、张庄中学2008~2009学年度第二学期期中考试七年级数学试卷含答案8、上海市梅陇中学2009学年第二学期七年级数学期中复习卷(期中试卷)9、上海市闵行区2008学年第二学期期中考试七年级数学23校联考试卷附答案(期中试卷)10、上海市普陀区教育学院附属学校2009学年第二学期七年级数学期中复习卷(期中试卷)期末卷:1、上海市延安初级中学2009学年第二学期期末考试初一数学试卷(期末试卷)2、上海外国语大学附属外国语学校2009学年第二学期初一年级数学期末试卷(期末试卷)八年级第一学期平时卷:1、松江区八年级数学练习题期中卷:1、黄浦区2009学年第一学期期中考试八年级数学学科试卷附答案2、江宁中学2008学年第一学期八年级数学期中考试试卷3、梅陇中学2009学年度第一学期初二数学期中复习试卷附答案4、市十中学2008学年第一学期初二数学期中复习附答案5、市西实验中学2009学年第一学期期中考试八年级数学试卷附答案6、桃浦中学2009学年度第一学期初二数学期中复习试卷附答案7、铜川中学2009学年第一学期初二数学期中复习试卷附答案8、徐汇中学2009学年第一学期八年级期中考试数学试卷9、杨浦初级中学2009学年度第一学期初二年级数学期中练习卷10、杨浦初级中学2009学年度第一学期期中考试初二年级数学试卷期末卷:1、上海市晋元高级中学附属学校2009学年度第一学期八年级数学期末综合复习卷(期末试卷)2、上海市七宝实验中学2009学年第一学期八年级数学期末考试卷附答案(期末试卷)3、上海市延安初级中学2009学年第一学期期末考试初二数学试卷(期末试卷)4、上海市杨浦区2009学年度第一学期期末质量抽查初二数学试卷附答案(期末试卷)5、延安初级2009学年第一学期期末考试初二数学试卷6、育鹰学校2009学年度第一学期初二数学期末复习卷17、育鹰学校2009学年度第一学期初二数学期末复习卷2第二学期平时卷:1、上外双语一次函数单元测试期中卷:1、闵行五中2009学年第二学期期中试卷八年级数学学科试卷DDD2、东昌南校2009学年第二学期中考数学模拟试卷八年級3、虹口区2009学年度第二学期初二年级数学学科期中教学质量监控测试题4、黄浦区2009学年第二学期期中考试八年级数学试题附答案5、交大二附中2009学年第二学期期中考试八年级数学试卷6、娄山中学2009学年度第二学期期中考试八年级数学试卷7、浦东新区2009学年度第二学期初二年级数学期中试卷8、上海市田家炳中学2008学年第二学期八年级数学学科期中练习卷9、上南中学2009学年第二学期期中考试八年级数学试题10、天山初级中学2008学年度第二学期八年级数学期中考试卷11、位育初级中学2008学年第二学期期中考试初二年级数学试卷12、西南位育中学2009学年第二学期初二数学期中考试13、仙霞中学2008学年度第二学期八年级数学期中考试含答案14、徐汇区2008学年八年级第二学期数学期中南片联考试卷含答案15、徐教院附中2008学年第二学期八年级数学期中试卷16、玉华中学2009学年度第一学期初二数学期中复习试卷附答案17、真光中学2009学年度第一学期初二数学期中复习试卷附答案18、上海市梅陇中学2009学年第二学期八年级数学期中复习试卷附答案(期中试卷)19、上海市闵行区2008学年第二学期期中考试八年级数学28校联考试卷附答案(期中试卷)20、上海市闵行区2008学年度第二学期八年级数学七校期中试卷21、上海市七宝实验中学2009学年第二学期八年级期中考试数学试卷22、上海市七宝实验中学2009学年第二学期八年级期中考试数学试卷附答案(期中试卷)23、上海市桃浦中学2009学年第二学期八年级数学期中复习卷附答案(期中试卷)24、上海市玉华中学2009学年第二学期初二数学期中复习试卷(期中试卷)25、上海市真光中学2009学年第二学期八年级数学期中复习试卷附答案(期中试卷)期末卷:1、长宁区2009学年度第二学期八年级数学期末考试试卷(期末试卷)2、静安区2009学年第二学期“学业效能实证研究”学习质量调研八年级数学学科(期末试卷)3、卢湾区2008学年第二学期八年级期末考试数学试卷(期末试卷)4、上海市复兴初级中学2009学年度第二学期初二年级数学学科期末试题(期末试卷)5、上海市世界外国语中学2008学年第二学期八年级数学期末综合卷一(期末试卷)6、上海市延安初级中学2009学年第二学期期末考试初二数学试卷(期末试卷)7、上海外国语大学附属外国语学校2008年度第二学期初二数学期末考试试卷(期末试卷)8、世界外国语中学2008学年初中第二学期数学期末综合卷一九年级第一学期平时卷:无期中卷:1、宝山区2009学年度第一学期九年级数学期中试卷附答案2、东延安中学2009学年第一学期初三数学期中试卷3、顾路中学2009学年第一学期期中考试九年级数学学科试卷附答案4、建平中学2009学年度第一学期初三数学期中试卷5、金山区2009学年第一学期期中考试初三数学试卷附答案6、静安区2009学年第一学期九年级数学期中试卷附答案7、立达中学2009学年度第一学期期中考试初三数学试卷8、罗店中学2009学年第一学期中考数学模拟卷九年級9、南汇区2008学年度第一学期九年级数学期中试卷附答案10、南汇区2009学年度第一学期九年级数学期中试卷附答案11、浦东外国学校2009学年第一学期初三数学期中试卷12、普陀区2008学年第一学期初三数学期中考试卷附答案13、青浦区2009学年第一学期九年级期中质量抽查考试数学试卷附答案14、新场中学2009-2010学年度(上期)九年级期中考试数学试卷15、新华初级中学2009学年第一学期初三数学期中试卷16、徐汇中学2009学年初三第一学期数学期中测试卷17、颜安中学2009学年第一学期初三数学期中模拟试卷18、闸北区2008学年度第一学期九年级数学学科期中考试试卷附答案19、张江集团学校2009学年第一学期初三期中考试数学试卷期末卷:无第二学期平时卷:1、08第二学期初三综合练习卷2、立达中学5月中考预测卷3、民办立达中学08年中考预测卷4、上海市部分学校初三数学抽样测试试卷附答案5、上海市奉贤区实验中学2009学年第一学期初三数学函数复习卷16、上海市青浦区2009年初三中考数学模拟考试7、闸北区2007-2008学年中考数学模拟试卷(三)附答案初三8、闸北区九年级数学学科期中练习卷附答案期中卷:无期末卷:无备注:黑色部分为各个学校的试卷,都有学校的名称红色部分为杨浦区的全区统一试卷蓝色部分为除杨浦区外各个区的统一试卷梅红色部分为既不是区统一卷,也没有学校名称的试卷。

数学09_名校中考模拟试题及答案解析

数学09_名校中考模拟试题及答案解析

1数学名校中考模拟试题及答案解析一、选择题(本大题共10小题,每小题4分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1. (4 分)-| - 2018| 等于()A. 2018B.- 2018C. 1D. 02. (4分)某红外线遥控器发出的红外线波长为0.000 000 94m,用科学记数法表示这个数是()A. 9.4X 10-7mB. 9.4X 107mC. 9.4X 10-8mD. 9.4X 108m3. (4分)下列计算正确的是()A. (2a —1)2=4a2—1B. 3a°—3a3=a2C. (—ab2)4 = —a4b°D.—2a+ (2a —1)=-14. (4分)从棱长为a的正方体零件的一角,挖去一个棱长为0.5a的小正方体,得到一个如图所示的零件,则这个零件的左视图是()5. (4分)如图,把一块含有45的直角三角形的两个顶点放在直尺的对边上.如果/仁20°那么/ 2的度数是()6A. 15°. 20°C. 25°D. 30°6. (4分)下列命题中,真命题是()1A. 两条对角线相等的四边形是矩形B. 两条对角线互相垂直且平分的四边形是正方形C. 等边三角形既是轴对称图形又是中心对称图形D. 有一个角是60°勺等腰三角形是等边三角形7. (4分)某校九年级(1)班全体学生2015年初中毕业体育考试的成绩统计如下表:成绩(分)35394244454850人数(人)2566876根据上表中的信息判断,下列结论中错误的是()A.该班一共有40名同学B .该班学生这次考试成绩的众数是45分C.该班学生这次考试成绩的中位数是45分D .该班学生这次考试成绩的平均数是45分AB是O O 的直径,/ AOC=110,则/ D=(A. 25 B 35 C 55 ° D. 70 °9. (4分)已知二次函数y二af+bx+c (0)的图象如图所示,给出以下结论:①a+b+c v 0;②a- b+c v 0;③b+2a v0;④abc>0.其中所有正确结论的序号是()A.③④B.②③C.①④D.①②③10. (4分)我们知道,一元二次方程x2=- 1没有实数根,即不存在一个实数的平方6等于-1,若我们规定一个新数“i,”使其满足i 2=-1 (即方程x 2=-1有一个根为i ), 并且进一步规定:一切实数可以与新数进行四则运算,且原有的运算律和运算法则仍然成立,于是有 i 1=i ,i 2=- 1,i 3=i 2?i= (- 1)(- 1)?i= - i , i 4=(i 2)2= (- 1)2=1, 从而对任意正整数n ,则i 6=()A .- 1 B. 1 C. i D .- i二、填空题(本大题共8小题,每小题4分,满分32分)11. _____________________________ (4分)分解因式:x 3 - 4x= .12. _________________________________________________________________ (4分)已知x=1是关于x 的方程x 2+x+2k=0的一个根,则它的另一个根是 __________ . 13.(4分)一枚质地均匀的骰子,其六个面上分别标有数字:1, 2,3, 4,5,6,投掷一次,朝上一面的数字是偶数的概率是 __________ .14. (4分)不等式6x - 4v 3x+5的最大整数解是 ________15. (4 分)如图,在△ ABC 中,DE// BC,若 AD=1, DB=2,16. (4分)如图,点A 在双曲线尸丄上,点B 在双曲线 謂上,且AB / x 轴,C DJ?;在x 轴上,若四边形ABCD 为矩形,则它的面积为T」4O D C x17. (4分)现有一张圆心角为108 °半径为40cm 的扇形纸片,小红剪去圆心角为 0的部分扇形纸片后,将剩下的纸片制作成一个底面半径为 10cm 的圆锥形纸帽(接缝 处不重叠),则剪去的扇形纸片的圆心角 0为 __________ .118. (4分)如图,以0 (0, 0)、A (2, 0)为顶点作正△ OAR ,以点R 和线段RA 的中点B 为顶点作正△ RBR ,再以点P 2和线段P 2B 的中点C 为顶点作厶P 2CP ,…, 如此继续下去,则第六个正三角形中,不在第五个正三角形上的顶点P 6的坐标三、解答题(本大题共8小题,满分78分,解答应写出文字说明、证明过程或演算 步骤)19. (8 分)计算:(n-.小)°+| 1-「|+ (亍)2si n45°你喜欢的值代入求值.21. (8分)近几年我市加大中职教育投入力度,取得了良好的社会效果.某校随机 调查了九年级m 名学生的升学意向,并根据调查结果绘制出如下两幅不完整的统计 图.请你根据图中的信息解答下列问题: (1) _________ m= ;(2) _________________________________________________ 扇形统计图中 职高”对应的扇形的圆心角a ____________________________________________________ ; (3) 请补全条形统计图;(4) 若该校九年级有学生900人,估计该校共有多少名毕业生的升学意向是职高?20. (8分)先化简:—然后从-2,-1,0,1,2中选取一个622.(10分)如图,已知△ ABC是等边三角形,D、E分别是AC BC上的两点,AD=CE 且AE与BD交于点P, BF丄AE于点F .(1)求证:△ ABX A CAE(2)若BP=6,求PF的长.23.(10分)某商店需要购进甲、乙两种商品共160件,其进价和售价如下表:甲乙进价(元/件) 1535售价(元/件) 2045(1)若商店计划销售完这批商品后能获利1100元,问甲、乙两种商品应分别购进多少件?(2)若商店计划投入资金少于4300元,且销售完这批商品后获利多于1260元,请问有哪几种购货方案?并直接写出其中获利最大的购货方案.24.(10分)如图,在△ ABC中,/ ABC=90°,以AB的中点O为圆心,OA为半径的圆交AC于点D, E是BC的中点,连接DE, OE.(1) 判断DE与。

2009年中考模拟考试数学科答案[001]

2009年中考模拟考试数学科答案[001]

2009年澄海区初中毕业生学业考试 数学科模拟试题参考答案及评分意见一、选择题(本题共8小题,每小题4分,共32分)二、填空题(本题共5小题,每小题4分,共20分) 9.-3;10.x 1=3,x 2=-1;11.a (a +b )(a -b );12.32;13.17cm . 三、解答题(本大题共5小题,每小题7分,共35分) 14.解:原式=31913⨯+----------------------4分 =32+-----------------------------6分 =5------------------------------------7分15.解:(1)依题意得1212)(2--=--=-÷-m m m m m m m --------4分 (2)当输入的数2009-=m 时,输出结果为()200812009120091=-=---=--m ---------------------7分16.解:方程两边同时乘以)1)(1(-+x x 得()1212-=-+x x x ---------------------2分整理得 12-=-x ----------------------4分 解得 1=x ------------------------------5分 检验:当1=x 时,0)1)(1(=-+x x ∴1=x 不是原分式方程的解--------6分∴原分式方程无解-----------------------7分17.解:(1)如图----------3分(2)设圆锥的底面半径为r ,母线为l ,高为h ,则 l =6,=r π2ππ41806120=⨯-------4分∴2=r ---------------------------5分根据勾股定可得圆锥的高为2422=-=r l h cm--------------7分.18.解:相似三角形有△AEF ∽△BEC ;△AEF ∽△DCF ;△BEC ∽△DCF---------3分 如:△AEF ∽△BEC 在□ABCD 中,AD ∥BC ∴∠1=∠B ,∠2=∠3-----------------6分 ∴△AEF ∽△BEC----------------------7分四、解答题(本大题共3小题,每小题9分,共27分) 19.解:(1)-----------3分从树状图中可以看出,共有9个结果,其中两数和为4的结果有3个,所以两数和为4的概率为3193=-------------------------------------------------------- ---5分 (2)由(1)可知,甲获胜的概率为31,则乙获胜的概率为32311=-------------6分设乙胜一次得x 分,这个游戏对双方公平∴x ⋅=⨯32631------------------------------7分 ∴3=x ---------------------------------------8分∴为使这个游戏对双方公平,乙胜一次应得3分------------9分20.解:(1)符合条件的点D 的坐标为(-2,1);(2,1);(0,-1)---------3分 (2)若点D 的坐标为(0,-1)∵抛物线经过B (-1,0),C (1,0)∴抛物线的解析式为)1)(1(-+=x x a y ----------4分∵D (0,-1)在该抛物线上∴1-=-a ------------------------------------------------5分∴1=a ----------------------------------------------------6分 ∴抛物线的解析式为12-=x y -------7分抛物线的对称轴为y 轴,顶点坐标为(0,-1)-----------9分 21.解:(1)在Rt △ACB 中,∵∠ABC=45°,AB=4cm ∴AC=BC=AB ×sin45°=22----------------------------2分x第20题图甲 乙和 1 12323421233453123456第18题图在Rt △ACD 中,∵∠D=30°∴AD=2AC=24222=⨯------------------3分 ∴改造后滑板加长:AD -AB=()()6.1141.14124424≈-⨯≈-⨯=-(米)---5分(2)这样改造可行---------------6分在Rt △ACD 中,CD 2=AD 2-AC 2()()222224-=∴CD=62(负值舍去)---------------------------7分∴BD=CD -BC=()()08.241.145.222622262=-⨯≈-⨯=---------------8分∴改造后滑板正前方剩余空地长约为92.308.26=-(米)>3米 ∴这样改造可行------------------------------------------9分 五、解答题(本大题共3小题,每小题12分,共36分) 22.解:(1)依题意,得⎩⎨⎧=-+=94)120140(12069115b a a -------------2分解得 ⎩⎨⎧==1.16.0b a∴a 、b ---------------------4分(2)①当1200≤≤x 时,x y 6.0=-----------------5分 当120>x 时,1.1)120(6.0120⨯-+⨯=x y 整理得601.1-=x y ----------------------------7分 ∴⎩⎨⎧>-≤≤=)120(601.1)1200(6.0x x x x y ----------------8分②当用电为120度时,所付电费为120×0.6=72(元)83>72---------------------------------------------------------9分 ∴当83≤y 时,有83601.1≤-x -----------------------10分 解得,130≤x ---------11分答:该用户七月份最多用电130度--------------------12分23.证明:(1)依题意,有∠DEF=∠A=90°,DA=DE---------------2分 ∵AB ∥CD ,30︒45︒DCBA第21题图∴∠ADE=180°-∠A=90° ∴∠DEF=∠A=∠ADE=90°∴四边形ADEF 是矩形----------------------------4分 又∵DA=DE∴四边形ADEF 是正方形------------------------5分 (2)连结DG ∵BG ∥CD ,且BG=CD ∴四边形BCDG 是平行四边形∴CB=DG----------------------------------------7 ∵四边形ADEF 是正方形 ∴EF=DA ,∠EFG=∠A=90° ∵G 是AF 的中点 ∴AG=FG在△DAG 和△EFG 中⎪⎩⎪⎨⎧=∠=∠=FG AG EFG A EF DA ∴△DAG ≌△EFG (SAS )------------------10分 ∴DG=EG----------------------------------------11分 ∴EG=BC∴四边形GBCE 是等腰梯形-----------------12分24.(1)证明:∵OM ∥BN ,MN ∥OB ,∠AOB=90°, ∴四边形OBNM 为矩形。

2009年上海市普陀区初中数学二模卷试题及参考答案【纯word版,完美打印】

2009年上海市普陀区初中数学二模卷试题及参考答案【纯word版,完美打印】

2008-2009学年度第二学期普陀区初三质量调研数学试卷2009.4(时间:100分钟,满分:150分)考生注意:所有答案务必按照规定在答题纸上完成,写在试卷上不给分题 号 一 二 三 四 总 分得 分一、单项选择题:(本大题共6题,每题4分,满分24分)[下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上] 1.下列运算正确的是……………………………………………………………………( ).(A) 221-=-; (B) 632)(mn mn = ; (C) 39±= ;(D) 426m m m =÷ . 2. 在49,a 9,25xy ,92+a ,23+x ,1.0中,是最简二次根式的个数是( ). (A) 1; (B) 2; (C) 3; (D) 4. 3.下列语句错误的是……………………………………………………………………( ).(A )如果m 、n 为实数,那么m (n a )=(mn )a;(B )如果m 、n 为实数,那么(m +n )a =m a +n a;(C )如果m 、n 为实数,那么m (a +b )=m a+ m b ;(D )如果k =0或0=a ,那么k a =0.4.顺次连结菱形的各边中点所得到的四边形是………………………………………( ).(A) 平行四边形; (B)菱形; (C) 矩形; (D)正方形. 5.下列说法中正确的是…………………………………………………………………( ).(A) 每个命题都有逆命题; (B) 每个定理都有逆定理; (C) 真命题的逆命题是真命题; (D) 真命题的逆命题是假命题.6. 给出下列关于三角形的条件:①已知三边;②已知两边及其夹角;③已知两角及其夹边;④已知两边及其中一边的对角. 利用尺规作图,能作出唯一的三角形的条件是…( ). (A) ①②③; (B) ①②④; (C) ②③④; (D) ①③④.二、填空题:(本大题共12题,每题4分,满分48分)[请将结果直接填入答题纸的相应位置] 7.分解因式:652--x x = . 8.如果3=a ,那么a2= . 9.请你根据如图写出一个乘法公式:.a a bb(第9题)10.用科学计数法表示-0.00000628= . 11.已知方程3124-=+-x ax 的解为1=x ,那么a 2的值为 .12.不等式组⎪⎩⎪⎨⎧-≥-<-3132,31x x 的解集是 .13.从数字1、2、3中任取两个不同的数字组成一个两位数,那么这个两位数小于23的概率是 .14. 某市2008年的人均GDP 约为2006年的人均GDP 的1.21倍,如果该市每年的人均GDP 增长率相同,均为x ,那么可列出方程: __.15.已知点G 是△ABC 的重心,△ABC 的面积为182cm ,那么△AGC 的面积为 2cm . 16. 某人在斜坡上走了13米,上升了5米,那么这个斜坡的坡比i = . 17.在Rt △ABC 中,∠C =90°,AC =5,BC =8,如果以点C 为圆心作圆,使点A 在圆C 内,点B 在圆C 外,那么圆C 半径r 的取值范围为 .18.已知圆1O 与圆2O 相切,圆1O 的半径长为3cm ,21O O =7cm ,那么圆2O 的半径长是 cm .三、解答题(本大题共7题,其中第19---22题每题10分,第23、24题每题12分,第25题14分, 满分78分)19.计算:1)41(45cos 2)1(18-+︒---π.20.解方程:2)2(-x x +2-x x -6=0.各年级人数比例分布扇形统计图九年级30%八年级25%七年级25%六年级20%21.如图,在梯形ABCD 中,AD ∥BC ,AB=DC=AD ,∠C =60°,AE ⊥BD 于点E .(1) 求∠ABD 的度数; (2) 求证:BC=2CD ; (3) 如AE =1,求梯形ABCD 的面积.22. 2008年5月,某中学开展了向四川地震灾区某小学捐赠图书活动,全校共有1200名学生,每人都捐赠了一定数量的图书.已知各年级人数比例分布扇形统计图如图1所示,学校为了了解各年级捐赠情况,从各年级中随机抽查了部分学生,进行了捐赠情况的统计调查,绘制成如图2的频数分布直方图,根据以上信息解答下列问题: (1)学校人数最少的是 年级; (2)人均捐赠图书最多的是 年级; (3)估计九年级共捐图书 册; (4)全校大约共捐图书 册. 01234567六年级七年级八年级九年级年级人均捐赠(册)A B C D E第21题23.如图,双曲线xy 5=在第一象限的一支上有一 点C (1,5),过点C 的直线0(>+-=k b kx y 与x 轴交于点A (a ,0)、与y 轴交于点B . (1)求点A 的横坐标a 与k 之间的函数关系式; (2)当该直线与双曲线在第一象限的另一交点D 的横坐标是9时,求△COD 的面积.24. 已知:如图所示,点P 是⊙O 外的一点,PB 与⊙O 相交于点A 、B ,PD 与⊙O 相 交于C 、D ,AB=CD . 求证:(1)PO 平分∠BPD ;(2)P A=PC ;(3) AE EC=.25.如图,在平面直角坐标系xOy 中,O 为原点,点A 、C 的坐标分别为(2,0)、(1,33). 将△AOC 绕AC 的中点旋转180°,点O 落到点B 的位置,抛物线x ax y 322-=经过 点A ,点D 是该抛物线的顶点.(1)求证:四边形ABCO 是平行四边形; (2)求a 的值并说明点B 在抛物线上;(3)若点P 是线段OA 上一点,且∠APD=∠OAB ,求点P 的坐标;(4) 若点P 是x 轴上一点,以P 、A 、D 为顶点作平行四边形,该平行四边形的另一顶点在y 轴 上,写出点P 的坐标.O DC PA B第24题E BCD第25题AxyO2008学年度第二学期普陀区九年级质量调研数学试卷参考答案及评分说明一、单项选择题:(本大题共6题,每题4分,满分24分)1.(D) ; 2.(B) ; 3.(D); 4.(C) ; 5.(A) ; 6.(A) .二、填空题:(本大题共12题,每题4分,满分48分)7. )1)(6(+-x x ; 8. 6; 9. 2222)(b ab a b a ++=+;10. 61028.6-⨯-; 11. -1; 12.12≤<-x ;13.21; 14.21.1)1(2=+x ; 15.6; 16.1∶2.4; 17.85<<r ; 18.4或10.三、解答题(本大题共7题,其中第19---22题每题10分,第23、24题每题12分,第25题14分,满分78分)19.解: 原式=4222123+⨯--…………………………………………………………8′(各2分)=322+. …………………………………………………………………………………2′ 20.解:设y x x=-2,………………………………………………………………………………………1′ 方程转化为:062=-+y y . …………………………………………………………………2′解得:21=y ,32-=y .…………………………………………………………………………2′当21=y 时,22=-x x,解得:4=x .…………………………………………………………1′经检验:4=x 是此方程的解. ……………………………………1′当32-=y 时,32-=-x x,解得:23=x .…………………………………………………1′ 经检验:23=x 是此方程的解. …………………………………1′ 所以原方程的解是:41=x ,232=x . ………………………………………………………1′21.解:∵AD ∥BC ,………………………………………………………………………………………1′ ∴∠2=∠3.………………………………………………………………………………………1′ 又∵AB=AD , ∴∠1=∠3. ……………………………………………………………………………………1′ ∴∠1=∠2.………………………………………………………………………………………1′ ∵四边形ABCD 是梯形, AB=DC ,∠C =60°, ∴∠1=∠2=30°. ………………………………………………………………………………1′ 即∠ABD =30°. ∴∠BDC=90°.…………………………………………………………………………………1′ ∴BC=2CD .………………………………………………………………………………………1′ 又∵AE ⊥BD ,AE =1,………………………………………………………………………………1′ ∴AB=2,3=BE . …………………………………………………………………………1′ ∴CD =2,32=BD .∴3222113221⨯⨯+⨯⨯=ABCDS 梯形=33.…………………………………………1′AB CD E第21题 1 2 322.六,八,1080,5430. (2′,2′,2′,4′)23.解:(1)∵点C (1,5)在直线)0(>+-=k b kx y 上,∴b k +⋅-=15,∴5+=k b ,………………………………1′ ∴5++-=k kx y .…………………………1′ ∵点A (a ,0)在直线5++-=k kx y 上, ∴50++-=k ka .…………………………1′ ∴15+=ka .…………………………………1′ (2)∵直线与双曲线在第一象限的另一交点D 的横坐标是9,设点D (9,y ),…………………………………………………………………………1′∴95=y . ∴点D(9,95). ……………………………………………………………………………1′ 代入5++-=k kx y , 可解得:95=k ,……………………………………………………………………………1′ 95095+-=x y . ………………………………………………………………1′可得:点A(10,),点B(,950). …………………………………………………………2′ ∴BO C AO D AO B CO D S S S S ∆∆∆∆--==1950219510219501021⨯⨯-⨯⨯-⨯⨯ ………………………………………1′=)1110(95021--⨯ =)1110(95021--⨯ AOCBDxy 第23题=9200……………………………………………………………………………1′=9222.24.证明:(1)分别取弧AB 、CD 的中点M 、N ,联接OM 、ON 交PB 于点F 、交PD 于点G ,………………………………………………1′ ∴OM ⊥PB ,ON ⊥PD .……………………………………………………………………1′∵AB=CD , ∴OF=OG .……………………………………1′∴PO 平分∠BPD .……………………………1′ (2)∵PO 平分∠BPD ,∴∠1=∠2.∵OF ⊥PB ,OG ⊥PD ,∴∠3=∠4. ∴PF= P G .…………………………………1′∵AB=CD ,∴2ABAF =,2CDCG =.……………………………………………………………1′ ∴AF=CG .………………………………………………………………………………1′∴P A=PC . ………………………………………………………………………………1′(3) ∵AB=CD ,∴ AB CD=.…………………………………………………………………………1′∵OF ⊥PB ,OG ⊥PD ,∴12AM AB =, 12CNCD =. ∴ AM CN=.…………………………………………………………………………1′∵∠3=∠4,∴ MENE =.…………………………………………………………………………1′∴ AE CE=.…………………………………………………………………………1′21 O DC PA B 第24题 F G E 3 4 MN25.(1)证明:∵△AOC 绕AC 的中点旋转180°,点O 落到点B 的位置, ∴△ACO ≌△CAB . ………………………………………………………………………1′∴AO=CB,CO=AB ,……………………………………………………………………1′∴四边形ABCO 是平行四边形. …………………………………………………………1′ (2)解:∵抛物线x ax y 322-=经过点A ,点A 的坐标为(2,0),……………………………………………………………………1′∴344=-a ,解得:3=a . …………………………………………………………1′∴x x y 3232-=.∵四边形ABCO 是平行四边形,∴OA ∥CB .∵点C 的坐标为(1,33),………………………………………………………………1′ ∴点B的坐标为(3,33). ………………………………………………………………1′把3=x 代入此函数解析式,得:333639332332=-=⨯-⨯=y .∴点B 的坐标满足此函数解析式,点B 在此抛物线上. …………………………………1′∴顶点D 的坐标为(1,-3). ……………………………………………………………1′(3)联接BO ,过点B 作BE ⊥x 轴于点E , 过点D 作DF ⊥x 轴于点F .tan ∠BOE =3,tan ∠DAF=3,∴tan ∠BOE=tan ∠DAF . ∴∠BOE=∠DAF . ………………1′ ∵∠APD=∠OAB , ∴△APD ∽△OAB . ………………1′设点P 的坐标为(x ,0), ∴OBADOA AP =,∴6222=-x ,解得:34=x .………………1′∴点P 的坐标为(34,0).(4))0,1(1P ,)0,1(2-P ,3(3,0)P ……………………………………………………………2′。

2009年数学中考模拟试题一

2009年数学中考模拟试题一

2009年数学中考模拟试题一考生须知:1、本试卷分试题卷和答题卷两部分。

满分120分,考试时间100分钟。

2、答题前,必须在答题卷的密封区内填写校名、姓名和准考证号码。

3、所有答案都必须做在答题卷指定的位置上,请务必注意试题序号和答题序号相对应。

4、考试结束后,上交试题卷和答题卷。

一. 仔细选一选 (本题有10个小题, 每小题3分, 共30分)下面每小题给出的四个选项中, 只有一个是正确的, 请把正确选项前的字母填在答题卷中相应的格子内. 注意可以用多种不同的方法来选取正确答案.1.-6的相反数是().A、-6B、6C、61- D、612.温家宝总理有一句名言:“多么小的问题,乘以13亿,都会变得很大,多么大的经济总量,除以13亿,都会变得很小。

”如果每人每天浪费0.01千克粮食,,我国13亿人每天就浪费粮食() A . 1.3×105 千克 B . 1.3×106千克 C . 1.3×107千克 D . 1.3×108千克3.函数y=1-x中自变量x的取值范围是A.x>1B. x≥1C. x<1D. x≤14.将如图所示放置的一个直角三角形ABC,(∠C=90°),绕斜边AB旋转一周,所得到的几何体的正视图是下面四个图中的()(A)(B)(C)(D)5. 在反比例函数xky=(k<0)的图象上有两点A(x1,y1),B(x2,y2),且1x>2x>0,则12y y-的值为()A、正数B、负数C、非正数D、非负数7.把不等式组1010xx+>⎧⎨-⎩,≤的解集表示在数轴上,正确的是()6.为了筹备班级初中毕业联欢会,班长对全班同学爱吃哪几种水果作了民意调查,那么最终买什么水果,下面的调查数据中最值得关注的是()A、平均数B、加权平均数C、中位数D、众数8. 一副三角板,如图所示叠放在一起,则图中∠α的度数是()A、 75°B、60°C、65°D、55°1-1A.1-1B.1-1C.1-1D.C BAxOy (第15题) α9. 图①、图②、图③是三种方法将6根钢管用钢丝捆扎的截面图,三种方法所用的钢丝长分别为a,b,c, (不记接头部分),则a, b, c,的大小关系为( )。

上海初三初中数学中考模拟带答案解析

上海初三初中数学中考模拟带答案解析

上海初三初中数学中考模拟班级:___________ 姓名:___________ 分数:___________一、选择题1.下列计算正确的是()A.;B.;C.;D..2.一元二次方程的常数项是()A.-1;B.1;C.0;D.2.3.某一段时间,小芳测得连续五天的日最高气温后,整理得出下表(有两个数据被遮盖).被遮盖的两个数据依次是()A.3℃,2;B.3℃,4;C.4℃,2;D.4℃,4.4.如果两圆的半径分别是2 cm和3cm,圆心距为5cm,那么这两圆的位置关系是()A.内切;B.相交;C.外切;D.外离.5.如图1,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=32o,那么∠2的度数是()A.32o;B.58o;C.68o;D.60o.6.如图2,△ABC中,点D、E分别是AB、AC的中点,由此得到结论:①BC=2DE;②△ADE∽△ABC;③;④.其中正确的有()(A)4个;(B)3个;(C)2个;(D)1个.二、填空题1.计算:= .2.分解因式:= .3.方程的根是 .4.成功、精彩、难忘的中国2010年上海世博会,众多境外参观者纷至沓来。

国家统计局上海调查总队调查显示:上海世博会境外参观者近4250000人次.4250000人次可用科学记数法表示为人次.5.已知函数,那么= .6.在平面直角坐标系中,反比例函数 ( k<0 ) 图像的两支分别在第象限.7.一件卡通玩具进价元,如果加价60%出售,那么这件卡通玩具可盈利元.8.在 5张完全相同的卡片上分别画上等边三角形、平行四边形、直角梯形、正六边形和圆.在看不见图形的情况下随机摸出1张,这张卡片上的图形是中心对称图形的概率是 .9.如图3,已知,在不添加任何辅助线的前提下,要使还需添加一个条件,这个条件可以是.(只需写出一个)10.如图4,在△中,边、上的中线、相交于点,设向量,,如果用向量,表示向量,那么= .11.等腰梯形ABCD中,,,那么梯形ABCD的周长是.12.如图5,直角△中,,,的圆心为,如果图中两个阴影部分的面积相等,那么的长是 .(结果保留)三、解答题1.(本题满分10分)解不等式组:把它的解集在数轴上表示出来,并求它的整数解.2.(本题满分10分)解方程:.3.(本题满分10分,第(1)小题7分,第(2)小题3分)如图6,矩形纸片ABCD的边长AB=4,AD=2.翻折矩形纸片,使点A与点C重合,折痕分别交AB、CD于点E、F,(1)在图6中,用尺规作折痕EF所在的直线(保留作图痕迹,不写作法),并求线段EF的长;(2)求∠EFC的正弦值.4.(本题满分10分,第(1)(2)小题满分各3分,第(3)小题满分4分)国家教育部规定“中小学生每天在校体育活动时间不低于1小时”.2011年,为了了解我市毕业班学生体育活动情况,随机对我市240名毕业班学生进行调查,调查内容为:第一问你平均每天在校参加体育活动的时间是多少?A.超过1小时 B.0.5~1小时 C.低于0.5小时如果第一问没有选A,请继续回答第二问第二问在校参加体育活动的时间没有超过1小时的原因是什么?A.不喜欢 B.没时间 C.其他以下是根据所得的数据制成的统计图的一部分.根据以上信息,解答下列问题:(1)每天在校锻炼时间超过1小时的人数是;(2)请将条形图补充完整;(3)2011年我市初中毕业生约为8.4万人,请你估计今年全市初中毕业生中每天锻炼时间低于0.5小时的学生约有万人.5.(本题满分12分,第(1)小题满分6分,第(2)小题满分6分)如图7,等腰三角形ABC中,AB=AC,AH垂直BC,点E是AH上一点,延长AH至点F,使FH=EH,(1)求证:四边形EBFC是菱形;(2)如果=,求证:.6.(本题满分12分,第(1)小题4分,第(2)小题4分、第(3)小题4分)如图8,在平面直角坐标系xOy中,半径为的与x轴交于、两点,且点C在x轴的上方.(1)求圆心C的坐标;(2)已知一个二次函数的图像经过点、B、C,求这二次函数的解析式;(3)设点P在y轴上,点M在(2)的二次函数图像上,如果以点P、M、A、B为顶点的四边形是平行四边形,请你直接写出点M的坐标.7.(本题满分14分,第(1)小题4分,第(2)小题①6分、第(2)小题②4分)直角三角板ABC中,∠A=30°,BC=1.将其绕直角顶点C逆时针旋转一个角(且≠ 90°),得到Rt△,(1)如图9,当边经过点B时,求旋转角的度数;(2)在三角板旋转的过程中,边与AB所在直线交于点D,过点 D作DE∥交边于点E,联结BE.①当时,设,,求与之间的函数解析式及定义域;②当时,求的长.上海初三初中数学中考模拟答案及解析一、选择题1.下列计算正确的是 ( )A .;B .;C .;D ..【答案】C【解析】(A)考查的是整式加减,只有同类项才能相加,(同类项的定义为所含字母相同,并且相同字母的指数也相同),而此处x 的指数不同,所以不能合并;(B) 考查的是同底数幂的除法,根据法则:底数不变,指数相减,应=x ,注意x 的指数为1;(C) 考查的是同底数幂相乘,根据法则:底数不变,指数相加,所以C 正确;(D) 考查的是幂的乘方,根据法则:底数不变,指数相乘=。

上海市2009年中考预测数学试题1

2009年中考数学预测卷(满分150分,考试时间100分钟)一、选择题:(24分)1.下列计算错误的是…………………………………………………………………………() (A)33(2)2x x -=- (B)326(2)4a a -= (C)936()()x x x -÷-= (D)-a 2a=-a 32.投掷一枚硬币两次,第一次正面朝上,第二次正面朝下的概率是……………………( ).(A )21 (B )31 (C )32 (D )413.在函数y =2x 、xy 2=、22x y =的图像中,具有沿某条直线翻折,直线两旁的部分能够互相重合的性质的图像有…………………………………………………………………………………………( ). (A )0个 (B )1个 (C )2个 (D )3个4.某校修建一条400米长的跑道,开工后每天比原计划多修10米,结果提前2天完成了任务.设原计划每天修x 米,那么根据题意可列出方程…………………………………( ).(A )210400400=+-x x (B )240010400=-+x x (C )210400400=--x x (D )240010400=--xx5.在A 处观察B 处时的仰角为α,那么在B 处观察A 处时的俯角为……………………( ). (A )α (B )α-︒90 (C )α+︒90 (D )α-︒1806.下列命题中正确的是………………………………………………………………………( )(A )正多边形一定是中心对称图形;(B )三角形的重心到顶点的距离是它到对边距离的2倍;(C )如果两圆的半径分别为3和4,圆心距为3,那么这两个圆的位置关系是相交; (D )如果一个四边形的对角线互相垂直且相等,那么这个四边形是正方形。

二、填空题:(48分)ACD7.“a 的立方与b 的平方的差”用代数式表示为.8.不等式组3043326x x x ->⎧⎪⎨+≥-⎪⎩,的整数解为.9.已知522=+n m ,那么)()(n m n n m m --+的值是.10.计算:21211x x -=--. 11.已知一次函数b kx y +=的图像与x 轴交于点)0,1(-A ,且经过点)3,3(B ,O 为坐标原点,则BAO ∠的正弦值是.12.受国际金融危机影响,某钢铁厂八月份的产量为20万吨,从九月份起,每月的产量均比上个月减少x %,如果记十月份的产量为y 万吨,那么y 关于x 的函数关系式是. 13.已知抛物线12-+=x ax y 的对称轴在y 轴的右边,则这个抛物线的开口方向是. 14.如果正多边形的中心角是36°,那么这个正多边形的边数是.15.如图,平行四边形ABCD 中,点 E 在AB 边上,且AE EB 2=,a AE =,b AD =,用a 、b 表示EC ,则=EC .16.如图,点A B ,是⊙O 上两点,10AB =,点P 是⊙O 上的动点(P 与 A B ,不重合),连结AP PB ,,过点O 分别作OE AP ⊥于E ,OF PB ⊥ 于F ,则EF =.17.已知在△ABC 中,045=∠B ,AB=24,AC =5,则△ABC 的面积为.18.已知在Rt △ABC 中,斜边AB =5,BC =3,以点A 为旋转中心,旋转这个三角形至△C B A ''的位置,那么当点C '落在直线AB 上时,B B '=. 三、解答题:(78分)19.(10分)计算: 112032727(2)(12)()cot 3096421-++--BOFPE第16ABOxy(第11题图)20.(10分)解方程组21.(10分)已知:点P 是⊙O 外一点,PA 是⊙O 的切线,切点为A ,联结PO 并延长交⊙O 于点C 、B.(1)如果PC PB 3=,求P ∠的度数; (2)如果PC m PB ⋅=,P ∠=45,求m 的值.22.(10分)“农民也可以销医疗费了!”这是某某市推行新型农村医疗合作的成果。

2009上海年初三压轴题总会(无答案)

2009年宝山区初三模拟测试数学试卷24.(本题满分12分,第(1)小题满分6分,第(2)小题满分6分)在直角坐标系中,把点A (-1,a )(a 为常数)向右平移4个单位得到点A ',经过点A 、A '的抛物线2y ax bx c =++与y 轴的交点的纵坐标为2. (1)求这条抛物线的解析式;(2)设该抛物线的顶点为点P ,点B 的坐标为)1m ,(,且3<m ,若△ABP 是等腰三角形,求点B 的坐标。

x图725.(本题满分14分,第(1)小题满分3分,第(2)小题满分5分,第(3)小题满分6分)(1)对小杰遇到的问题,请在甲、乙两个方案中任选一个,加以证明(如图8); (2)如果把条件中的“正方形”改为“长方形”,并设AB =2,BC =3(如图9),试探究EG 、FH 之间有怎样的数量关系,并证明你的结论;(3)如果把条件中的“EG ⊥FH ”改为“EG 与FH 的夹角为45°”,并假设正方形ABCD 5崇明县2009年初三学业考试模拟考24、(本题满分12分)如图,抛物线32++=bx ax y 与y 轴交于点C ,与x 轴交于A 、B 两点,31tan =∠OCA , 6=∆ABC S .(1)求点B 的坐标;(2)求抛物线的解析式及顶点坐标;(3)设点E 在x 轴上,点F 在抛物线上,如果A 、C 、E 、F 构成平行四边形,请写出点E 的坐标(不必书写计算过程).25、(本题满分14分)在等腰ABC=BC cm,动点P、Q分别从A、B两点同时AB cm,6=AC=∆中,已知5出发,沿AB、BC方向匀速移动,它们的速度都是1 cm/秒. 当点P到达点B时,P、Q两点停止运动,设点P的运动时间为t(秒).(1)当t为何值时,PQ⊥AB?(2)设四边形APQC的面积为y cm2,写出y关于t的函数关系式及定义域;(3)分别以P、Q为圆心,P A、BQ长为半径画圆,若⊙P与⊙Q相切,求t的值;∆能否相似?若能,请求出AP的长;若不能,请说明(4)在P、Q运动中,BPQ∆与ABC理由.(备用图)奉贤区初三调研考 数学卷2009.324.(本题满分12分,每小题满分各4分)如图,在平面直角坐标系中,矩形ABOC 的边BO 在x 轴正半轴上,边CO 在y 轴的正半轴上,且322==OB AB ,,矩形ABOC 绕点O 逆时针旋转后得到矩形EFOD ,且点A 落在y 轴上的E 点,点B 的对应点为点F ,点C 的对应点为点D .(1)求F 、E 、D 三点的坐标;(2)若抛物线c bx ax y ++=2经过点F 、E 、D ,求此抛物线的解析式;(3)在x 轴上方的抛物线上求点Q 的坐标,使得三角形QOB 的面积等于矩形ABOC 的面积?25.(本题满分14分,第(1)小题满分3分,第(2)小题满分6分,第(3)小题满分4分) 已知:在△ABC 中,AB =AC ,∠B =30º,BC =6,点D 在边BC 上,点E 在线段DC 上,DE =3,△DEF 是等边三角形,边DF 、EF 与边BA 、CA 分别相交于点M 、N . (1)求证:△BDM ∽△CEN ;(2)当点M 、N 分别在边BA 、CA 上时,设BD =x ,△ABC 与△DEF 重叠部分的面积为y ,求y 关于x 的函数解析式,并写出定义域.(3)是否存在点D ,使以M 为圆心, BM 为半径的圆与直线EF 相切, 如果存在,请求出x的值;如不存在,请说明理由.ABFEMN 第25题虹口区2009年中考数学模拟练习卷24.(本题满分12分,第(1)小题满分5分,第(2)小题满分3分,第(3)小题满分4分)在平面直角坐标系xOy 中(如图7),已知二次函数c bx x y ++=2的图像经过点(0,3)A 和点(3,0)B ,其顶点记为点C .(1)确定此二次函数的解析式,并写出顶点C 的坐标; (2)将直线CB 向上平移3个单位长度,求平移后直线l 的解析式;(3)在(2)的条件下,能否在直线上l 找一点D ,使得以点C 、B 、D 、O 为顶点的四边形是等腰梯形.若能,请求出点D 的坐标;若不能,请说明理由.25.(本题满分14分,第(1)小题满分4分,第(2)小题满分5分,第(3)小题满分5分)如图8,在ABC ∆中,90C ∠=︒,6AC =,3tan 4B =,D 是BC 边的中点,E 为AB 边上的一个动点,作90DEF ∠=︒,EF 交射线BC 于点F .设BE x =,BED ∆的面积为y .(1)求y 关于x 的函数关系式,并写出自变量x 的取值范围;(2)如果以线段BC 为直径的圆与以线段AE 为直径的圆相切,求线段BE 的长; (3)如果以B 、E 、F 为顶点的三角形与BED ∆相似,求BED ∆的面积.AC D EFB图8AD B备用图·上海市金山区2009年初三中考数学模拟考试24.(本题满分12分)如图,在直角坐标系中,直线421+=x y 与x 轴、y 轴分别交于A 、B 两点,过点A 作CA ⊥AB ,CA =52,并且作CD ⊥x 轴. (1)求证:△ADC ∽△BOA ;(2)若抛物线c bx x y ++-=2经过B 、C 两点. ①求抛物线的解析式;②该抛物线的顶点为P ,M 是坐标轴上的一个点,若直线PM 与y 轴的夹角为30°,请直接写出点M 的坐标.A BC D E O l A ′ ABCDEO lF 25.(本题满分14分)在矩形ABCD 中,AB =3,点O 在对角线AC 上,直线l 过点O ,且与AC 垂直交AD 于点E. (1)若直线l 过点B ,把△ABE 沿直线l 翻折,点A 与矩形ABCD 的对称中心A '重合,求BC 的长;(2)若直线l 与AB 相交于点F ,且AO =41AC ,设AD的长为x ,五边形BCDEF 的面积为S.①求S 关于x 的函数关系式,并指出x 的取值范围; ②探索:是否存在这样的x ,以A 为圆心,以x 43长为半径的圆与直线l 相切,若存在,请求出x 的值;若不存在,请说明理由;静安区“学业效能实证研究”学习质量调研24.(本题满分12分,第(1)小题满分7分,第(2)小题满分5分)已知:如图6,点A (–2,–6)在反比例函数的图像上,如果点B 也在此反比例函数图像上,直线AB 与 y 轴相交于点C ,且BC =2AC .(1) 求点B 的坐标;(2) 如果二次函数92-+=bx ax y 的图像经过A 、B 两点,求此二次函数的解析式.25.(本题满分14分,第(1)小题满分6分,第(2)小题满分5分,第(3)小题满分3分)已知:⊙O的直径AB=8,⊙B与⊙O相交于点C、D,⊙O的直径CF与⊙B相交于点E,设⊙B的半径为x,OE的长为y,(1)如图7,当点E在线段OC上时,求y关于x的函数解析式,并写出定义域;(2)当点E在直径CF上时,如果OE的长为3,求公共弦CD的长;(3)设⊙B与AB相交于G,试问△OEG能否为等腰三角形?如果能够,请直接写出BC的长度(不必写过程);如果不能,请简要说明理由.图7上海市卢湾区2009年初三数学中考模拟卷24.(本题满分12分,第(1)小题满分7分,第(2)小题满分5分)在平面直角坐标系xOy 中,将抛物线22y x =沿y 轴向上平移1个单位,再沿x 轴向右平移两个单位,平移后抛物线的顶点坐标记作A ,直线3x =与平移后的抛物线相交于B ,与直线OA 相交于C . (1)求△ABC 面积;(2)点P 在平移后抛物线的对称轴上,如果△ABP 与△ABC 相似,求所有满足条件的P 点坐标.24题图25.(本题满分14分,第(1)小题满分7分,第(2)小题满分7分)在等腰△ABC中,已知AB=AC=3,1cos3B∠=,D为AB上一点,过点D作DE⊥AB交BC边于点E,过点E作EF⊥BC交AC边于点F.(1)当BD长为何值时,以点F为圆心,线段FA为半径的圆与BC边相切?(2)过点F作FP⊥AC,与线段DE交于点G,设BD长为x,△EFG的面积为y,求y关于x的函数解析式及其定义域.25题图2009年南汇区初三数学模拟卷24.(本题满分12分,每小题满分各6分)如图①,在锐角⊿ABC 中,BC>AB>AC ,D 和E 分别是BC 和AB 上的动点,联结AD ,DE .(1) 当D 、E 运动时,在图②中画出仅有一组三角形相似的图形;在图③中画出仅有两组三角形相似的图形;在图④中画出仅有三组三角形相似的图形.(要求在图中标出相等的角,并写出相似的三角形)(2) 设BC =9,AB =8,AC =6,就图③求出DE 的长.(直接应用相似结论)B CABC ABC ABCAD E第24题图②③④①25.(本题满分14分,第(1)小题满分2分,第(2)小题满分4分,第(3)小题满分8分)如图所示,抛物线()23m x y --=(m >0)的顶点为A ,直线l :m x y -=33与y 轴交点为B .(1)写出抛物线的对称轴及顶点A 的坐标(用含m 的代数式表示); (2)证明点A 在直线l 上,并求∠OAB 的度数;(3)动点Q 在抛物线对称轴上,问抛物线上是否存在点P ,使以点P 、Q 、A 为顶点的三角形与⊿OAB 全等?若存在,求出m 的值,并写出所有符合上述条件的P 点坐标;若不存在,请说明理由.第25题图)2- m2009年浦东新区中考数学预测卷24.(本题满分12分)已知一次函数m x y +-=21的图像经过点A (-2,3),并与x 轴相交于点B ,二次函数22-+=bx ax y 的图像经过点A 和点B .(1)分别求这两个函数的解析式;(2)如果将二次函数的图像沿y 轴的正方向平移,平移后的图像与一次函数的图像相交于点P ,与y 轴相交于点Q ,当PQ ∥x 轴时,试问二次函数的图像平移了几个单位.25.(本题满分14分)如图,已知AB ⊥MN ,垂足为点B ,P 是射线BN 上的一个动点,AC ⊥AP ,∠ACP =∠BAP ,AB =4,BP =x ,CP =y ,点C 到MN 的距离为线段CD 的长.(1)求y 关于x 的函数解析式,并写出它的定义域.(2)在点P 的运动过程中,点C 到MN 的距离是否会发生变化?如果发生变化,请用x 的代数式表示这段距离;如果不发生变化,请求出这段距离.(3)如果圆C 与直线MN 相切,且与以BP 为半径的圆P 也相切,求BP ∶PD 的值.ABPDCNM2008学年度第二学期普陀区初三质量调研24. 已知:如图所示,点P 是⊙O 外的一点,PB 与⊙O 相交于点A 、B ,PD 与⊙O 相 交于C 、D ,AB=CD . 求证:(1)PO 平分∠BPD ;(2)P A=PC ;(3)AE EC .O DC PA B第24题E(4) 若点P是x轴上一点,以P、A、D为顶点作平行四边形,该平行四边形的另一顶点在y轴上,写出点P的坐标.第25题2008-2009学年第二学期上海市徐汇区初三年级数学学科24.(本题满分12分)如图,抛物线c bx ax y ++=2与y 轴正半轴交于点C ,与x 轴交于点),(、04)0,1(B A ,OBC OCA ∠=∠.(1)求抛物线的解析式; (3分)(2)在直角坐标平面内确定点M ,使得以点C B A M 、、、为顶点的四边形是平行四边形,请直接写出点M 的坐标; (3分) (3)如果⊙P 过点C B A 、、25.(本题满分14分)如图,ABC ∆中,10==AC AB ,12=BC ,点D 在边BC 上,且4=BD ,以 点D 为顶点作B EDF ∠=∠,分别交边AB 于点E ,交射线CA 于点F . (1)当6=AE 时,求AF 的长; (3分)(2)当以点C 为圆心CF 长为半径的⊙C 和以点A 为圆心AE 长为半径的⊙A 相切时,求BE 的长; (5分) (3)当以边AC 为直径的⊙O 与线段DE 相切时,求BE 的长. (6分)ABC D E F A B C D (备用图)杨浦区初三数学基础测试卷24.已知在直角坐标系中,点A的坐标是(-3,1),将线段OA绕着点O顺时针旋转90°得到OB.(1)求点B的坐标;(3)设点B关于抛物线的对称轴 的对称点为C,求△ABC25.(本题满分14分,第(1)小题3分,第(2)小题8分,第(3)小题3分) 如图,正方形ABCD 的边长为4,E 是BC 边的中点,点P 在射线AD 上,过P 作PF AE ⊥于F ,设PA x =. (1)求证:PFA ABE △∽△;(2)若以P F E ,,为顶点的三角形也与ABE △相似,试求x 的值;(3)试求当x 取何值时,以D 为圆心,DP 为半径的⊙D 与线段AE 只有一个公共点。

2009年上海市中学考试数学及问题详解

实用文档文案大全2009年上海市初中毕业统一学业考试数 学 卷(满分150分,考试时间100分钟)考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】 1.计算32()a 的结果是( ) A .5aB .6aC .8aD .9a2.不等式组1021x x +>⎧⎨-<⎩,的解集是( )A .1x >-B .3x <C .13x -<<D .31x -<<3.用换元法解分式方程13101x x x x --+=-时,如果设1x y x-=,将原方程化为关于y 的整式方程,那么这个整式方程是( ) A .230y y +-= B .2310y y -+=C .2310y y -+=D .2310y y --=4.抛物线22()y x m n =++(m n ,是常数)的顶点坐标是( ) A .()m n ,B .()m n -,C .()m n -,D .()m n --,5.下列正多边形中,中心角等于内角的是( )A .正六边形B .正五边形C .正四边形 C .正三边形 6.如图1,已知AB CD EF ∥∥,那么下列结论正确的是( )A .AD BCDF CE = B .BC DFCE AD =C .CD BCEF BE= D .CD ADEF AF= 二、填空题:(本大题共12题,每题4分,满分48分)A B D C E F图1实用文档文案大全【请将结果直线填入答题纸的相应位置】 7.分母有理化:81=的根是 .9.如果关于x 的方程20x x k -+=(k 为常数)有两个相等的实数根,那么k = .10.已知函数1()1f x x =-,那么(3)f = . 11.反比例函数2y x=图像的两支分别在第 象限.12.将抛物线2y x =向上平移一个单位后,得以新的抛物线,那么新的抛物线的表达式是 .13.如果从小明等6名学生中任选1名作为“世博会”志愿者,那么小明被选中的概率是 .14.某商品的原价为100元,如果经过两次降价,且每次降价的百分率都是m ,那么该商品现在的价格是 元(结果用含m 的代数式表示).15.如图2,在ABC △中,AD 是边BC 上的中线,设向量 , 如果用向量a ,b 表示向量AD ,那么AD =16.在圆O 中,弦AB 的长为6,它所对应的弦心距为4,那么半径OA = .17.在四边形ABCD 中,对角线AC 与BD 互相平分,交点为O .在不添加任何辅助线的前提下,要使四边形ABCD 成为矩形,还需添加一个条件,这个条件可以是 .18.在Rt ABC △中,903BAC AB M ∠==°,,为边BC 上的点,联结AM (如图3所示).如果将ABM △沿直线AM 翻折后,点B 恰好落在边AC 的中点处,那么点M 到AC 的距离是 . 三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)计算:22221(1)121a a a a a a +-÷+---+.20.(本题满分10分)解方程组:21220y x x xy -=⎧⎨--=⎩,①.②图2AA 图3B M C=BC b =AB a =实用文档文案大全21.(本题满分10分,每小题满分各5分)如图4,在梯形ABCD 中,86012AD BC AB DC B BC ==∠==∥,,°,,联结AC . (1)求tan ACB ∠的值;(2)若M N 、分别是AB DC 、的中点,联结MN ,求线段MN 的长.22.(本题满分10分,第(1)小题满分2分,第(2)小题满分3分,第(3)小题满分2分,第(4)小题满分3分)为了了解某校初中男生的身体素质状况,在该校六年级至九年级共四个年级的男生中,分别抽取部分学生进行“引体向上”测试.所有被测试者的“引体向上”次数情况如表一所示;各年级的被测试人数占所有被测试人数的百分率如图5所示(其中六年级相关数据未标出).表一根据上述信息,回答下列问题(直接写出结果): (1)六年级的被测试人数占所有被测试人数的百分率是 ;(2)在所有被测试者中,九年级的人数是 ; (3)在所有被测试者中,“引体向上”次数不小于6的人数所占的百分率是 ;(4)在所有被测试者的“引体向上”次数中,众数是 .23.(本题满分12分,每小题满分各6分)已知线段AC 与BD 相交于点O ,联结AB DC 、,E 为OB的中点,F 为OC 的中点,联结EF (如图6所示).(1)添加条件A D ∠=∠,OEF OFE ∠=∠,求证:AB DC =.(2)分别将“A D ∠=∠”记为①,“OEF OFE ∠=∠”记为②,“AB DC =”记为③,添加条件①、③,以②为结论构成命题1,添加条件②、③,以①为结论构成命题2.命题1是 命题,命题2是 命题(选择“真”或“假”填入空格). 24.(本题满分12分,每小题满分各4分)A D C图4 B 九年级 八年级 七年级六年级 25%30%25% 图5 图6 O D CAB E F实用文档文案大全在直角坐标平面内,O 为原点,点A 的坐标为(10),,点C 的坐标为(04),,直线CM x ∥轴(如图7所示).点B 与点A 关于原点对称,直线y x b =+(b 为常数)经过点B ,且与直线CM 相交于点D ,联结OD .(1)求b 的值和点D 的坐标; (2)设点P 在x 轴的正半轴上,若POD △是等腰三角形,求点P 的坐标; (3)在(2)的条件下,如果以PD 为半径的圆P 与圆O 外切,求圆O 的半径.25.(本题满分14分,第(1)小题满分4分,第(2)小题满分5分,第(3)小题满分5分)已知9023ABC AB BC AD BC P∠===°,,,∥,为线段BD 上的动点,点Q 在射线AB 上,且满足PQ ADPC AB=(如图8所示). (1)当2AD =,且点Q 与点B 重合时(如图9所示),求线段PC 的长; (2)在图8中,联结AP .当32AD =,且点Q 在线段AB 上时,设点B Q 、之间的距离为x ,APQ PBCS y S =△△,其中APQ S △表示APQ △的面积,PBC S △表示PBC △的面积,求y 关于x 的函数解析式,并写出函数定义域;(3)当AD AB <,且点Q 在线段AB 的延长线上时(如图10所示),求QPC ∠的大小.ADPCBQ 图8DAPCB(Q ) 图9图10CADPB Qxb实用文档文案大全2009年上海市初中毕业统一学业考试数学卷答案要点与评分标准说明:1. 解答只列出试题的一种或几种解法.如果考生的解法与所列解法不同,可参照解答中评分标准相应评分;2. 第一、二大题若无特别说明,每题评分只有满分或零分;3.第三大题中各题右端所注分数,表示考生正确做对这一步应得分数;4. 评阅试卷,要坚持每题评阅到底,不能因考生解答中出现错误而中断对本题的评阅.如果考生的解答在某一步出现错误,影响后继部分而未改变本题的内容和难度,视影响的程度决定后继部分的给分,但原则上不超过后继部分应得分数的一半; 5. 评分时,给分或扣分均以1分为基本单位.一.选择题:(本大题共6题,满分24分)1. B ; 2.C ; 3.A; 4.B; 5.C; 6.A . 1、2、解:解不等式①,得x >-1,解不等式②,得x <3,所以不等式组的解集为-1<x <3,故选C .3、4、5、6、二.填空题:(本大题共12题,满分48分) 7.;8.2 x ;解:由题意知x-1=1,解得x=2. 9.14;实用文档文案大全10.-12;11.一、三;12.21y x =-;解:由“上加下减”的原则可知,将抛物线y=x 2-2向上平移一个单位后,得以新的抛物线,那么新的抛物线的表达式是,y=x 2-2+1,即y=x 2-1. 故答案为:y=x2-1. 13.16;解:因为从小明等6名学生中任选1名作为“世博会”志愿者,可能出现的结果有6种,选中小明的可能性有一种,所以小明被选中的概率是1/ 6 .14.2)1(100m -;解:第一次降价后价格为100(1-m ),第二次降价是在第一次降价后完成的,所以应为100(1-m )(1-m ),即100(1-m )2.15.b a 21+;解:因为向量 AB = a , BC = b ,根据平行四边形法则,可得: AB = a , BC = b , AC = AB + BC =a+b ,又因为在△ABC 中,AD 是BC 边上的中线,所以16.5;17.AC BD =(或︒=∠90ABC 等); 解:∵对角线AC 与BD 互相平分, ∴四边形ABCD 是平行四边形, 要使四边形ABCD 成为矩形,需添加一个条件是:AC=BD 或有个内角等于90度. 18. 2.实用文档文案大全三.解答题:(本大题共7题,满分78分) 19.解:原式=2)1()1)(1(111)1(2-+--+⋅-+a a a a a a ··········································· (7分) =1112-+--a a a ······································································· (1分) =11--a a·············································································· (1分)=1-. ················································································ (1分) 20.解:由方程①得1+=x y , ③ ························································ (1分)将③代入②,得02)1(22=-+-x x x , ·········································· (1分)整理,得022=--x x , ······························································ (2分) 解得1221x x ==-,, ·································································· (3分) 分别将1221x x ==-,代入③,得1230y y ==,, ·························· (2分)所以,原方程组的解为1123x y =⎧⎨=⎩,; 2210.x y =-⎧⎨=⎩,····································· (1分) 21.解:(1) 过点A 作BC AE ⊥,垂足为E . ··········································· (1分)在Rt △ABE 中,∵︒=∠60B ,8=AB , ∴460cos 8cos =︒⨯=⋅=B AB BE , ·············································· (1 分)3460sin 8sin =︒⨯=⋅=B AB AE . ·················································· (1分)∵12=BC ,∴8=EC . ······························································· (1 分) 在Rt △AEC 中,23834tan ===∠EC AE ACB . ··································· (1分) (2) 在梯形ABCD 中,∵DC AB =,︒=∠60B ,∴︒=∠=∠60B DCB . ········································································ (1分) 过点D 作BC DF ⊥,垂足为F ,∵︒=∠=∠90AEC DFC ,∴DF AE //. ∵BC AD //,∴四边形AEFD 是平行四边形.∴EF AD =. ···················· (1分) 在Rt △DCF 中, 460cos 8cos =︒⨯=∠⋅=DCF DC FC , ···················· (1分) ∴4=-=FC EC EF .∴4=AD . ∵M 、N 分别是AB 、DC 的中点,∴821242=+=+=BC AD MN . ······· (2分)实用文档文案大全22.(1) %20; ················································································· (2分) (2) 6; ··················································································· (3分) (3) %35; ················································································ (2分) (4) 5. ······················································································ (3分)23.(1) 证明:OFE OEF ∠=∠ ,∴OF OE =. ··································································· (1分) ∵E 为OB 的中点,F 为OC 的中点, ∴OE OB 2=,OF OC 2=. ············································· (1分) ∴OC OB =. ··································································· (1分) ∵D A ∠=∠,DOC AOB ∠=∠,∴△AOB ≌△DOC . ························································ (2分) DC AB =∴. ··································································· (1分) (2) 真; ························································································ (3分) 假. ··························································································· (3分)24.解:(1) ∵点A 的坐标为(10),,点B 与点A 关于原点对称,∴点B 的坐标为(10)-,. ································································· (1分) ∵直线b x y +=经过点B ,∴01=+-b ,得1=b . ··························· (1分) ∵点C 的坐标为(04),,直线x CM //轴,∴设点D 的坐标为(4)x ,. ······· (1分) ∵直线1+=x y 与直线CM 相交于点D ,∴3=x .∴D 的坐标为(34),.…(1分) (2) ∵D 的坐标为(34),,∴5=OD . ··············································· (1分) 当5==OD PD 时,点P 的坐标为(60),; ····································· (1分) 当5==OD PO 时,点P 的坐标为(50),, ····································· (1分) 当PD PO = 时,设点P 的坐标为(0)x ,)0(>x ,∴224)3(+-=x x ,得625=x ,∴点P 的坐标为25(0)6,. ··········· (1分) 综上所述,所求点P 的坐标是(60),、(50),或25(0)6,. (3) 当以PD 为半径的圆P 与圆O 外切时, 若点P 的坐标为(60),,则圆P 的半径5=PD ,圆心距6=PO , ∴圆O 的半径1=r . ····································································· (2分) 若点P 的坐标为(50),,则圆P 的半径52=PD ,圆心距5=PO ,∴圆O 的半径525-=r . ·························································· (2分) 综上所述,所求圆O 的半径等于1或525-.25.解:(1) ∵BC AD //, ∴DBC ADB ∠=∠.∵2==AB AD ,∴ADB ABD ∠=∠.∴ABD DBC ∠=∠. ∵︒=∠90ABC .∴︒=∠45PBC . ················································ (1分)∵ABADPC PQ =,AB AD =,点Q 与点B 重合,∴PC PQ PB ==. ∴︒=∠=∠45PBC PCB . ······························································ (1分) ∴︒=∠90BPC . ········································································· (1分)实用文档文案大全在Rt △BPC 中,22345cos 3cos =︒⨯=⋅=C BC PC . ···················· (1分) (2) 过点P 作BC PE ⊥,AB PF ⊥,垂足分别为E 、F . ···················· (1分)∴︒=∠=∠=∠90BEP FBE PFB .∴四边形FBEP 是矩形. ∴BC PF //,BF PE =.∵BC AD //,∴AD PF //.∴ABADBF PF =. ∵23=AD ,2=AB ,∴43=PE PF . ················································ (1分) ∵x QB AB AQ -=-=2,3=BC ,∴22APQ x S PF -=△,32PBC S PE =△.∴42x S S PBC APQ -=∆∆,即42x y -= . ················································· (2分) 函数的定义域是0≤x ≤87. ··························································· (1分)(3) 过点P 作BC PM ⊥,AB PN ⊥,垂足分别为M 、N .易得四边形PNBM 为矩形,∴BC PN //,BN PM =,︒=∠90MPN .∵BC AD //,∴AD PN //.∴AB AD BN PN =.∴ABADPM PN =. ·············· (1分) ∵AB AD PC PQ =,∴PCPQ PM PN =. ······················································ (1分) 又∵︒=∠=∠90PNQ PMC ,∴Rt △PCM ∽Rt △PQN . ··············· (1分) ∴QPN CPM ∠=∠. ··································································· (1分) ∵︒=∠90MPN ,∴︒=∠=∠+∠=∠+∠90MPN QPM QPN QPM CPM , 即︒=∠90QPC . ········································································· (1分)。

2009年度上海市宝山区罗店中学九年级数学中考模拟试卷上教版

中考数学模拟卷2010.1(时间:100分钟,满分:150分)一、单项选择题:(本大题共6题,每题4分,满分24分)[下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上]1下列运算结果正确的是…………………………………………………………………( )A.632a a a =⋅; B.6332)(b a ab =;C.532)(a a =;D.3232a a a =+.2. 在49,a 9,25xy ,92+a ,23+x ,1.0中,是最简二次根式的个数是( ). (A) 1; (B) 2; (C) 3; (D) 4.3.据媒体报道,我国因环境污染造成的巨大经济损失,每年高达680000000元,这个数用科学记数法表示正确的是 (A )元; (B ) 元;(C )元 ;(D ) 元. 4.在平面直角坐标系中,直线1y x =-经过……………………………( )A .第一、二、三象限 ;B .第一、二、四象限;C .第一、三、四象限 ;D .第二、三、四象限. 5.下列命题中假命题是……………………………………………………………………( ) A.两组对边分别相等的四边形是平行四边形; B.两组对角分别相等的四边形是平行四边形;C.一组对边平行一组对角相等的四边形是平行四边形; D.一组对边平行一组对边相等的四边形是平行四边形.6. 给出下列关于三角形的条件:①已知三边;②已知两边及其夹角;③已知两角及其夹边;④已知两边及其中一边的对角. 利用尺规作图,能作出唯一的三角形的条件是…( ). (A) ①②③; (B) ①②④; (C) ②③④; (D) ①③④. 二、填空题:(本大题共12题,每题4分,满分48分)[请将结果直接填入答题纸的相应位置] 7.化简:=-+-xx x 222 . 8.不等式12-x ≤3的正整数解是 . 9.函数x y -=1的定义域是 . 10.在方程223343x x x x+=--中,如果设23y x x =-,那么原方程可化为关于y 的整式方程是 .11.已知正比例函数y k x =(k ≠ 0)的图像经过点(-4,2),那么函数值y 随自变量x 的值的增大而____________.(填“增大”或“减小”)12.四张大小、质地都相同的卡片上分别标有数字1,2,3,4,现将标有数字的一面朝下放在桌子上,从中随机抽取两张卡片,那么两张卡片上的数字的乘积为偶数的概率是_________.13.写出一个开口向下且对称轴为直线1x =-的抛物线的函数解析式 . 14.请写出一个既是轴对称图形又是旋转对称图形的图形:_________. 15.在︒=∠∆90C ABC Rt 中,,21tan =A , 若1=BC ,则AB 边的长是 . 16.如图,在平行四边形ABCD 中,E 是边CD 上的点,BE 与AC 交于点F ,如果31=CD CE ,那么=FBEF.17.⊙O 的直径为10,⊙O 的两条平行弦8=AB ,6=CD ,那么这两条平行弦之间的距离是________________. 18.平行四边形ABCD 中,3,4==BC AB ,∠B =60°,AE 为BC 边上的高,将△ABE沿AE 所在直线翻折后得△AFE ,那么△AFE 与四边形AECD 重叠部分的面积是 . 三、解答题(本大题共7题,其中第19---22题每题10分,第23、24题每题12分,第25题14分, 满分78分) 19.计算:3197233112211--⎪⎭⎫ ⎝⎛+-+-. .20.解方程组:⎩⎨⎧=+-=-.065,6222y xy x y x21.某商品根据以往销售经验,每天的售价与销售量之间有如下表的关系:C B A DEF每千克售价(元) 38 37 36 35 … 20 每天销售量(千克)50525456…86设当单价从38元/千克下调到x 元时,销售量为y 千克,已知y 与x 之间的函数关系是一次函数.(1)求y 与x 的函数解析式;(2)如果某商品的成本价是20元/千克,为使某一天的利润为780元,那么这一天的销售价应为多少元?(利润=销售总金额-成本)21.为了解本区初三学生体育测试自选项目的情况,从本区初三学生中随机抽取了部分学生的自选项目进行统计,绘制了扇形统计图和频数分布直方图,请根据图中信息,回答下列问题:(1)本次调查共抽取了 名学生; (2)将频数分布直方图补充完整;(3)样本中各自选项目人数的中位数是 ;(4)本区共有初三学生4600名,估计本区有 名学生选报立定跳远.23.如图,在ABC ∆中,B C ∠=∠2,D 是BC 边上一点,且AB AD ⊥,点E 是线段BD 的篮球其他 立定跳远 排球20% 50米60 5040人数 项目篮球排球50米 立定跳远其他20中点,连结AE . (1)求证:AC BD 2=;(2)若BC DC AC ⋅=2,求证:AEC ∆是等腰直角三角形.24.如图,抛物线c bx ax y ++=2与y 轴正半轴交于点C ,与x 轴交于点),(、04)0,1(B A ,OBC OCA ∠=∠.(1)求抛物线的解析式; (3分)(2)在直角坐标平面内确定点M ,使得以点C B A M 、、、为顶点的四边形是平行四边形,请直接写出点M 的坐标; (3分) (3)如果⊙P 过点C B A 、、三点,求圆心P 的坐标. (6分)25.如图8,在ABC ∆中,90C ∠=︒,6AC =,3tan 4B =,D 是BC 边的中点,E 为AB A BCO yx边上的一个动点,作90DEF ∠=︒,EF 交射线BC 于点F .设BE x =,BED ∆的面积为y .(1)求y 关于x 的函数关系式,并写出自变量x 的取值范围;(2)如果以线段BC 为直径的圆与以线段AE 为直径的圆相切,求线段BE 的长; (3)如果以B 、E 、F 为顶点的三角形与BED ∆相似,求BED ∆的面积.AC D EFB图8ACD B备用图·。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

参考答案 —1—
上海市部分学校九年级数学抽样测试试卷
参考答案及评分说明
一、选择题:
1.C; 2.C; 3.A; 4.B; 5.C; 6.D.
二、填空题:

7.)1(ba; 8.x=1; 9.1m; 10.43; 11.5; 12.31; 13.8;

14.21616xx; 15.120; 16.52; 17.140; 18.12.
三、解答题:
19.解:原式=aa3413………………………………………………………………(8分)
=36a.……………………………………………………………………(2分)

20.解:去分母,得 xxxxx772426222.…………………………………(3分)

整理,得 0232xx.……………………………………………………(2分)
解得 21x,12x.………………………………………………(4分)
经检验:21x,12x都是原方程的根.…………………………………(1分)
∴原方程的根为21x,12x.
21.解:(1)设y关于x的函数解析式为xky.那么

5.0
200k
,得k=100.……………………………………………………(4分)

∴y关于x的函数解析式为xy100.……………………………………(2分)
(2)当y=300时,31x,即300度近视眼镜镜片的焦距为31米.…………(4分)
22.解:(1)∵AD⊥BC,21tanA,∴ADBD21.…………………………………(2分)
∵AB=54,222ABADBD,∴BD=4,AD=8.……………………(2分)
又∵经过圆心O的直线AD⊥BC,∴BC=2BD=8.………………………(2分)
(2)联结OC.设圆O的半径为r,那么DO=8-r.

在△COD中,2224)8(rr.…………………………………………(2分)
∴r=5,即圆O的半径为5.………………………………………………(2分)
23.证明:(1)∵四边形ABCD是等腰梯形,∴AC=BD.……………………………(2分)

∵AD∥BC,∴BDDOACAO.………………………………………………(2分)
参考答案 —2—

∴AO=DO.…………………………………………………………………(2分)
(2)∵AE∥DF,∴OFAODOEO. ……………………………………………(1分)
又∵AO=OF,∴EO=DO.…………………………………………………(1分)
∴四边形AEFD是平行四边形.…………………………………………(2分)
∵DO=AO=OF=EO,∴AF=DE.…………………………………………(1分)
∴平行四边形AEFD是矩形.……………………………………………(1分)

24.解:(1)∵直线y=kx+2经过点P(1,25),∴225k.………………………(1分)

解得21k.…………………………………………………………………(1分)
∴所求直线的表达式为 221xy.……………………………………(1分)
(2)由直线221xy与x轴相交于点A,得点A的坐标为(-4,0).……(1分)
∵抛物线y=ax2+bx(a>0)经过点A和点P,

∴.254160baba,……………………………………………………………(1分)

解得.221ba,…………………………………………………………………(1分)
∴所求抛物线的表达式为xxy2212.…………………………………(1分)
(3)△ACB与△ABD相似.……………………………………………………(1分)
∵2)2(2122122xxxy,∴顶点M的坐标为(-2,-2).……(1分)
又∵直线与y轴相交于点B,∴点B的坐标为(0,2).
∵直线BM与x轴相交于点C,∴点C的坐标为(-1,0).……………(1分)

∴524222AB,3)4(1AC,320)4(38AD.(1分)

∴1053523ABAC,105332052ADAB.
∴ADABABAC.………………………………………………………………(1分)
∵∠BAC=∠DAB,∴△ABD∽△ACB.
25.解:(1)过点M作MP∥AC,交BC于点P.
在正△ABC中,∵AB=BC,MP∥AC,∴PC=AM=x.…………………(1分)
又∵AM=CN,∴PC=CN.…………………………………………………(1分)
∵MP∥AC,∴∠MPB=∠ACB=60°.
而∠B=60°,∴∠MPB=∠B.
∴MP=BM= 4-x.……………………………………………………………(1分)
参考答案 —3—

∴)4(21xy,即221xy. ………………………………………(1分)
定义域为0(2)作MH⊥BC,垂足为点H,DK⊥BC,垂足为点K.
可得MH=2DK.……………………………………………………………(1分)
∵四边形BCDM的面积等于△DCN面积的4倍,
∴△BMN的面积等于△DCN面积的5倍.………………………………(1分)

∴DKxMHx215)4(21.…………………………………………(1分)

∴38x.……………………………………………………………………(1分)
(3)线段DE的长不会改变.……………………………………………………(1分)
(i)当点M在边AB上时,点D在边AC上.

∵∠AEM=90°,∠A=60°,AM=x,∴xAE21.

∴2)221(214214xxyxDE.…………………………(2分)
(ii)当点M在边AB的延长线上时,点D在边AC的延长线上.
过点M作MP∥AC,交直线BC于点P.
∴MP=BM=BP=x-4.
∴CP=CN=x.

∴221xCD.

∴2212214xxAD.
又∵xAE21,∴221221xxAEADDE. ………………(2分)
综上所述,DE=2,即线段DE的长不会发生改变.

相关文档
最新文档