聚羧酸减水剂合成工艺配方方案

合集下载

聚羧酸减水剂的复配技术与应用分析

聚羧酸减水剂的复配技术与应用分析

聚羧酸减水剂的复配技术与应用分析摘要:随着混凝土化学外加剂的飞速发展,聚羧酸系减水剂的性能也越来越趋于成熟,因其自身具有的良好的减水和保坍作用,其在工程实际中的应用愈加广泛,本文就聚羧酸减水剂在生产应用中的复配与应用问题进行分析,为保证混凝土工程质量具有现实意义。

关键词:混凝土;聚羧酸减水剂;复配;应用1聚羧酸系减水剂聚羧酸系减水剂属于高性能减水剂,其主要构成物质是接枝聚合物,试剂呈浅褐色,具流动性,梳形分子结构,分散性能好。

聚羧酸系减水剂掺加到混凝土中,本身不跟水泥发生化学反应,也不会产生新的水化产物。

其作用机理是减水剂分子在水泥颗粒上的吸附作用,极性较弱的长链吸附在水泥颗粒的表面上,而使水泥颗粒带负电荷的是极性部分。

聚羧酸减水剂作为新型高性能减水剂,具有掺量低、减水率高、分散性好、生产过程无污染、碱含量和氯离子含量低,混凝土收缩小等优点,克服了其他减水剂的一些弊端。

由于聚羧酸系减水剂在高性能混凝土中发挥了不可替代的优势,在工程上应用范围越来越广。

2聚羧酸减水剂的复配技术聚羧酸减水剂的复配方案包括聚羧酸减水剂的不同母液之间的组合使用,以及聚羧酸减水剂母液与缓凝、引气、状态调节剂等功能组分(常指小料)的物理性复配。

2.1聚羧酸减水剂母液的复配聚羧酸减水剂属于高性能减水剂,通过根据混凝土的实际拌合状态决定附加某些小料的方法来改善性能,笔者认为前提是通过母液的复配来达到基本的要求,然后通过小料进行微调。

母液的复配,可以使产品的分子侧链密度得到调节,取长补短,产品设计的多元化是良好复配的基础,也可以引入具有特殊性能的母液以改善质量。

如引入保坍性良好的母液,或者引入缓释型的保坍剂。

当需要降低成本时,可采用引入经济型的聚羧酸减水剂。

母液的复配有些是性能的加权平均,有些可获得1+1>2的叠加效应。

单个母液所不能达到的效果,或许多种母液组合能发挥所需要的作用。

混凝土的坍落度损失是聚羧酸减水剂面临的最重要的问题,母液(含保坍剂)的复配是满足保坍性的最好手段,并能较好适应混凝土原材料(特别是砂)的质量优劣或者波动等。

浅谈聚羧酸高性能减水剂的合成及复配技术综述

浅谈聚羧酸高性能减水剂的合成及复配技术综述

浅谈聚羧酸高性能减水剂的合成及复配技术综述本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意!0 前言聚羧酸高性能减水剂是应用于水泥混凝土中的一种水泥分散剂,早期开发的产品是以主链为甲基丙烯酸,侧链为羧酸基团和MPEG(Methoxy polyethylene glycol)的聚酯型结构,目前多为主链为聚合丙烯酸和侧链为聚醚Allyl alcoholpolyethylene glycol 的聚醚型结构,聚羧酸减水剂是具有一定长度和数量的亲水性长侧链及带有多样性强极性活性基团主链组成的特殊分子结构表面活性剂。

聚羧酸减水剂产品在润湿环境下,其多个侧链支撑的向外伸展的梳齿结构为水泥粒子的进一步分散提供了充分的空间排列效应,能使水泥分散能力和保持的时间区别于其他类型的减水剂,从而满足混凝土施工流动性及其保持时间。

聚羧酸减水剂的结构多样化使得此类产品的开发和发展更具有意义,工程师可以通过合成技术的“分子设计”方法,改变聚羧酸高效减水剂的梳形结构、主链组成,适当变化侧链的密度与长度,在主链上引入改性基团调整或改变分子结构,而获得适用于不同需求的聚羧酸产品,实现产品的功能化和更佳的适应性。

聚羧酸减水剂产品除了母液合成技术中“分子设计”方法外,也通过添加缓凝剂、引气剂、消泡剂、增稠剂、抗泥剂等小料的方法,使其适应不同季节、不同材料和配合比的混凝土施工需要,最终获得性能优异的复合型高效减水剂。

对于大中型的聚羧酸厂家,从聚羧酸合成技术入手研制混凝土所需要的优质聚羧酸减水剂、获得不同类型的功能型母液是必须的选择,对于复配为主的聚羧酸减水剂应用型小厂,应该能够掌握母液间的复配及辅助小料的物理性复配,由母液特点和小料的物理性复配来解决技术问题。

1 聚羧酸高性能减水剂的合成聚羧酸减水剂产品于2005 年前后陆续投放市场之后,经历了早期的APEG 聚醚类、酯类产品到甲基烯基聚醚的更新,目前,APEG 聚醚类、酯类产品几乎已退出了市场。

聚羧酸减水剂复配计算方法

聚羧酸减水剂复配计算方法

减水剂复配方法:
1、母液固含40%,则固含为6%的减水剂1吨里复配母液需=(1000/40)*6=150kg.
简单记忆25kg母液为1个固含.也就是配7个固含直接算25*7=175的母液即可.
至于其他小料,如夏天每吨减水剂复配葡钠20‰,即每吨加葡钠20kg 即可。

2、在搅拌站试配时复配少量的外加剂算法为:复配固含为6%的减水剂400g,母液需=(6%/40%)*400=60g。

简单记忆,每配400g多少固含的外加剂,即加母液固含*10即可。

例配400g固含为8的外加剂加母液80g。

如果配500g固含为8的外加剂加母液=(80/400)*500=100.
同理可复配其他重量外加剂
至于小料:如夏天每吨减水剂复配葡钠20‰,则复配400g减水剂时加葡钠=400*20‰=8g。

同理,复配800g减水剂,纤维素掺量为1.5‰,则加纤维素=800*1.5‰=1.2g。

氧化还原引发体系合成聚羧酸系高效减水剂.

氧化还原引发体系合成聚羧酸系高效减水剂.

课题来源:重庆市建委资助项目(城科字1330第20号)。

聚羧酸系高效减水剂掺量低、减水率高、坍落度保持能力强,对混凝土增强效果显著,能降低混凝土收缩,有害物质含量极低,这些技术性能特点赋予混凝土出色的工作性、良好的强度发展以及优异的耐久性[1-4],十分符合现代混凝土工程的需要,具有综合的技术性能及环保优势。

本文采用自制大单体MPEG-1500MAA ,通过水溶液共聚反应合成聚羧酸系高效减水剂,着重研究了不同氧化还原引发体系下,反应温度、反应物掺量等对减水剂性能的影响。

1试验部分1.1试验原料聚乙二醇单甲醚-1500甲基丙烯酸酯MPEG-1500MAA ,自制;甲基丙烯磺酸钠SMAS,工业级;甲基丙烯酸MAA ,分析纯;过硫酸铵PASM ,分析纯;过氧化氢,分析纯;亚硫酸氢钠;硫酸亚铁;氢氧化钠;蒸馏水。

1.2合成工艺将一定量蒸馏水溶解SMAS 后加入到四口瓶中,待温度升至设定值时,通入氮气并搅拌,开始滴加MPEG -1500MAA 及MAA 混合溶液1~2h 和PASM 溶液2~3h ,恒温反应2~3h ,冷却至室温,加入40%浓度的NaOH 溶液,将减水剂PH 值调至6~7,得到约40%浓度的红棕色聚羧酸高效减水剂。

在采用氧化还原引发体系时,需先将过硫酸铵等氧化剂与SMAS 溶解后加入四口瓶中,通入氮气搅拌,同时滴加MPEG-1500MAA 及MAA 混合溶液1~2h 和还原剂(如亚硫酸氢钠)溶液2~氧化还原引发体系合成聚羧酸系高效减水剂Synthesis of poly-carboxylic acid superplasticizer via redox system张智强1胡向博1李凌峰2霍世超2(1重庆大学材料学院,重庆400045;2南川区规划服务中心,重庆408400)摘要:采用自制的聚乙二醇单甲醚1500甲基丙烯酸酯(MPEG1500-MAA )和甲基丙烯酸(MAA )试剂,在不同引发体系下合成聚羧酸系高效减水剂。

聚羧酸减水剂复配技术

聚羧酸减水剂复配技术
塌损大
外加剂 适应性
可 泵 性
降强
火 成 岩
沉 积 岩
石:由天然
岩石经破碎
筛选粒径大 于5mm的岩
变 质 岩
石颗粒或卵
石、碎卵石
比重 吸水性 方园状
2020/10/3 针棒状
花 岗 岩、长 岩 致密长 石
玄 武 岩、辉 绿 岩、辉 长 岩 橄 榄岩
石 灰 岩、白 云 石





岩、 角 砾 石

引气品种对降强影响
脂肪醇酸钠
小于
烷基苯酚聚氧二烯醚
烷基苯黄酸钠松香皂
小于
松香热聚物
小于
烷基磺酸钠
OP-8 OP-9 OP-10








粉 煤 灰
硅 灰
矿 粉
性价比
各类减水剂 适应性
配技术








2020/10/3
配 合 比 设 计
施 工 要 求


胶 凝 材 料
掺 合 料
2020/10/3
聚羧酸减水剂复配技术
2020/10/3



减水剂合成技术






泵送剂复配技术
2020/10/3
萘系减水剂 氨基减水剂 脂肪族减水剂 聚羧酸减水剂
萘系、氨基系、脂肪 族系、三聚氰胺系 聚羧酸系减水剂
磺化
缩合
中合
烘干复合
硫酸+工业萘
磺化液+甲醛 缩合物+碱

聚羧酸减水剂

聚羧酸减水剂
2)醚类:端基为烯丙、丁、戊基等不饱和烯基的聚乙二醇大单体(APEG、VPEG 和 TPEG)为醚类 PCE 重要的侧链大单体。由于其分子结构中自身含有不饱和键 因此,可直接与不饱和单体进行共聚合成 PCE。与酯类 PCE 的合成工艺相比,醚 类 PCE 合成工艺简单能耗低受到众多生产厂家青睐。近来有很多常温合成醚类聚 羧酸减水剂的报道,多采用氧化还原引发体系,能完全实现无热源生产。制备的 醚类聚羧酸系高性能减水剂具有掺量低减水率、高水泥适应性广、保坍性好和增 强效果好等突出优点。由于具有上述诸多优势,醚类 PCE 已迅速成为国内市场主 流并有完全取代酯类 PCE 的趋势。但是,由于一些客观原因,VPEG 和 TPEG 等类 型的醚类大单体在部分国家尚不能自主进行生产和使用,应用受到一定的限制。
1.张小芳:MPEGMA 大单体的合成及聚羧酸减水剂的制备[8] 合成原料:甲氧基聚乙二醇单甲醚(MPEG-1200 和 MPEG-2000)、甲基丙烯 酸甲酯(MMA)、NaOH、对苯二酚、甲基丙烯酸、2-丙烯酰胺-2-甲基丙磺酸(AMPS)。 合成步骤:在通入氮气的条件下,以 MPEG-1200/MPEG-2000 和 MMA 为原 料进行酯交换反应,合成制备聚羧酸减水剂的大单体甲氧基聚乙二醇甲基丙烯酸 酯(MPEGMA),其中,以 NaOH 为催化剂,对苯二酚为阻聚剂。将大单体 MPEGMA 与甲基丙烯酸、AMPS 进行共聚反制得聚羧酸减水剂 PC-2。 研究结果:与 PC-1 相比,PC-2 侧链中带有不同长度的链段而具有更好的保 塑性,PC-2 主链中引入了-COOH 和-SO3H 基团单体而具有更好的分散性。 2.张海波:用三乙胺催化合成聚羧酸减水剂研究[1] 设计思路:PCE 合成方法可分为可聚合单体直接共聚法,聚合后功能化法原 位聚合与接枝等,几种各种合成方法中都存在着酸醇酯化的过程,目前使用较多 的是酸性催化剂,而酸性酯化反应催化剂对金属合成设备的腐蚀性较强,采用碱 性催化剂则可以有效降低对合成设备的要求。 合成原料:水解聚马来酸酐(HPMA)、聚乙二醇单甲醚(MPEG)、浓硫酸、 对甲苯磺酸、三乙胺、NaOH。 合成步骤:以催化剂催化 HPMA 与 MPEG 的酯化反应,将 MPEG 接枝在 HPMA 上形成梳状结构的聚羧酸减水剂(如图 1 所示为减水剂分子示意图),此酯化反 应在浓硫酸催化作用下效果最佳,在对甲苯磺酸和三乙胺作用下效果相似,在 NaOH 作用下效果最差。

混凝土减水剂的制作及配方

混凝土减水剂的制作及配方

混凝土减水剂的制作及配方
混凝土减水剂是一种能够降低混凝土水泥消耗量的化学品,从而提高混凝土的流动性和强度,降低混凝土的成本,提高施工效率。

下面是混凝土减水剂制作的配方步骤:
配方材料:
1.聚羧酸减水剂。

2.磺酸盐减水剂。

3.多元醇。

4.水。

5.酸。

制作过程:
1.准备好所需的材料;
2.称取一定量的聚羧酸减水剂和磺酸盐减水剂;
3.将聚羧酸减水剂和磺酸盐减水剂混合在一起;
4.加入适量的多元醇,并搅拌均匀,直到混合物变成黄色透明溶液;
5.加入适量的水和少量的酸进行调节,搅拌均匀;
6.将混合物过滤,去除杂质,制成混凝土减水剂。

需要注意的是,混凝土减水剂的配方因应不同的工程而轻微改变,但一般情况下,配制出来的混凝土减水剂应该满足一定的性能要求,如降低水泥用量、提高混凝土强度、增加混凝土流动性等。

麦芽糊精改性聚羧酸减水剂的合成及其性能研究

麦芽糊精改性聚羧酸减水剂的合成及其性能研究

麦芽糊精改性聚羧酸减水剂的合成及其性能研究摘要:由于聚羧酸系高性能减水剂具有高减水率、高保坍性等优良性能以及分子结构和性能可设计等特点,成为了混凝土外加剂今后的发展方向和研究的热点之一。

因麦芽糊精具有成本低、分子可设计性等特点,所以本实验尝试把麦芽糊精引入到聚羧酸减水剂中从而提高其性能。

关键词:麦芽糊精;聚羧酸减水剂;分子可设计性引言混凝土是目前为止世界上最典型且用量最大的建筑功能材料[1]。

减水剂则是一种重要的混凝土外加剂,可以把减水剂的发展分为三个阶段,萘系、氨基磺酸系和三聚氰胺系减水剂,因生产过程中加入了甲醛和产生的废液不可降解,制约着减水剂的发展。

随着混凝土的使用寿命和技术水平要求不断提高,人们的环保意识也不断增强,因此研究新型的聚羧酸系减水剂成为现在的热点之一。

1.聚羧酸减水剂概述1.1 聚羧酸减水剂的研究进展1.1.1 聚羧酸减水剂国外研究进展20世纪80年代中期,聚羧酸系减水剂(PC)被日本人开发,自1986年引入市场以来,聚羧酸减水剂的研究取得了很大的进展,而且PC逐渐在混凝土工程中得到大量使用。

近年来其用量更是占到高性能减水剂的90%左右[2]。

1.1.2 聚羧酸减水剂国内研究进展我国于20世纪末开始聚羧酸减水剂的研究,近年来,随着环保意识的增加和国家强制力的压力,聚羧酸减水剂大幅度替代萘系减水剂,到2015年的聚羧酸减水剂总产量达到621.9t比2013年增加了24.9%[3]。

这表明我国聚羧酸减水剂的用量逐年增加,而且近几年用量也持续较大。

1.2 本课题研究的意义和主要内容β-环糊精的原料玉米淀粉在自然界存在广泛,容易得到,因此价格低廉,将麦芽糊精引入聚羧酸减水剂可以大大降低聚羧酸减水剂的成本。

本文首先采用β-环糊精与AA进行酯化,得到的一种酯化产物,然后通过自由基共聚替代部分的SPEG与AA合成β-环糊精接枝改性聚羧酸减水剂,最后考察替代程度对减水剂性能的影响。

2. β-CD聚羧酸减水剂的制备及其性能2.1 实验部分2.1.1 合成工艺β-环糊精接枝改性聚羧酸减水剂的制备步骤为:先向100ml的四口烧瓶中依次加入360gβ-环糊精﹑124g乙二醇、300g丙烯酸和1.2g对苯二酚,装上搅拌装置和温度计,搅拌均匀后放入油裕锅内加热到90-95℃,然后滴加催化剂浓硫酸5.2g,该烧瓶中会发生酯化反应,5h后停止反应得到β-环糊精酯化产物。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

聚羧酸减水剂合成工艺配方方案
(总8页)
--本页仅作为文档封面,使用时请直接删除即可--
--内页可以根据需求调整合适字体及大小--
摘要:采用自由基水溶液共聚方法合成聚羧酸减水剂。

通过正交试验考察不同配方时所合成的聚羧酸减水剂对水泥净浆流动度及经时损失的影响,确定不同侧链长度聚羧酸减水剂的最佳合成配方。

关键词:聚羧酸减水剂;水泥净浆;流动度;配方;工艺;合成
聚羧酸型减水剂分子链上具有较多的活性基团,主链上连接的侧链较多,分子结构自由度大,高性能化潜力大,因此聚羧酸型减水剂是近年来国内外研究较为活跃的高性能减水剂之一,同时也是未来减水剂发展的主导方向。

本文采用聚合度分别约为9、23、35的自制聚氧乙烯基烯丙酯大单体(PA)分别与丙烯酸、甲基丙烯磺酸钠在引发剂过硫酸铵作用下进行自由基水溶液共聚反应,得到不同侧链长度的聚羧酸减水剂,分别记为JH9、JH23、JH35。

通过正交试验分析考察单体及引发剂用量不同时所合成的聚羧酸减水剂对水泥净浆初始流动度及流动度经时损失的影响,确定不同侧链长度聚羧酸减水剂的最佳配方。

并分析在最佳合成配方下合成的不同侧链长度的聚羧酸减水剂对水泥净浆的初始流动度及经时损失的影响。

1 实验
原材料
丙烯酸(AA)、甲基丙烯磺酸钠(MAS)、过硫酸铵(APS)均为市售化学试剂;聚氧乙烯基烯丙酯大单体,自制,其聚合度分别约为9、23、35;水泥,,重庆腾辉江津水泥厂产。

聚羧酸减水剂的合成方法
将丙烯酸、甲基丙烯磺酸钠、过硫酸铵、聚氧乙烯基烯丙酯大单体分别用去离子水配成浓度为20%的水溶液。

在装有搅拌器、回流冷凝管及温度计的三颈烧瓶中分批滴加单体及引发剂,滴加完毕后在75℃下保温反应一定时间。

反应结束后,用浓度为20%的NaOH水溶液调节PH值至7~8,得到浓度约为20%的黄色或红棕色聚羧酸减水剂。

正交试验设计
采用正交试验方法,通过改变丙烯酸(AA)、甲基丙烯磺酸钠(MAS)、聚氧乙烯基烯丙酯大单体(PA)、过硫酸铵(APS)4个因素的用量,考察四因素在三水平下合成的聚羧酸减水剂对水泥净浆初始流动度及流动度经时损失的影响,从而确定聚羧酸减水剂的最佳合成配方。

正交试验因素及水平见表1,表中引发剂APS用量为MAS、AA、PA等3种单体总质量的百分比。

表2为不同实验组数对应的各因
素水平。

掺减水剂水泥净浆流动度测试方法
水泥净浆初始流动度按GB8077-2000《混凝土外加剂匀质性试验方法》中测定水泥净浆初始流动度的方法进行测试,W/C为。

水泥净浆流动度经时损失的测试方法为:保持一定水灰比,加入一定量的聚羧酸减水剂,按
GB8077-2000《混凝土外加剂匀质性试验方法》每隔一定时间测试水泥净浆的流动度。

2 结果与分析
减水剂掺量对水泥净浆初始流动度的影响
表3为对在表2中1~9组的3种聚羧酸减水剂(JH9、JH23、JH35)在不同掺量时对水泥净浆初始流动度的影响。

由表3可知,当减水剂掺量大于%以后,增加减水剂掺量,水泥净浆初始流动度增大变缓。

表明该聚羧酸减水剂的饱和掺量为水泥质量的~%。

聚羧酸减水剂合成配方的确定
通过对表3的实验结果计算分析,可看出减水剂掺量为%时四因素对水泥净浆初始流动度影响的显著程度。

聚羧酸减水剂合成时各因素对水泥净浆初始流动度影响的极差分析见表)(减水剂掺量为%)。

聚羧酸减水剂JH9合成配方的确定
由表4可知:(1)在设计的原料用量范围内,掺JH9的水泥净浆初始流动度随MAS、AA用量的增加而增加,随PA和APS用量的增加而下降;(2)由极差R可知,四因素对水泥净浆初始流动度影响均较显著,影响程度从大到小依次为:PA、APS、AA、MAS;(3)JH9的较佳合成配方为:MAS:AA:PA (摩尔)=:(~):(~),APS的用量为15%。

图1为四因素在三水平下所合成的JH9聚羧酸减水剂对水泥净浆流动度经时损失的影响。

图1中的水泥净浆流动度为各因素分别在三水平下的算术平均值,减水剂掺量为水泥质量的%(图2和图3与此相同)。

由图1可知,MAS用量对水泥净浆的初始流动度影响不大,但增大MAS用量有利于水泥净浆流动度的保持,MAS用量为~时,水泥净浆流动度经时损失曲线基本接近,因此,MAS用量取~为宜;增大AA 用量对水泥净浆初始流动度有利,但PA用量过大对水泥净浆的流动度保持不利,AA用量取为宜;PA用量对水泥净浆流动度的保持有一最佳值,PA用量取为宜;APS在三水平下对水泥净浆流动度经时损失影响较小,APS用量可取15%~25%。

综合考虑JH9掺量为%时对水泥净浆初始流动度和掺量为%时对水泥净浆流动度经时损失的影响,JH9的最佳合成配方为:MAS:AA:PA(摩尔)=::,APS用量为15%。

聚羧酸减水剂JH23合成配方的确定
由表4可知,水泥净浆初始流动度随MAS、PA、APS用量增加而下降,随AA用量增加而增大。

由极差R可知,四因素对水泥净浆初始流动度影响均较显著,影响程度从大到小依次为AA、APS、PA、MAS。

较佳合成配方为:MAS:AA:PA(摩尔)=~:(~),APS用量15%。

图2为四因素在三水平下所合成的聚羧酸减水剂JH23对水泥净浆流动度经时损失的影响。

由图2可知,MAS用量对水泥净浆初始流动度的影响不大,但增大MAS用量有利于水泥净浆流动度的保持,MAS用量取为宜;AA用量为~时对水泥净浆初始流动度影响不大,但AA用量过大不利于水泥净浆流动度的保持,AA用量在~时的水泥净浆经时损失基本接近,AA用量取为宜;PA用量对水泥净浆初始流动度的影响相差不大,PA用量为和时对水泥净浆的流动度保持较好,PA用量取~为宜;APS用量为15%时,水泥净浆的初始流动度大,经时损失小。

综合前述,可得出聚羧酸减水剂JH23的最佳合成配方与JH9的相同。

聚羧酸减水剂JH35合成配方的确定
由表4可知,四因素在所设计的三水平下合成的聚羧酸减水剂JH35掺入水泥净浆中,所测水泥净浆的初始流动度相差不大。

从极差R可知,合成JH35时各因素对水泥净浆初始流动度的影响均不及合成JH9和JH23时显著,影响程度稍大的为AA的用量。

图3为四因素在三水平下所合成的JH35对水泥净浆流动度经时损失的影响。

由图3可知,MAS用量对水泥净浆初始流动度及流动度经时损失的影响均不大,MAS用量可取~;
AA用量过少,初始流动度小,AA用量过大,流动度经时损失大,AA用量以为宜;PA用量对水泥净浆的初始流动度的影响不大,PA用量为时,在经时60min前的流动度明显高于用量为和时的流动度,而PA用量为时的经时流动度始终大于用量为时的流动度,因此用量PA 可取~;APS用量为15%时,初始流动度大,且流动度经时损失小,APS 取15%为宜。

综合前述,聚羧酸减水剂JH35的最佳合成配方为:MAS:AA:PA(摩尔)=::,APS用量为15%。

采用最佳配方合成的减水剂对水泥净浆流动度的影响
减水剂对水泥颗粒的分散作用与其分子结构及形态有关,水泥净浆的流动度经时损失主要与水泥粒子表面减水剂分子吸附层的立体斥力有关。

对于该聚羧酸减水剂,水泥净浆分散性保持的机理还在于减水剂分子中聚醚侧链以酯键的形式与主链连接,在碱性环境中发生分解,缓慢释放羧基,二次补充作用于水泥粒子间的静电斥力,使水泥净浆流动度的损失得到有效控制。

聚羧酸减水剂JH9、JH23、JH35的侧链长度不同,空间位阻效应不同,对水泥净浆分散性及分散保持性也就不同。

图4为JH9、JH23、JH35在不同掺量时对水泥净浆初始流动度的影响。

图5为掺JH9、JH23、JH35(掺量均为水泥质量的%)对水泥净浆流动度经时损失的影响。

由图4可知,不同侧链长度的聚羧酸减水剂JH9、JH23、JH35在不同掺量下对水泥净浆初始流动度影响相差不大。

由图5可知,掺聚羧酸减水剂JH23、JH35的水泥净浆的经时损失小,尤以JH23聚羧酸减水剂为佳;而掺JH9的水泥净浆流动度经时损失大。

可见侧链较长的聚羧酸减水剂对水泥净浆的流动度保持有利。

这是因为多羧酸系共聚物为梳形柔性吸附,其疏水基团吸附在水泥颗粒表面,聚醚侧链向外伸展,侧链较长的聚羧酸减水剂的空间位阻比侧链较短的聚羧酸减水剂的大,同时因为聚羧酸减水剂中的侧链以酯键的形式与主链连接,在碱性环境中发生缓慢分解而释放羧基,侧链较长的聚羧酸减水剂羧基释放时间相对较长,从而使流动度经时损失小,有利于流动度保持。

3 结论
(1)尽管磺酸基具有较强的吸附能力和分散性,具有较强的表面活性,有利于减水剂分子在水泥颗粒上吸附,提高动电位,但MAS用量越多,对水泥颗粒的分散性并非越大。

(2)AA用量较大时对提高水泥净浆的分散性有利,但对分散性的保持不利。

(3)引发剂过硫酸铵用量过大,对水泥净浆的分散性及分散性的保持不利。

这是由于引发剂用量愈大,减水剂分子量愈小,分子链愈短。

短的分子链对水泥净浆分散性及分散性保持不利。

(4)PA用量较大时,对水泥净浆的初始流动度不利,但有利于流动度保持。

(5)合成不同侧链长度的聚羧酸减水剂,其最佳配比不尽相同。

对于聚羧酸减水剂JH9 和JH23其最佳配比为:MAS:AA:PA(摩尔)=::,APS用量为15%;JH35的最佳配比为MAS:AA:PA(摩尔)=::,APS用量为15%。

(6)在最佳配比下合成的JH23、JH35聚羧酸减水剂有较好的初始流动度且流动度经时损失小,尤
以JH23为佳。

聚羧酸减水剂JH9的经时损失大。

相关文档
最新文档