(完整)无线电测向原理

合集下载

无线电测向

无线电测向

VHF/UHF频段业余无线电测向〖利用对讲机测向〗最简单的测向方法就是完全利用对讲机本身(包括橡皮天线)进行近距离测向。

如果发射机使用的是垂直极化天线,辐射出的射频电场传播到远处理想的地面附近时,呈垂直方向。

这时接收机的橡皮天线(小直径螺旋天线)只有垂直放置才能和电场方向相一致,得到最大信号。

因为垂直橡皮天线没有方向性,这样并不能确定电台的方向。

但是如果接收点的大地导电率不好,地面附近的电场方向会发生歪斜,在入射方向上与地面形成小于90度的夹角。

这时,把橡皮天线的顶端斜向发射机的方向才能使天线和电场完全平行而得到最大信号,因而有可能确定电台的方向。

然而,在电台远处,这种电场的倾斜很不明显,实际上无法实用。

但是近区情况有所不同。

根据电磁场方程,在离发射天线很近的范围内,不仅有一般无线电书籍所描述的“辐射场”,还有较少提及的“感应场”。

它的电场方向有平行于地面的分量,造成地面附近电场方向严重向电台方向倾斜,因此当接收机的橡皮天线以一定倾角指向电台方向时,可以获得比较明显的信号增强,从而测出发射机的方位。

1997年5月,我在泰国的合艾市为泰国和马来西亚的HAM办ARDF 讲席班,在一个园子里放置了三部发射机。

当时CRSA只赠送了一台2M测向机,只能安排大家轮流实习。

但是许多HAM等不及,分别拿着自己的对讲机就跑出去用上述方法找电台,也都很快地找出了所有电台。

〖对讲机+定向天线〗利用没有本身没有方向性橡皮天线以及电场有限的倾斜测向,效果很不理想。

所以最好还是在对讲机上加一副定向天线。

业余无线电爱好者在测向中常用的定向天线主要是2单元和3单元八木天线、HB9CV天线和其他形式的相控定向天线。

3单元八木天线指向比较尖锐些,但比较笨重。

2单元八木天线方向图的主瓣比较宽,但仍有很好的前后比,体积比三单元小,便于携带。

HB9CV天线是直接耦合的两单元天线,体积更加小巧,效果与2单元八木大体相似。

在90年代的ARRL手册上还介绍了其他类型的定向天线,在许多国家得到应用。

无线电测向机的制作PJ

无线电测向机的制作PJ

无线电测向机的制作一、无线电原理无线电波是电磁波的一种,是由交变的电场与磁场交替产生并以有限速度向空间传输的过程。

无线电波是电磁波中波长最长,频率最小的,频率在103MHz—1013MHz之间,通常用于通信、播送、电视、雷达等。

无线电波的传输方式包括天波、地波、直接波、反射波和卫星传输。

地波传输稳定,但可传输距离短,能量损耗大;天波可以传输超远距离,但不稳定。

现在广泛使用的是直接波的传输方式。

天线是一种能量转换器,可以实现电能与电磁能的相互转换,并且具有可逆性,既可以做发射器,也可以做信号的接收器。

天线具有很强的方向性,直立天线接收垂直极化波,磁性天线接收水平极化波。

磁性天线由磁体、线圈和引线组成,其中磁体是软磁铁氧体。

无线电测向机是具有强方向性的无线接收机,由天线系统、电路系统和终端指示器组成。

天线系统包括直立天线和磁性天线,磁性天线用于确定磁场方向,再由直立天线确定电场方向,组合起来就可以确定信号源的位置。

天线系统的接收方式是超外差式,既通过接收到的输入信号减去本机振荡,得到所需要的信号。

我们所要制作和使用的测向机是PJ-80型无线测向机,它具有工作稳定、调试方便、构造简单、性价比高等特点。

二、实验目的本次电子实习的目的,是进展无线电测向机的制作、调试,用调试好的测向机进展信号的搜寻以及对所收到的信号进展分析处理。

从中掌握测向机的根本制作和调试过程,并感受实地侧向的过程。

三、焊接过程在电路板的焊接之前,首先要了解电路的工作原理。

电路包括高频放大电路、差拍检波电路、可调差拍振荡电路、低频放大电路、功放芯片以及天线和耳机七局部组成。

耳机作为终端指示器,振荡电路那么是在做信号“减法〞的时候十分关键的一步。

电路中,三个三极管的作用也十分重要,是保证电路正常运行的关键。

电路的核心是芯片LM386。

焊接中也有许多需要注意的问题。

首先,应该将烙铁先接触焊盘,然后放上焊锡,焊锡的用量不能太多,会造成焊锡的浪费,也不能太少,会造成虚焊,虚焊将对以后的调试过程带来很大的麻烦。

不同无线电测向的原理

不同无线电测向的原理

不同无线电测向的原理通过测试无线电波到达某处时的一些参数,能够获得无线电波的来向。

对于一个固定测向站来说,在V/UHF频段,通常只测试电波在水平面上的来向,在HF的频段,通常还要测量它的仰角。

由于无线电波具有特定的传播规律,根据两个以上站点测得的电波来向,或者一个站点测得的来向、仰角、跳次数据和电离层反射区高度等数据可以得知无线电发射台的位置。

通过测试无线电波到达某处时的一些参数,能够获得无线电波的来向。

对于一个固定测向站来说,在V/UHF 频段,通常只测试电波在水平面上的来向,在HF的频段,通常还要测量它的仰角。

由于无线电波具有特定的传播规律,根据两个以上站点测得的电波来向,或者一个站点测得的来向、仰角、跳次数据和电离层反射区高度等数据可以得知无线电发射台的位置。

根据不同无线电测向的原理,通常有幅度测向法、相位测向法、空间谱估计测向法和时差测向法。

1、幅度测向法幅度测向法是历史最悠久的测向方法。

常见的幅度测向法采用一付有方向性的天线,通过旋转天线,找到信号最强的方向(大音点测向法)或者信号最弱的方向(小音点测向法),就可以确定来波方向。

业余无线电测向(猎狐)均基于幅度测向法。

采用旋转天线的方法测向,设备十分简单。

对于无线电爱好者而言,可以用具有方向性的八木-宇田天线,接上具有测量信号强度功能的接收机(例如对讲机和可变衰减器的组合)构成测向系统。

这种测向系统适合于一个人携带使用,在接近发射源的时候最为有效。

由于这种测向系统需要人工或者电动旋转天线,它的响应时间很长,如果需要捕捉短促信号持续时间很短,或者信号强度本来就在不停变化,则难以取得有效结果。

为了克服旋转天线响应时间长的缺点,发展了沃特森-瓦特测向机。

它用两付相互正交的艾德考克天线接收无线电信号,两付天线的信号分别送入两台接收机,并将接收机的电压输出(与信号幅度线性相关)分别送入示波器的X、Y偏转器,即可在显示屏上显示一条代表来波方向的亮线。

无线电测向

无线电测向
无线电测向
综合教研组 罗 峰 2016.06
一、什么是无线电测向运动?
无线电测向运动(又称无线电猎狐运动
)是利用无线电测向机(一种具有方向性的 接收机),在自然环境中,以徒步、奔跑的 方式快速、准确逐个寻找预先设置的隐蔽电 台,在规定时间内找完指定电台数量、用时
少者为优胜的运动项目,是现代江苏电信-移动赞助的,“江苏电信-移动
杯”第十届世界无线电测向锦标赛在中国江苏南京进行,也是中国 第一次举行世界无线电测向锦标赛。
三、中国无线电测向运动起步
中国无线电测向起步略晚于欧洲,但在亚洲是先行。 1961年5月,解放军、河北、无线电俱乐部队等30余名
图4:2米波段测向机
三元八木天线。分为长、中、短 三根,最长的装机身下部,中等 装机身中部,最短装机身上部。
3)本图为侧面图, 上面黑色旋钮为调谐旋 钮,调节频率用; 下面为音量旋钮。
调谐旋钮
音量旋钮
4)底部为电源开关 和耳机插孔。
电源开关
耳机插孔
2、6-0号台:
6台 7台 8台 9台 0台
-···· ――··· ―――·· ――――· -----
台号规律:
1个长音 = 2个短音,短音之和就是该台号数。
六、2米波段测向机使用方法
1)2米波段测向: 频率为144-146MHz的超短波
波段,其波长为2.08米-2.055
米,称2米波段测向。 2)图4为2米波段测向机,为
术与传统捉迷藏游戏的结合。
二、无线电测向运动的发展
无线电测向是舶来品,是上个世纪50年代我国进行国防教育,开
展国防体育时从苏联引进的。 1980年9月,第一届世界无线电测向锦标赛在波兰格但斯克举行。 1983年7月,第27届国际无线电测向锦标赛在南斯拉夫举行。 1984年9月,第二次世界无线电测向锦标赛在挪威奥斯陆举行。

无线电监测与测向定位(张洪顺)(王磊)5-10章 (3)

无线电监测与测向定位(张洪顺)(王磊)5-10章 (3)

第7章 测向原理 图 7-7 人工听觉小音点测向原理框图
第7章 测向原理
7.2.1 听觉小音点测向 听觉小音点测向设备根据其所采用的天线结构形式不同可
分为三类:单环天线体制的听觉小音点测向机、间隔双环天线 体制的听觉小音点测向机和角度计天线体制的听觉小音点测向 机。
在近距离测向场合下,通常采用单环加中央垂直天线这种 复合结构的听觉小音点测向机,如图7-8所示。这种测向机的 环天线可以手动绕中心轴线自由旋转,在环天线的旋转过程中, 方位读盘的指针与之同轴旋转,当环天线平面的法线方向处于 正北方位时,方位读盘的指针指在0°位置,若测向信道接收 机的工作频率和工作状态(通带选择、解调方式AGC控制方式及 天线衰减等)已设置好,则只要环天线平
第7章 测向原理 图 7-2 最小信号法测向示意图
第7章 测向原理
2. 最大信号法测向 最大信号法测向要求天线具有尖锐的方向特性,测向时旋 转天线,当测向机的输出端出现最大信号值时,说明天线极坐 标方向图主瓣的径向中心轴指向来波方位,根据此时天线主瓣 的指向就可以确定目标信号的来波方位值,如图7-3所示。由 于示向度值是在天线接收信号为最大值时获取的,因而它具有 对微弱信号的测向能力,但测向精度较低是它的主要缺点。因 为天线极坐标方向图在最大值附近变化缓慢,所以只有当天线 旋转较大的角度(半功率点波束宽度的10% ~25%)时才能测出其输出电压的明显变化。
第7章 测向原理
近期的测向设备普遍地采用半自动测向工作方式,测向过 程中有些工作如旋转天线、测向信道接收机工作状态的调整、 信道的预置、方位测定过程中的大部分辅助工作及示向度数据 获取与处理工作都是自动完成的。随着现代数字信号处理技术 和计算机技术的发展与普及应用,测向设备自动完成的工作越 来越多,设备的自动化程度越来越高。但是在某些复杂环境下, 如信号非常密集、存在较强的干扰、信号结构非常复杂或信号 质量非常差等,测向设备工作状态的设置与控制过程、示向度 数据读取过程、示向度数据可信度评估过程及示向度数据的某 些处理过程仍然需要操作员人工辅助来完成。

无线电测向原理

无线电测向原理

无线电测向原理无线电测向运动做为一项竞技体育项目,同其它竞技体育项目一样,具有鲜明的竞技特征。

具体来说,一是参加者必须共同遵守统一的竞赛规则,二是竞赛活动表现出强烈的竞争特点,三是每一个参加者在赛前和竞赛过程中要采取一系列措施,力求使自己的体力、智力、技术在比赛中得到最好的表现和发挥,以创造优异成绩,压倒对手,夺取胜利。

竞技体育的这些特点表明它不同于娱乐和游戏,也不同于健身体育和康复体育。

它要求参加者从事系统的科学的训练,全面掌握各种技术,锻炼并提高自己的体力和智力去适应运动竞赛的需要。

无疑,技术训练是任何一项竞技体育运动员训练的重要内容之一。

无线电测向运动对参加者的运动素质的要求无疑是很高的。

以往曾有人以为,只要运动素质发展全面,体力充沛,跑得快,便可以成为优秀测向运动员。

近几年,随着竞赛规则的修改,测向技术及相关理论的发展,特别是通过历年优秀运动员的观察和统计结果的分析,使越来越多的测向运动爱好者转而赞同这样一种观点:运动素质是运动和发挥技术、提高运动成绩的基础,测向技术水平才是创造优异成绩的关键。

在这一章里,将按起点技术、途中技术、近台区技术、地形学知识的顺序,向读者介绍无线电测向的各种技术。

下一章再介绍技术训练的方法。

在学习有关技术,投入训练之前,先粗略地了解一下无线电测向技术构成是有好处的。

知道了总的轮廓,在学习一个单项技术时,可以了解它在整体技术中所处的地位;在学习一项综合技术(例如近台区测向)时,可以知道它是由哪些基本技术或单项技术所构成。

这样,既可以提高运动员参加枯燥的基本技术训练的自觉性,也有助于教练员把训练安排得更合理、更系统。

无线电测向技术如果以竞赛过程的先后分,可以划为以下三项:(1)起点测向包括起点前技术、起点测向、离开起点三部分。

(2)途中测向包括首找台及找台顺序的确定、到位技术、途中跑及道路选择三部分。

(3)近台区测向近台区测向包含内容较多,许多基本技术和单项技术都可能在近台区得到综合运用。

无线电测向


无线电测向
• 早期无线电通信中,为了接收电台的功率 和确保通讯质量,人们致力于研究电磁波 的定向发射和接收。其中关键部分便是定 向天线的研究。定向天线的研究和应用, 为无线电测向奠定了基础。
无线电测向
• 早在1861年至1865年之间英国物理麦克斯韦最早在他递交给英国皇 家学会的论文《电磁场的动力理论》中阐明了电磁波传播的理论基础。
无线电测向
• 中国的无线电测向运动始于20世纪60年代初。1962年, 在北京香山举办了第一届全国锦标赛。由此,无线电测向 运动逐步在全国开展。1979年河南率先恢复了无线电测向 活动,各省市相继开展。1980年国家体委正式列为比赛项 目。并被列为87年和93年的全运会正式比赛项目。民间也 多次举办如:“西湖杯”、“孔雀杯”等形式的活动。无 线电测向运动良好的内涵越来越为广大群众喜爱,引起了 社会各界的重视。93年,国家体委、国家教委、中国科协、 共青团中央、全国妇联五家联合发文号召:在全国青少年 中开展无线电测向运动,并决定由五家作为主办单位,每 年举办全国青少年无线电测向锦标赛。至今,无线电测向 运动在全国广泛开展,数几十万计的青少年参加不同形式 的无线电活动,每年一度的全国青少年锦标赛有近千人参 加。
同样,航行在辽阔海面上的船舶,同样也是利用船上 的无线电测向机,收测两个以上的已知方位的海岸电台, 并将测得的方向标绘在海图上,其交点即为船舶的位置。
无线电测向
• 短距离无线电测向竞赛规则 以80米波段短距离无线电测向竞赛为例
• 竞赛场地 可在公园、较大的校园或郊区、居民区等 地进行,但要避开危险地区。 起、终点应尽可能靠近或相互共用。终点 位置应向运动员宣布并十分明确。
• 20世纪20年代,美国的无线电爱好者利用接收到

无线电测向仪原理

测向天线测向天线部分由直立天线 A、单双向转换开关 K1、调相电阻 R16、磁性天线 L1、L2 及调谐电容 C1 等组成。

L1与 C1并联,调整 C1, 使天线回路谐振于 3.53MHz。

高频放大高频放大级由晶体管 BG1、偏置电阻 R1-R4、耦合电容 C2、谐振电容 C3、旁路电容 C4、及高放线圈 B1 等组成共发射极高频放大电路。

测向天线接收到的 3.5-3.6MHz 高频信号通过隔直流电容器 C2 耦合到三极管 BG1 的基极。

信号电流在 BG1 基极和发射极间流过,通过三极管的电流放大作用控制着集电极的电流。

BG1 的集电极负载是由可调电感 Bl 初级和电容器 C3 组成的 3.5MHz 并联谐振回路。

当随着信号而变化的 BGl 集电极电流流过并联回路时,只有与回路固有谐振频率相同的信号才会在回路内激起最强的振荡电流,而其它频率的干扰信号则被相对削弱。

为了使 BGl 的集电极输出阻抗和 B1/C3 相匹配,以保持最佳的选择性和整机增益,B1 初级线圈中间抽头,只让集电极电流流过它的一部分。

Bl 的初级线圈与 C3 并联,调整 Bl 磁芯,谐振于 3.57MHz,这样即可与天线回路的谐振频率3.53MHz 进行参差调谐,使整个高频放大曲线在 3.5-3.6MHz 的接收频率范围内均较平缓,即高放增益较均匀,见图 5-2-1-3。

为使测向机在近台区强信号时,高放级不出现阻塞现象,仍能维持正常的放大并保持良好的方向性,采用控制高放级工作点 (调节 W1-1) 来控制高放增益。

此办法不仅可省略衰减开关,而且可获得非常宽的增益控制范围。

不过,改变工作点会造成一定的失真,但由于我们接收的是电报信号,在听觉上不会有太大的影响。

R3 是 BG1 的直流负反馈电阻,如果由于某种原因流过 BG1 发射极的总平均电流增大,这个电流流过 R3 时的电压降会成比例增大,使基极-发射极的相对电压降低,基极平均电流减少,这个减少量通过三极管的电流放大作用使流过发射极的总电流减少。

最新无线电测向幻灯教材ppt课件

水平极化波:2米波 主要形式:直射波和地 面反射波。
三 80米波测向机 电原理简要分析
1 80米波直放式测向机(短距离型)
测向天线---------- 高放--------差频检波----


↑ 可调差拍振荡 (1.75/1.8)×2Mhz
3.5 -- 3.6Mhz
---低放-------功率放大-------耳机(声音) ↑
当C、L固定时,fc也就确定,只有外耒 信号频率与fc相符时,将产生谐振现象.
共同特点:
1)感抗XL=容抗Xc 2)电路的阻抗是纯电阻的,电源电 压与总电流同相位 3)谐振频率fc=1 / 2π×√L C 4)振荡器工作必要条件:相位和振 幅
四 无线电测向
基本原理
从而使磁棒上的线圈感应出很强的信号电压。
– 投资人是任何人 – 旧《合伙企业法》规定投资人只能是自然人
合伙企业的Leabharlann 类• 普通合伙企业:普通合伙企业由普通合伙人 组成,合伙人对合伙企业债务承担无限连带 责任。
• 有限合伙企业 :有限合伙企业由普通合伙 人和有限合伙人组成,普通合伙人对合伙企 业债务承担无限连带责任,有限合伙人以其 认缴的出资额为限对合伙企业债务承担责任。
(一) 磁性天线工作原理 1 磁棒由软磁铁氧体磁性材
料制成。它的特点是既易被磁 化,又易退磁,有较高的导磁 率。从而使磁棒上的线圈感应 出很强的信号电压。
2 工作原理 1) 我们来看图,这是将磁性
天线平行于地面放置,并且接收 垂直极化波时状况。
电台
2) 当磁棒轴
A
线的垂直方向
对着电台时耳
机声音最大,
1Khz
2 80米波超外差测向机
(长距离型)

无线电测向原理


2009
C2 0.01uF(103) C5 0.01uF(103) C6 0.01uF(103) C11 0.01uF(103) C17 0.01uF(103)
C16 C20
1000PF(102)(1n) 1000PF(102)(1n)
C4 4700PF(472) (4n7) C19 4700PF(472)(4n7)
高频放大
差频检波 低频放大
功率放大
2009
★大音面(大音点)
当磁棒轴线的垂直方向对着电台时耳机声音最大,此时磁性天线 正对着电台的那个面称大音面,或大音点。
★小音面(哑点线)
当磁棒轴线正指电台时,耳机声音最小或完全无声,此时 称小音点或哑点
2009
单方向的测定 ★复合天线使用原理
直立天线在水平平面的方向图是一 个圆。天线转动360度,感应电势e直 的大小和极性都不会变化。现设直立天 线的电势等于1,并为正值;设磁性天 线的电势最的值也等于1,将磁性天线 旋转360度时其电势的大小和极性做出 标注。我们再将任一方向上两天线的电 势相加,如在0度或180度方向上,e直 =1,e磁=0,合成电势(e合)=1;在 90度方向上,e直=1,e磁=1,e合=2; 在270度方向上e直=1,e磁=-1,e合 =0,等等。由图可见,上半部分各方 向上的两天线电势极性相同,合成电势 为两电势之和;下半部各方向上两电势 的极性相反,合成电势为两电势之差。 总的合成结果是一个实线所示的心脏形 方向图。
2009
2009
2009
2009
2009
15个电阻、20个电容、3个二极管、3个三极管、2个电感线圈
1、电阻器,简称电阻
R1 39K 橙白橙
R9 R10 R11 R12 R13 R14 R15
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

无线电测向原理一、无线电波的发射随着科学技术的不断发展,人们与“无线电”的关系越来越密切了。

播送广播节目和电视节目的广播电台和电视台,是通过发射到空间的无线电波把声音和图象神奇地传诵到千家万户的,这个道理已成为人们的常识。

让我们再来简单地回顾一下发射和接收过程:广播电台(电视台)首先把需要向外发射声音和图象变为随声音和图象变化的电信号,然后用一中频率很高、功率很强的交流电做为“运载工具”,将这种电信号带到发射天线上去。

再通过天线的辐射作用,把载有电信号的高频交流电转变为同频率的无线电波(或称电磁波),推向空间,并象水波一样,不断向四周扩散传播,其传播的速度在大气中为每秒30万公里。

在电波所能到达的范围内,只要我们将收音机、电视机打开,通过接收天线将这种无线电波接收下来,再经过接收机大放大、解调等各种处理,把原来的电信号从“运载工具”中分离出来,逼真地还原成发射时的声音和图像,我们就能在远隔千里的地方收听(收看)到广播电台(电视台)播出的节目。

无线电测向也是利用类似的途径和方式实现的,只是它所发射的仅仅是一组固定重复的莫尔斯电报信号。

电台的发射功率小,信号能到达的距离也极为有限.一般在10公里以内.下面,我们紧密结合无线电测向,介绍一些有关的无线电波的基础知识。

1。

无线电波的传播途径无线电波按传播途径可分为以下四种:天波-—由空间电离层反射而传播;地波——沿地球表面传播;直射波-—由发射台到接收台直线传播;地面反射波——经地面反射而传播。

无线电测向竞赛的距离通常都在10公里以内,所以,除用于远距离通信的天波外,其它传播方式都与测向有关,160米和80米波段测向,主要使用地波;2米波段测向,主要使用直射波和地面发射波。

2。

无线电波在传播中的主要特性无线电波离开天线后,既在媒介质中传播,也沿各种媒介质的交界面(如地面)传播,其传播的情况是非常复杂的。

它虽具有一定的规律性,但对它产生影响的因素却很多.无线电波在传播中的主要特性如下:(1)直线传播均匀媒介质(如空气)中,电波沿直线传播。

无线电测向就是利用这一特性来确定电台方位的。

(2)反射与折射电波由一种媒介质传导另一种媒介质时,在两种介质的分界面上,传播方向要发生变化.图2—1所示的射线由第一种介质射向第二中介质,在分界面上出现两种现象。

一种是射线返回第一种介质,叫做反射;另一种现象是射线进入第二种介质,但方向发生了偏折,叫做折射。

一般情况下反射和折射是同时发生的。

入射角等于反射角,但不一定等于折射角。

反射和折射给测向准确性带来很大的不良影响;反射严重是,测向机误指反射体,给接近电台造成极大困难。

(3)绕射电波在传播途中,有力图饶过难以穿透的障碍物的能力。

绕射能力的强弱与电波的频率有关,又和障碍物大小有关。

频率越低的电波,绕射能力越弱;障碍物越大,绕射越困难。

工作于80米波段的电波,绕射能力是较强的,除陡峭高山(相对高度在200米以上)外,一般丘陵均可逾越.2米波段的电波绕射能力就很差了,一座楼房,或一个小山丘,都可能使信号难以绕过去。

因此,测向点的选择就成为测向爱好者随时都要考虑的一大问题.(4)干涉直射波与地面反射波或其它物体的反射波在某处相遇时,测向机收到的信号为两个电波合成后的信号,其信号强度有可能增强(两个信号跌叠加)也可能减弱(两个信号相互抵消)。

这种现象称为波的干涉。

产生干涉的结果,使得测向机在某些接收点收到的信号强,而某些接收点收到的信号弱,甚至收不到信号,给判断电台距离造成错觉。

2米波段测向中,这种现象比较常见。

另外,如图2-2所示,天线发射到空间的电波的能量是一定的,随着传播距离的增大,不仅在传播途中能量要损耗,而且能量的分布也越来越广,单位面积上获得的能量越来越小.反之,距电台愈近,单位面积上获得的能量愈大.在距电台数十米以内,电场强度的变化十分剧烈,反映在测向机耳机中的音量变化也格外明显。

这一特点有助于测向运动员在接近电台后判断电台的距离及其位置。

3.天线的架设与电波传播形式的关系当发射天线垂直于地面时,天线辐射电磁波的电场也垂直于地面,我们称它“垂直极化波”;当天线平行于地面时,天线辐射电磁波的电场也平行于地面,我们叫它“水平极化波”。

160米波段和80米波段,规定发射垂直极化波,因而要求发射天线必须垂直架设;2米波段规定发射水平极化波,因而要求发射天线必须水平架设。

二、无线电测向机的组成与特点无线电测向机是测向运动员在训练与比赛中赖以测向隐蔽电台方位的工具,根据工作波段的不同,测向机的电路和外形结构也不尽相同.但一部测向机,无论是简是繁,是大是小,都是由测向天线、收信机和指示器三部分组成的。

其方框图如图2—3所示.1.测向天线测向天线接收被测电台发出的无线电信号,并对来自不同方向的电波产生不同的感应电势。

这是测向机不同于一般收音机的主要区别。

目前测向运动中,160米波段测向机使用磁性天线以及与它相配合的直立天线;80米波段测向机多数也用磁性天线加直立天线(过去也有用环形天线加直立天线的,但因环形天线体积大,不易看准方向线,已很少使用);2米波段测向机使用八木天线。

2。

收信机收信机对测向天线送来的感应电势进行放大解调等一系列处理,最后把所需信号送入指示器。

一般测向机的收信部分与普通收音机基本相似,但根据测向的特殊需要,它还应具备以下特点:(1)为保证远距离收到隐蔽状态下的小功率电台信号,应有较高的灵敏度。

但为使近距离测向时信号不致阻塞,(信号过强时出现的现象)保持良好的方向性,以及能准确判断电台距离,收信机必须有整机放大量调整和衰减信号装置。

(2)测向机的音量应随天线感应电势的大小发生明显的变化。

收音机中为提高音量稳定而设置的自动音量控制电路,不能用语测向机。

(3)测向机的外形结构设计应适应剧烈运动的需要,即坚固、防雨、防震、便于携带和操作。

(4)除天线外,其余部件不得接收电波,以防破坏测向机的方向性。

因此,应使用金属外壳将整机屏蔽.3、指示器指示器将天线对不同方向电波的反应显示出来.目前,测向机都采用耳机作指示器,通过它将电信号还原成声音,依靠耳机中声音大小判断电台方向.三、测向天线的基本工作原理测向机的主要功能是测定发信电台的方向,这就要求测向机必须具备良好的方向性。

这主要依赖测向天线的设计与制作.1.磁性天线工作原理160米和80米波段测向使用的磁性天线,由磁棒和绕在磁棒上的天线线圈及引线、屏蔽罩组成。

基本结构如图2—4所示。

(1)磁棒磁棒由软磁铁氧体磁性材料制成.它的特点是既易被磁化,又易退磁,有较高的导磁率。

对于均匀磁场来说,磁棒内部所产生的磁阻远较空气小,所以将有大部分磁力线集中到磁棒内。

图2—5(a)所示为一均匀磁场,图2—5(b)表示了加入磁棒后磁场的分布。

由图中不难看出,磁棒的加入,聚集了大量空间磁力线,从而使磁棒上的线圈感应出很强的信号电压。

(2)磁性天线工作原理我们来看图2—6,这是将磁性天线平行于地面放置,并接收垂直极化波时的俯视图。

电波从左向右传播,其磁场方向必定垂直于电波传播方向,并与地面平行(如图中虚线所示)。

磁性天线的输出电势E磁会随O的改变而变化.当磁棒轴线与电波传播方向平行时(θ=00,θ=1800),磁场方向与磁棒垂直,磁力线无法顺着磁棒穿过线圈,线圈感应电势为零,即e磁=0。

当磁棒轴线与传播方向垂直时(θ=900,θ=2700),磁场方向与磁棒平行,磁棒聚集最多的磁力线通过线圈,线圈中的感应电势最大。

磁棒轴线与传播方向成其它角度时,多少会有一部分磁力线通过磁棒,天线有电势输出。

θ愈接近00或1800,e磁愈小;θ愈接近900或2700,e磁愈大.总之,e磁随θ的变化而变化,其变化情况可用图2-7表示,这就是磁性天线的“8”字形方向图。

在其它条件不变的情况下,磁性天线转动1800,e磁改变极性。

设在00~1800范围内的感应电势为正值,则180~3600的感应电势为负值。

当用耳机作为测向机指示器时,所发声音将随e磁的大小而变化.若转动磁性天线一周,当磁棒轴线正指电台时(即图2-7中的00、1800两个方向),耳机声音最小或完全无声,此时称小音点或哑点;当磁棒轴线的垂直方向对着电台时(即图中的的900、2700两个方向)耳机声音最大,此时磁性天线正对着电台的那个面称大音面,或大音点。

在测向中,只要转动磁性天线,找出哑点,发射台必定位于磁棒轴线所指的直线上,这就是通常所说的测双向定线。

(3)单方向的确定由磁性天线的方向图可知,天线转动一周,测向机将出现两个声音最大处和两个声音最小处,即磁性天线的方向图具有双值性.利用这一点,可以测定电台所处的一条位置线,但判断不出它究竟处在位置线上的哪一边。

因此,仅具有双值性的测向机在测向运动中是不能使用的,还必须使测向机具有单值性。

磁性天线和直立天线组成的复合天线,就是具有单值性的测向天线。

直立天线在水平平面的方向图是一个圆(如图2—8中所示)。

天线转动3600,感应电势e直的大小和极性都不会变化。

现设直立天线的电势等于1,并为正值;设磁性天线的电势最的值也等于1,将磁性天线旋转3600时其电势的大小和极性也标注在图2-8中。

我们再将任一方向上两天线的电势相加,如在00或1800方向上,e直=1,e磁=0,合成电势(e合)=1;在900方向上,e直=1,e磁=1,e合=2;在2700方向上e直=1,e磁=-1,e合=0,等等。

由图可见,上半部分各方向上的两天线电势极性相同,合成电势为两电势之和;下半部各方向上两电势的极性相反,合成电势为两电势之差。

总的合成结果是一个实线所示的心脏形方向图。

从这个方向图看出,磁性天线转动一周时,只有个一方向(即θ=2700)使信号消失;也只有一个方向(即θ=900)信号最强。

这样就克服了磁性天线的双值性,获得了单方向性能。

我们把信号强的这个面叫做单向大音面,简称大音面.利用大音面就可直接测出电台在哪一边,即“定边”。

心脏形方向图可直接用于测向;但因测向误差大,一般只作单向鉴别用。

2。

八木天线及其工作原理八木天线广泛地用于电视接收、中断通信、雷达等。

2米波段测向也用这种天线.八木天线在某种意义上可以说是由半波振子天线演变而来的。

人们买到电视机后,如果一时买不来电视天线,常常临时找两根直径为1厘米左右的金属圆管,按图2-9的形状安装在室内或室外,其总长为当地电视发射频道波长的一半,从馈线处将信号引入电视机。

这种天线称为半波振子天线,它的方向图如图2—10,与80米测向机用磁性天线的8字形方向图相类似,其最大接收方向为振子轴线垂直方向。

用作电视接收,必须使振子轴线垂直电视台方向架设,才能获得最佳效果.这种天线的效率低,只能在距电视台较近和发射功率较强的条件下使用.由于这种天线同磁性天线一样,方向图中有两个大音面,两个“哑点”,利用其轴线的“哑点"也可以精确测定电台方向线.但是,它无法确定电台在哪一边,在测向运动中不能直接应用.下面介绍几种具有单向特性,可以应用于无线电测向运动的八木天线。

相关文档
最新文档