发动机可变配气相位技术.

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

发动机可变配气相位技术

(VVT engine technology)

本文介绍了通过在配气机构多刚体模型中引入柔性体,描述了配气机构的动力学性能,建立了柔性体气门弹簧,分析了气门弹簧动刚度的非线性行为,并且依据模态技术计算得到其动态应力。主要从进气门晚关角及进排气的动态效应几方面着手,不断改进发动机的配气相位以及进排气系统,使发动机的实际性能曲线逐步接近计算机仿真曲线。其中配气相位、进气门间隙、排气门间隙、转速、负荷五个调整参数之间是相互影响的。

该方法为优化设计配气机构等机械产品及对其进行疲劳性能研究提供了依据。该仪器可检测各种汽、柴油发动机的启动性能、高压点火性能、燃油喷射性能、充电性能、动力性能、配气相位、发动机异响震动分析等30余种技术参数,并分析故障产生的原因,在检测过程中,可随时显示各种波形及技术参数和结果并可随机打印,该仪器内存有一百多种国内外发动机技术参数,内容十分丰富,随时可以与检测结果对比。

目前,汽车工业的发展正在面临着两个主要问题——能源的枯竭与环境的污染。现代高科技的发展已将汽车发动机的节能、减排、低排放作为“节能-高效-环保”一体化课题进行综合研究和技术开发。为了同时提高汽油机的燃油经济性和动力性,满足越来越严格的排放法规要求,世界各大公司竞相采用新技术生产汽车的发动机。汽车发动机的配气相位对其动力性、经济性以及排气污染都有重要的影响。为了保护环境以及为了人类可持续发展,实现低能源消耗和低排放污染已成为汽车发动机的发展方向,这就要求发动机在保证良好动力性的同时,又要降低燃油消耗量,需要某种可变配气相位机构能使气门正时、气门开启持续时间及气门升程等参数中的一个或多个随发动机的工况变化实时进行调节,即配气相位角也应该随之改变。最佳的配

气相因此,二十一世纪符合市场需求的应当是节能、环保、高性能的汽车。从进气晚关角及进排气的动态效应几方面着手,不断改进发动机的配气相位以及进排气系统,使发动机的实际性能曲线逐步接近计算机仿真曲线。位能使发动机在很短的换气时间内充入最多的新鲜空气(可燃混合气),并使排气阻力减小,废气残留量最少,从而获得更好的燃油经济性,更高的扭矩和功率特性,提高汽车怠速稳定性和降低排放污染。因此,二十一世纪符合市场需求的应当是节能、环保、高性能的汽车。

关键词:发动机配气正时可变配气相位内燃机配机机构

一、可变气门正时技术

传统发动机,往往将气门正时设计成高速全负荷工况最为有利,以便求得最大的标定功率。近年来由于更注重油耗和排放,就必须考虑小负荷的工况,因为小负荷的工况对排放的影响最大。这样,这两个工况范围对气门运行参数的要求甚至是矛盾的,因此需要综合发动机的全部工况,采取一种折衷的处理方式来确定这些参数,长期以来,这些这种可能被认为是可靠的,可行的。然而传统的发动机气门正时系统,是一种配气相位即气门开启和关闭都一成不变机械系统,这种配气系统很难满足发动机在多种工况对配气的需要,不能满足发动机在各种转速工况下均输出强劲的动力要求。而可变气门正时系统是一种改变气门开启时间或开启大小的电控系统,通过在不同的转速下为车辆匹配更合理的气门开启和关闭,来增强车辆扭矩输出的均衡性,提高发动机功率并降低车辆的油耗。变气门技术可以用来减小发动机的泵气损失、加快进气速度、改善混合气质量、提高进气效率、最终改善发动机的燃烧过程,使动力性、经济性、排放性以及响应性能得到综合提高。对于汽油机而言,应用可变气门技术有以下几个优点:提高发动机的动力性:低速时,提前关闭进气门减少进气回流;高速时,推迟关闭进气门,充分利用气流的惯性过后充气,提高充气效率,

改善部分负荷的燃油经济性:众所周知,部分负荷时汽油机燃油经济性低于柴油机的一个重要原因是节气门带来的泵吸损失。通过可变气门技术,在部分负荷时利用进气门早关,减少压缩始点缸内混合气的量,即可实现无节气门的负荷控制方式,减少泵吸损失,提高了燃油经济性。另外,也可以通过气门的升程来控制负荷。在小负荷时,利用较小的气门升程,控制进入缸内的混合气的量,同样可以实现无节气门的负荷控制方式。而且,由于气门升程较小,流过气门的气流速度较快,改善了燃油与空气的混合,进而可以改善燃烧过程。

改善怠速的稳定性和低速时的平稳性:怠速时,通过可变气门定时,减小气门重叠角,进而减小充量更换过程中进排气的相互影响,提高怠速和低速的稳定性,并可以降低怠速转速。

降低排放:利用可变气门技术,控制缸内EGR量,可以有效降低排放,特别的排放。

是NO

x

可变气门正时系统的原理

四行程发动机在工作过程中,吸入新鲜空气,排出高温废气。这种进气和排气的全过程,称为换气过程。在高速发动机中,每个循环的进排气过程时间极短,在这极短的时间内,被吸入的可燃混合气越多,废气排的越干净、越彻底,发动机发出的功率就可能越大。反之,发出的功率就越小,发动机的动力性和经济性就会下降。因此,需要适时开启和关闭进排气门。由内燃机原理可知,气门的开闭位置和活塞的位置有关,活塞的位置和曲轴的转角有关,用曲轴转角来表示气门的开闭时间,就是配气相位。从配气相位图中,可以看出,发动机的进排气门的开启和关闭分别提前打开和延迟关闭。以便争取最大的“时间断面”。把气门提前开启时刻称作提前角,气门迟后关闭时刻称作迟闭角。由于排气迟后关闭和进气提前开启,这就存在着一个进、排气门同时开启的气门重叠阶段,气门叠开时的曲轴转角称为气门重叠角。

实验证明,在高转速时,气门重叠角大一些对发动机是十分有利的。就配气相位而言,气门重叠角的大小与发动机的转速有关,若发动机转速高,则气门重叠角就相应设置大些。

在进、排气门开、闭的四个阶段中,进气门迟闭角和进、排气门叠开角对发动机的充气效率有较大的影响,以进气门迟闭角为例:当发动机转速较低时,进气门迟闭角过大,新鲜充量被向上止点运动的活塞推回到进气管,这是因为活塞到下止点时,缸内压力与进气管压力相近;当发动机转速高时,允许有较大的进气门迟闭角,这是因为活塞到下止点时缸内压力远低于进气管压力,可以获得较多的过后充量。

改变进气门的迟闭角可以改变充气效率随转速变化的趋势,用来调整发动机转矩特性,以满足不同的使用要求。如果进气迟闭角加大,高转速时充气效率增加,有利于发挥最大功率,但对中、低速性能不利;反之,则对高速时最大功率的发挥不利。

由上述可知,配气相位与发动机的转速有关。原则上,一种配气相位只适合一种发动机转速。配气相位取决于凸轮轮廓的形状,配气相位对发动机的性能影响很大,且由于凸轮型线的不同,也决定了发动机是高速性能还是低速性能。如果是高速性能的发动机,则在高转速范围功率很大,但在中低转速范围功率下降很多;反之,则在高转速范围功率下降很多。现代发动机要求在任何转速范围都能获得较大的功率,这就要求配气相位能够根据发动机的工作情况及时做出调整,因此,可变配气相位技术应运而生。

相关文档
最新文档