概率论与数理统计课件完整版.ppt
合集下载
概率论与数理统计课件(完整版)

21
蒲丰投针试验
例2 1777年,法国科学家蒲丰(Buffon)提出了投针 试验问题.平面上画有等距离为a(>0)的一些平行直 线,现向此平面任意投掷一根长为l ( <a )的针,试求 针与任一平行直线相交的概率.
a M
x
22
几何概型的概率的性质
(1) 对任一事件A ,有 0p(A )1;
( 2 )P ( ) 1 ,P ( ) 0 ; (3) 对于两两互个 斥事 的 A1,件 A 可 2, 列 , 多 P(A1A2 )P(A1)P(A2)
A -B A AB 显然: A-A=, A- =A, A-S=
s
A B
(4)AB
10
5.事件的互不相容(互斥):
若 A B,则A 与 称 B 是互不 ,或 相 互 ,即 容 斥
A 与 B 不能同 . 时发生
B
AB
A
11
6. 对立事件(逆事件): 若ABS且AB, 则A与 称B互 为 逆 事 件
P(B| A) P(AB) P(A)
为在事件A发生的条件下事件B发生的条件概率2.9
2. 性质: 条件概率符合概率定义中的三个条件, 即 10对于每 B有 一 ,1P 个 (|A B 事 )0.件
20 P(|A S)1.
30 设B1,B2,两 两 互 不,则 相 容
P( Bi |A) P(B i |A.)
i1
1i jn
P(A i A jAk )
1i jkn
(1)n1 P(A1 A 2 A n ).
27
例4. 设P(A)=p, P(B)=q, P(AB)=r, 用p, q, r表示下列 事件的概率: ( 1 ) P ( A B ) ( ; P ( 2 A B ) ( ) ; P ( 3 A B ) ) ( ; ( 4 A B )
蒲丰投针试验
例2 1777年,法国科学家蒲丰(Buffon)提出了投针 试验问题.平面上画有等距离为a(>0)的一些平行直 线,现向此平面任意投掷一根长为l ( <a )的针,试求 针与任一平行直线相交的概率.
a M
x
22
几何概型的概率的性质
(1) 对任一事件A ,有 0p(A )1;
( 2 )P ( ) 1 ,P ( ) 0 ; (3) 对于两两互个 斥事 的 A1,件 A 可 2, 列 , 多 P(A1A2 )P(A1)P(A2)
A -B A AB 显然: A-A=, A- =A, A-S=
s
A B
(4)AB
10
5.事件的互不相容(互斥):
若 A B,则A 与 称 B 是互不 ,或 相 互 ,即 容 斥
A 与 B 不能同 . 时发生
B
AB
A
11
6. 对立事件(逆事件): 若ABS且AB, 则A与 称B互 为 逆 事 件
P(B| A) P(AB) P(A)
为在事件A发生的条件下事件B发生的条件概率2.9
2. 性质: 条件概率符合概率定义中的三个条件, 即 10对于每 B有 一 ,1P 个 (|A B 事 )0.件
20 P(|A S)1.
30 设B1,B2,两 两 互 不,则 相 容
P( Bi |A) P(B i |A.)
i1
1i jn
P(A i A jAk )
1i jkn
(1)n1 P(A1 A 2 A n ).
27
例4. 设P(A)=p, P(B)=q, P(AB)=r, 用p, q, r表示下列 事件的概率: ( 1 ) P ( A B ) ( ; P ( 2 A B ) ( ) ; P ( 3 A B ) ) ( ; ( 4 A B )
《概率论与数理统计》-课件 概率论的基本概念

解 以C记事件“母亲患病”,以N1记事件“第1个 孩子未患病”,以N 2记事件“第2个孩子未患病”.
已知 P(C ) 0.5, P( N1 C ) P( N2 C ) 0.5,
P(N1N2 C) 0.25, P(N1 C) 1, P(N2 C) 1. (1) P(N1) P(N1 C)P(C) P(N1 C)P(C)
6 3 3. 100 100 100
故 注意
p 17 10 3 1 12 . 100 2 25
只有当 B A 时才有 P( A B) P( A) P(B).
例7 设盒 I 有 6 只红球, 4 只白球; 盒 II 有7只红 球, 3只白球. 自盒 I 中随机地取一只球放入盒 II, 接着在盒 II 中随机地取一只球放入盒 I. (1) 然后在盒 I 中随机地取一只球 , 求取到的是红 球的概率. (2) 求盒 I 中仍有 6 只红球 4 只白球的概率.
以 B 记事件“至少有一个配对” , 则 B A1 A2 An .
(1) 由和事件概率公式
P(B) P( A1 A2 An )
n
n
n
P( Ai ) P( Ai Aj )
P( Ai Aj Ak )
i 1
1i jn
1i jkn
(1)n1 P( A1 A2 An ),
n n 1 n(n 2)!, 1 1 2
n n 1 n
(n 2)!
于是
P(B) 1
1 2 nn
.
例4 将 6 只球随机地放入到3 只盒子中去, 求每 只盒子都有球的概率. 解 以 A 记事件 “每只盒子都有球” . A 发生分为三种情况 : (i) 3 只盒子装球数分别为 4, 1, 1, 所含的样本点数为
已知 P(C ) 0.5, P( N1 C ) P( N2 C ) 0.5,
P(N1N2 C) 0.25, P(N1 C) 1, P(N2 C) 1. (1) P(N1) P(N1 C)P(C) P(N1 C)P(C)
6 3 3. 100 100 100
故 注意
p 17 10 3 1 12 . 100 2 25
只有当 B A 时才有 P( A B) P( A) P(B).
例7 设盒 I 有 6 只红球, 4 只白球; 盒 II 有7只红 球, 3只白球. 自盒 I 中随机地取一只球放入盒 II, 接着在盒 II 中随机地取一只球放入盒 I. (1) 然后在盒 I 中随机地取一只球 , 求取到的是红 球的概率. (2) 求盒 I 中仍有 6 只红球 4 只白球的概率.
以 B 记事件“至少有一个配对” , 则 B A1 A2 An .
(1) 由和事件概率公式
P(B) P( A1 A2 An )
n
n
n
P( Ai ) P( Ai Aj )
P( Ai Aj Ak )
i 1
1i jn
1i jkn
(1)n1 P( A1 A2 An ),
n n 1 n(n 2)!, 1 1 2
n n 1 n
(n 2)!
于是
P(B) 1
1 2 nn
.
例4 将 6 只球随机地放入到3 只盒子中去, 求每 只盒子都有球的概率. 解 以 A 记事件 “每只盒子都有球” . A 发生分为三种情况 : (i) 3 只盒子装球数分别为 4, 1, 1, 所含的样本点数为
概率论与数理统计课件(1PPT课件

1.生日问题:n个 人的班级里没有 两人生日相同的 概率是多少?
10
第10页/共129页
理学院李建峰
概率论与数理统计课件
三、概率的几何定义
Definition 1.8 若试验具有下列两个特征:
样本空间的元素有无限个;
每个样本点的发生具有某种等可能性.
则称此试验为几何概型试验。
Definition 1.9 设试验的每个样本点是等可能落 入区域Ω上的随机点M ,且D ( Ω ) ,则M点落 入子区域D(事件A)上的概率为:
乘法原理:设完成一件事需分两步,第一步有n1种 方法,第二步有n2种方法,则完成这件事共有n1n2 种方法.
从n个中抽取k个的排列组合公式:
排列:Pkn=Akn(无重复) ,nk(有重复); 组合:Ckn
Note:
李
建
峰
1.计算时一定要认清 试验结果(基本事件) 是等可能性的本质. 例:掷二枚骰子,求 事件A为出现点数之
Note:
李
建
峰
1.牵涉到排列组合 的概率问题一般 都是古典概型, 可按定义求解概 率。
Example 1.5 一口袋装有 a 只白球,b 只红球,求 无放回取球中第k次取出的是白球的概率.
2. 抽签原理:抽 到签与抽签的次 序无关。
Example 1.6 设有 N 件产品,其中有 M 件次品, 今从中任取 n 件,问其中恰有 k ( k M ) 件次 品的概率是多少(不放回抽样)?
推广到多个事件:当P(A1A2…An-1)>0时, P(A1A2… An)=P(A1)P(A2|A1)P(A3|A1A2)… P(An|A1A2…An-1)
Example 1.14 小明忘记电话号码的最后一个数 字,因而任意地按最后一个数,试求: ⑴不超过三次能打通电话的概率;
概率论与数理统计 PPT课件

解:从A村到B村有3种不同的走法,按这3 种走法中的每一种走法到达B村后,再 从B村到C村又有2种不同的走法。因此 从A村经B村去C村共有 3*2=6 种不同的走法。
乘法原理内容
做一件事,完成它需要分成n个步
骤,做第一步有m1种不同的方法,做第二
步有 m 2种不同的方法,、、、,做第n步
有
m
种不同的方法,那么完成这件事共有
1.1.1 随机试验(简称“试验”)
这里试验的含义十分广泛,它包括各 种各样的科学实验,也包括对事物的某一 特征的观察。 其典型的例子有:
随机试验的例子
E1: 抛一枚硬币,分别用“H” 和“T” 表示出正面和反 面; E2: 将一枚硬币连抛三次,考虑正反面出现的情况; E3:将一枚硬币连抛三次,考虑正面出现的次数; E4:掷一颗骰子,考虑可能出现的点数; E5: 记录某网站一分钟内受到的点击次数; E6:在一批灯泡中任取一只,测其寿命;
随机现象:不确定性与统计规律性 研究对象:随机现象 研究内容:随机现象的统计规律性
概率论——研究和揭示随机现象的统计规 律性的一门数学分支
概率论是如何产生的?
1、概率论的起源 2、概率论的发展历程
引言
概率论是一门研究随机现象规律的数学分支。其 起源于十七世纪中叶,当时在误差、人口统计、人寿保 险等范畴中,需要整理和研究大量的随机数据资料,这 就孕育出一种专门研究大量随机现象的规律性的数学, 但当时刺激数学家们首先思考概率论的问题,却是来自 赌博者的问题。数学家费尔玛和帕斯卡他们从不同的理 由出发,在1654年7月29日给出了正确的解法,而在三 年后,即1657年,荷兰的另一数学家惠根斯﹝16291695﹞亦用自己的方法解决了这一问题,更写成了《论 赌博中的计算》一书,这就是概率论最早的论著,他们 三人提出的解法中,都首先涉及了数学期望这一概念, 并由此奠定了古典概率论的基础.
乘法原理内容
做一件事,完成它需要分成n个步
骤,做第一步有m1种不同的方法,做第二
步有 m 2种不同的方法,、、、,做第n步
有
m
种不同的方法,那么完成这件事共有
1.1.1 随机试验(简称“试验”)
这里试验的含义十分广泛,它包括各 种各样的科学实验,也包括对事物的某一 特征的观察。 其典型的例子有:
随机试验的例子
E1: 抛一枚硬币,分别用“H” 和“T” 表示出正面和反 面; E2: 将一枚硬币连抛三次,考虑正反面出现的情况; E3:将一枚硬币连抛三次,考虑正面出现的次数; E4:掷一颗骰子,考虑可能出现的点数; E5: 记录某网站一分钟内受到的点击次数; E6:在一批灯泡中任取一只,测其寿命;
随机现象:不确定性与统计规律性 研究对象:随机现象 研究内容:随机现象的统计规律性
概率论——研究和揭示随机现象的统计规 律性的一门数学分支
概率论是如何产生的?
1、概率论的起源 2、概率论的发展历程
引言
概率论是一门研究随机现象规律的数学分支。其 起源于十七世纪中叶,当时在误差、人口统计、人寿保 险等范畴中,需要整理和研究大量的随机数据资料,这 就孕育出一种专门研究大量随机现象的规律性的数学, 但当时刺激数学家们首先思考概率论的问题,却是来自 赌博者的问题。数学家费尔玛和帕斯卡他们从不同的理 由出发,在1654年7月29日给出了正确的解法,而在三 年后,即1657年,荷兰的另一数学家惠根斯﹝16291695﹞亦用自己的方法解决了这一问题,更写成了《论 赌博中的计算》一书,这就是概率论最早的论著,他们 三人提出的解法中,都首先涉及了数学期望这一概念, 并由此奠定了古典概率论的基础.
概率论与数理统计书ppt课件

条件概率与独立性
CHAPTER
随机变量及其分布
02
随机变量的概念与性质
定义随机变量为在样本空间中的实值函数,其取值依赖于随机试验的结果。
随机变量
讨论随机变量的可数性、可加性、正态性等性质。
随机变量的性质
离散型随机变量的概念
定义离散型随机变量为只能取可数个值的随机变量。
离散型随机变量的分布
讨论离散型随机变量的概率分布,如二项分布、泊松分布等。
应用
中心极限定理及其应用
CHAPTER
贝叶斯推断与决策分析
07
贝叶斯推断的基本原理
金融风险管理
贝叶斯推断在金融风险管理领域有着广泛的应用,如信用风险评估、投资组合优化等。
医疗诊断
贝叶斯推断在医疗诊断方面也有着重要的应用,如疾病诊断、预后评估等。
机器学习与人工智能
贝叶斯推断在机器学习算法和人工智能领域中也有着广泛的应用,如朴素贝叶斯分类器、高斯混合模型等。
参数估计与置信区间
01
点估计
用单一的数值估计参数的值。
02
区间估计
给出参数的一个估计区间,通常包括一个置信水平。
比较两个或多个组的均值差异,确定因素对结果的影响。
方差分析
检验两个或多个组的方差是否相等。
方差齐性检验
研究变量之间的关系,并预测结果。
回归分析
假设检验与方差分析
CHAPTER
回归分析与线性模型
应用
在现实生活中,大数定律被广泛应用于保险、赌博、金融等领域,通过统计数据来预测未来的趋势和风险。
大数定律及其应用
在独立随机变量序列中,它们的和的分布近似于正态分布,即中心极限定理。这意味着,当样本量足够大时,样本均值近似于正态分布。
概率论与数理统计课件(完整)

人们在长期的实践中总结得到“概率很小的事件在一次 试验中实际上几乎是不发生的”(称之为实际推断原理)。 现在概率很小的事件在一次试验中竟然发生了,因此有理由 怀疑假设的正确性,从而推断接待站不是每天都接待来访者, 即认为其接待时间是有规定的。
1.3 频率与概率
某人向目标射击, 以A表示事件“命中目标”, P( A) =? 定义:(p8) 事件A在n次重复试验中出现nA次,则 比值nA/n称为事件A在n次重复试验中
(1) P(A) ≥0;
(2) P()=1;
(3) 可列可加性:设A1,A2,…, 是一列两两互不 相容的事件,即AiAj=,(ij), i , j=1, 2, …, 有 P( A1 A2 … )= P(A1) +P(A2)+…. 则称P(A)为事件A的概率。 (1.1)
2.概率的性质 P(8-9) (1) 有限可加性:设A1,A2,…An , 是n个两两互 不相容的事件,即AiAj= ,(ij), i , j=1, 2, …, n ,则有 P( A1 A2 … An)= P(A1) +P(A2)+… P(An); (2) 单调不减性:若事件AB,则 P(A)≥P(B) (3)事件差 A、B是两个事件, 则 P(A-B)=P(A)-P(AB)
种取法.
1、抽球问题
例1:设合中有3个白球,2个红球,现从合中 任抽2个球,求取到一红一白的概率。 解:设A-----取到一红一白
N () C
2 5
1 1 N ( A) C3 C2
CC 3 P( A) 2 C5 5
1 3
1 2
答:取到一红一白的概率为3/5
一般地,设盒中有N个球,其中有M个白 球,现从中任抽n个球,则这n个球中恰有
1.3 频率与概率
某人向目标射击, 以A表示事件“命中目标”, P( A) =? 定义:(p8) 事件A在n次重复试验中出现nA次,则 比值nA/n称为事件A在n次重复试验中
(1) P(A) ≥0;
(2) P()=1;
(3) 可列可加性:设A1,A2,…, 是一列两两互不 相容的事件,即AiAj=,(ij), i , j=1, 2, …, 有 P( A1 A2 … )= P(A1) +P(A2)+…. 则称P(A)为事件A的概率。 (1.1)
2.概率的性质 P(8-9) (1) 有限可加性:设A1,A2,…An , 是n个两两互 不相容的事件,即AiAj= ,(ij), i , j=1, 2, …, n ,则有 P( A1 A2 … An)= P(A1) +P(A2)+… P(An); (2) 单调不减性:若事件AB,则 P(A)≥P(B) (3)事件差 A、B是两个事件, 则 P(A-B)=P(A)-P(AB)
种取法.
1、抽球问题
例1:设合中有3个白球,2个红球,现从合中 任抽2个球,求取到一红一白的概率。 解:设A-----取到一红一白
N () C
2 5
1 1 N ( A) C3 C2
CC 3 P( A) 2 C5 5
1 3
1 2
答:取到一红一白的概率为3/5
一般地,设盒中有N个球,其中有M个白 球,现从中任抽n个球,则这n个球中恰有
概率论与数理统计1完整(完整版)ppt课件

.
19
定义 当随机试验的样本空间是某个区域,并且任 意一点落在度量 (长度, 面积, 体积) 相同的子区域 是等可能的,则事件 A 的概率可定义为
P(A) m(A)
m()
(其中 m()是样本空间,m 的 (A)度 是量 构成事 A 件 的子区域的 )这度样量借助于几量 何来 上合 的理 度 规定的概率 几称 何为 概 . 率
对偶律: A B A B;
A B AB.
证明 对偶律.
.
13
例.事件 A、B、C两两互不相 则容 有,
ABC 反之 不成 立
例. 甲、乙、丙三人各射击一次,事件A1,A2,A3分别表示 甲、乙、丙射中,试说明下列事件所表示的结果:
A 2,A 2 A 3, A 1A 2, A 1 A 2, A 1A 2A 3, A 1A 2 A 2A 3 A 1A 3.
.
16
例1. 袋中装有4只白球和2只红球. 从袋中摸球两次,每次任取一球.有两种式: (a)放回抽样; (b)不放回抽样.
求: (1)两球颜色相同的概率; (2)两球中至少有一只白球的概率.
例2. 设一袋中有编号为1,2,…,9的球共9只, 现从中任取3 只, 试求: (1)取到1号球的概率,(事件A) (2)最小号码为5的概率.(事件B)
A-BAAB
显然: A-A=, A- =A, A-S=
s
A B
(4)AB
.
10
5.事件的互不相容(互斥):
若 AB,则A 称 与 B 是 互 不 ,或 相 互 容 ,即 斥
A 与 B 不能同 . 时发生
B
A B
A
.
11
6. 对立事件(逆事件): 若ABS且A B,则A称 与B互为逆事件
概率论与数理统计教程ppt课件

1. 确定性现象
• 每天早晨太阳从东方升起; • 水在标准大气压下加温到100oC沸腾;
2. 随机现象
• 掷一枚硬币,正面朝上?反面朝上? • 一天内进入某超市的顾客数; • 某种型号电视机的寿命;
16 March 2020
华东师范大学
第一章 随机事件与概率
第3页
1.1.1 随机现象
• 随机现象:在一定的条件下,并不总出现相 同结果的现象称为随机现象.
16 March 2020
华东师范大学
第一章 随机事件与概率
例1.2.1 六根草,头两两相接、
尾两两相接。求成环的概率.
解:用乘法原则直接计算 所求概率为
644221 8 6 5 4 3 2 1 15
第30页
16 March 2020
华东师范大学
第一章 随机事件与概率
3. 若 AnF ,n=1, 2, …, 则
UFA.n
n 1
16 March 2020
华东师范大学
第一章 随机事件与概率
第21页
§1.2 概率的定义及其确定方法
• 直观定义 —— 事件A 出现的可能性大小.
• 统计定义 —— 事件A 在大量重复试验下 出现的频率的稳定值称为该事件的概率.
2. 样本点 —— 随机试验的每一个可能结果.
3. 样本空间(Ω) —— 随机试验的所有样本点构成的集合.
4. 两类样本空间: 离散样本空间 样本点的个数为有限个或可列个. 连续样本空间 样本点的个数为无限不可列个.
16 March 2020
华东师范大学
第一章 随机事件与概率
第5页
1.1.3 随机事件
华东师范大学
第一章 随机事件与概率
• 每天早晨太阳从东方升起; • 水在标准大气压下加温到100oC沸腾;
2. 随机现象
• 掷一枚硬币,正面朝上?反面朝上? • 一天内进入某超市的顾客数; • 某种型号电视机的寿命;
16 March 2020
华东师范大学
第一章 随机事件与概率
第3页
1.1.1 随机现象
• 随机现象:在一定的条件下,并不总出现相 同结果的现象称为随机现象.
16 March 2020
华东师范大学
第一章 随机事件与概率
例1.2.1 六根草,头两两相接、
尾两两相接。求成环的概率.
解:用乘法原则直接计算 所求概率为
644221 8 6 5 4 3 2 1 15
第30页
16 March 2020
华东师范大学
第一章 随机事件与概率
3. 若 AnF ,n=1, 2, …, 则
UFA.n
n 1
16 March 2020
华东师范大学
第一章 随机事件与概率
第21页
§1.2 概率的定义及其确定方法
• 直观定义 —— 事件A 出现的可能性大小.
• 统计定义 —— 事件A 在大量重复试验下 出现的频率的稳定值称为该事件的概率.
2. 样本点 —— 随机试验的每一个可能结果.
3. 样本空间(Ω) —— 随机试验的所有样本点构成的集合.
4. 两类样本空间: 离散样本空间 样本点的个数为有限个或可列个. 连续样本空间 样本点的个数为无限不可列个.
16 March 2020
华东师范大学
第一章 随机事件与概率
第5页
1.1.3 随机事件
华东师范大学
第一章 随机事件与概率