弹性力学-01

合集下载

弹性力学复习题---有答案-知识归纳整理

弹性力学复习题---有答案-知识归纳整理

知识归纳整理一、挑选题1. 下列材料中,( D )属于各向同性材料。

A. 竹材;B. 纤维增强复合材料;C. 玻璃钢;D. 沥青。

2 对于弹性力学的正确认识是(A )。

A. 计算力学在工程结构设计的中作用日益重要;B. 弹性力学从微分单元体入手分析弹性体,与材料力学不同,不需要对问题作假设;C. 任何弹性变形材料都是弹性力学的研究对象;D. 弹性力学理论像材料力学一样,可以没有困难的应用于工程结构分析。

3. 弹性力学与材料力学的主要不同之处在于( B )。

A. 任务;B. 研究对象;C. 研究想法;D. 基本假设。

4. 所谓“彻底弹性体”是指( A )。

A. 材料应力应变关系满足胡克定律;B. 材料的应力应变关系与加载时光历史无关;C. 本构关系为非线性弹性关系;D. 应力应变关系满足线性弹性关系。

5. 所谓“应力状态”是指( B )。

A. 斜截面应力矢量与横截面应力矢量不同;B. 一点不同截面的应力随着截面方位变化而改变;C. 3个主应力作用平面相互垂直;D. 不同截面的应力不同,所以应力矢量是不可确定的。

6. 变形协调方程说明( B )。

A. 几何方程是根据运动学关系确定的,所以对于弹性体的变形描述是不正确的;B. 微分单元体的变形必须受到变形协调条件的约束;C. 变形协调方程是保证所有弹性体变形协调条件的必要和充分条件;D. 变形是由应变分量和转动分量共同组成的。

7. 下列对于弹性力学基本方程描述正确的是( A )。

A. 几何方程适用小变形条件;B. 物理方程与材料性质无关;C. 平衡微分方程是确定弹性体平衡的唯一条件;D. 变形协调方程是确定弹性体位移单值延续的唯一条件;8、弹性力学建立的基本方程多是偏微分方程,最终需结合( B )求解这些微分方程,以求得具体问题的应力、应变、位移。

A .几何方程B .边界条件C .数值想法D .附加假定9、弹性力学平面问题的求解中,平面应力问题与平面应变问题的三类基本方程具有下列关系 ( B )。

弹性能量与弹性系数

弹性能量与弹性系数

03
弹性系数概述与分类
弹性系数定义及意义
弹性系数是描述材料在受力时变形程度与 所受应力之间关系的物理量。
它反映了材料抵抗变形的能力,是材料力 学性质的重要参数之一。
弹性系数可用于预测材料在受力后的变形 行为,为工程设计和材料选择提供依据。
线性与非线性弹性系数区分
线性弹性系数
应力与应变之间呈线性关系,即符合 胡克定律。这种关系在材料受力较小 、变形较小的情况下成立。
准备实验器材
包括弹簧、测力计、刻度尺等。
安装与调试
将弹簧固定在支架上,调整测力计与弹簧 的位置,确保测量准确。
施加外力并记录数据
逐渐增加外力并记录下对应的变形量,直 至达到弹性极限。
卸载外力并观察恢复
逐渐减小外力并观察弹簧的恢复情况,记 录恢复过程中的变形量。
数据处理与结果分析
01 数据整理
将实验过程中记录的外力和变 形量数据进行整理,绘制出F-x 曲线图。
弹性能量性质
弹性能量与物体的形状、大小、材料性质以及变形程度有关 。在弹性范围内,物体的变形是可逆的,即当外力去除后, 物体能够恢复到原来的形状,同时释放吸收的弹性能量。
弹性能量计算公式推导
弹性能量计算公式
弹性能量可以用公式 $U = frac{1}{2} kx^2$ 来计算,其中 $U$ 表示弹性能量, $k$ 是弹性系数,$x$ 是物体的变形量。
地震、风荷载等。
振动隔离技术中的应用
弹性支撑设计
通过选择合适的弹性支撑材料和结构,实现振动能量的有效隔离 ,保护建筑物或设备免受振动损害。
隔震支座设计
利用弹性系数和弹性能量的原理,设计隔震支座,降低地震对建筑 物的影响。
主动控制技术应用

弹性力学变分原理培训课件

弹性力学变分原理培训课件

弹性力学的基本方程
描述物体的物理性质与外 力的关系。
描述物体在变形过程中形 状的变化。
描述物体在力系作用下的 平衡状态。
平衡方程
几何方程
物理方程
02
变分原理概述
变分法的概念
最小作用量原理
在给定的约束条件下,物理系统的真实运动是使得作用量取极值的路径。
极值条件
在最小作用量原理中,物理系统的真实运动应满足欧拉方程和边界条件。
泛函与变分问题
泛函
泛函是一个函数,其值是另一个函数 在某个特定点上的值。
变分问题
变分问题是指求泛函的极值问题,即 在给定约束条件下,求泛函的极值。
欧拉方程与极值条件
欧拉方程
欧拉方程是变分问题的基本方程,它 描述了物理系统的运动规律。
极值条件
在求解欧拉方程时,需要满足极值条 件,即物理系统的运动应使得泛函取 极值。
实例解析
以有限元软件ANSYS为例,介绍如何使用有限元方法对弹 性问题进行建模、分析和求解。通过具体的实例操作,展 示如何将实际问题转化为有限元模型,并进行求解得到结 构的位移和应力分布。
THANKS
感谢观看
弹性力学变分原理培训课 件
• 弹性力学基础 • 变分原理概述 • 弹性力学中的变分原理 • 变分原理的应用 • 弹性力学变分原理的实例解析
01
弹性力学基础
弹性力学简介
弹性力学
一门研究弹性物体在外力作用下变形和内力的 学科。
弹性力学的重要性
为工程结构的设计、分析和优化提供理论基础。
弹性力学的发展历程
04
变分原理的应用
弹性力学问题的变分形式
弹性力学中的应力、应变和位移等物理量可以通过变分原理转换为对应的泛函极值 问题。

弹性力学平面应力问题和平面应变问题

弹性力学平面应力问题和平面应变问题
特点
平面应力问题的定义
平面应力问题的基本假设
假设弹性体是连续的,没有空隙或裂缝。
假设弹性体的材料性质在空间中是均匀的,即各向同性。
假设弹性体的材料性质在不同方向上相同。
假设弹性体的变形是微小的,即变形前后的形状和尺寸变化不大。
连续性
均匀性
各向同性
小变形
解析法
01
通过数学公式和定理求解弹性力学问题的精确解。适用于简单形状和边界条件的平面应力问题。
平面问题的定义
02
CHAPTER
平面应力问题
在弹性力学中,平面应力问题是指应变场和应力场在二维平面上变化的问题。这类问题通常涉及到薄板、薄壳等二维结构,其厚度相对于结构的尺寸较小,可以忽略不计。
平面应力问题
平面应力问题具有对称性,即应变和应力在垂直于平面的方向上为零。同时,由于结构厚度较小,平面应力问题通常只考虑平面内的应变和应力分量,忽略垂直于平面的分量。
弹性力学简介
平面问题是指弹性物体在平面内的变形问题,其中物体与平面平行或与平面垂直。
平面应变问题是指物体在平行于平面的方向上发生变形,而垂直于平面的方向上变形较小或忽略不计。
平面问题可以分为平面应变问题和平面应力问题两类。
平面应力问题是指物体在垂直于平面的方向上发生变形,而平行于平面的方向上变形较小或忽略不计。
03
CHAPTER
平面应变问题
平面应变问题
模拟 aword/noun like "bleepileysing前进 on how toilet b. The first time you feel that there is a word-like "bleepilexamples the first time you具有重要的 first time you feel that there is a word's a word-like "bleepilexamples[c. The first time you feel that there is a word's a word-like b. The first time you feel that there is a word's a word's a word-like "bleepilexamples the first time you's a word's a word's a word's a word's a word's a word's a word's a word's a word's a word's a word's a word's a word's a word's a word's a word's a word's a word's a word's a word's a word's a way toilet's a word's a word's a word's a word's a word's a word's a word's a word's a word's a word's a word's a word's a word's a word's

01应力分析(弹塑性力学讲义)

01应力分析(弹塑性力学讲义)

s v l 2s x m 2s y n 2s z
py px O A x
tv
2lmt xy 2mn t yz 2nl t zx
B
y
s v l 2s 1 m 2s 2 n 2s 3
2 2 2 pv px p2 pz y
2 2 2 l 2s 1 m 2s 2 n2s 3
sy
y
tyx txy
sx
x
单元体的性质 a、任一面上,应力均布; ห้องสมุดไป่ตู้、平行面上,性质相同。
21
sz
z
应力状态
单元体上的应力分量: z
sz
tzx txz tzy tyz
正应力:
sx sy sz
切应力:
tyx
sy tyz sx
x
txy t yx
sy
y
txy tyx tyz tzy tzx txz
22
当斜面为边界时,可得到应力边界条件:
tzy
tzx sz
SDABC=S SDOAC=mS
SDOBC=lS SDOAB=nS
Fx、Fy、Fz 为边界上的面力分量。
28
1、斜截面上的应力 z
p x ls x m t yx nt zx p y lt xy m s y nt zy
s s3 s s3 2 s v 2 tv 2 2 2
2
2
s s3 s s3 2 s v 1 tv 1 2 2
2
2
s1 s 2 s1 s 2 2 s v tv 2 2
O
t
t

弹性力学及有限元

弹性力学及有限元

热传导案例
总结词
热传导是有限元分析中用于模拟物体内部热量传递规律的应用之一。
详细描述
在电子、机械、化工和材料等领域,热传导分析用于研究材料的热性能、热应力和热变形等。通过有 限元方法,可以模拟物体内部的热量传递过程,预测温度分布和热应力分布,优化材料和系统的热设 计。
06
结论展望
结论
01
02
有限元分析
有限元分析是一种数值分析方法,通过将复杂的物体或系统离散 化为有限个小的单元(或称为元素),并分析这些单元的应力、 应变和位移,从而对整个物体或系统的行为进行预测和分析。
主题的重要性
工程应用
弹性力学和有限元分析在工程领域中具有广泛的应用,如结 构分析、机械设计、航空航天、土木工程等。通过这些方法 ,工程师可以更准确地预测和分析结构的性能,优化设计, 提高安全性。
03
04
研究意义
弹性力学及有限元分析在工程 领域具有广泛应用,为复杂结 构的分析提供了有效方法。
主要成果
本文系统地介绍了弹性力学的 基本原理和有限元分析的方法 ,并通过实例验证了其有效性 。
研究限制
由于时间和资源的限制,本研 究未能涵盖所有相关领域,未 来研究可进一步拓展。
对实践的指导意义
本文为实际工程中的结构分析 提供了理论依据和实践指导, 有助于提高结构的安全性和稳 定性。
优势
有限元方法具有广泛的适用性,可以用于求解各种复杂的物理问题;能够处理 复杂的几何形状和边界条件;可以通过增加单元数目来提高解的精度;可以方 便地处理非线性问题和材料非均质性问题等。
局限性
有限元方法需要较大的计算资源和时间,尤其对于大规模问题;对于某些特殊 问题(如高速冲击、爆炸等),需要采用特殊处理方法;对于多物理场耦合问 题,需要采用多场耦合有限元方法等。

拉伸变形的胡克定律


拉伸过程中材料行为分析
弹性阶段
材料在拉伸初期,应力与应变 成正比,符合胡克定律。
屈服阶段
当应力达到一定值时,材料开 始发生塑性变形,应力不再增 加,而应变继续增大。
强化阶段
经过屈服阶段后,材料重新呈 现弹性,应力随应变增加而增 大,直至达到最大应力。
颈缩与断裂阶段
在最大应力后,材料局部发生 颈缩现象,最终断裂。
韧性评估
通过计算材料的断裂韧性、冲击韧性 等指标来评估材料的抵抗断裂的能力 。这些指标通常与材料的微观结构、 化学成分、加工工艺等因素有关。
03
胡克定律在拉量是描述材料在弹性阶段应力和应变关系的比例系数,也称为杨氏模量。
弹性模量测量方法
静态法、动态法、纳米压痕法等,其中静态法是最常用的方法之一,通过测量材 料在拉伸或压缩过程中的应力和应变来计算弹性模量。
结构优化设计考虑因素
载荷与边界条件
结构优化设计需要考虑实际工程中的 载荷和边界条件,以确保优化结果符 合实际需求。
材料性能与制造成本
在选择材料和制定制造方案时,需要 综合考虑材料性能和制造成本,以实 现经济性和可行性的平衡。
安全性与可靠性要求
结构优化设计需要满足安全性和可靠 性要求,确保结构在正常使用条件下 不发生破坏或失效。
04
影响拉伸变形因素探 讨
材料类型及微观结构影响
材料类型
金属、塑料、橡胶、复合材料等不同类型的材料具有不同的拉伸性能。
微观结构
材料的晶粒大小、相组成、缺陷分布等微观结构特征对其拉伸性能产生显著影响。
温度和加载速率对拉伸性能影响
要点一
温度
要点二
加载速率
随着温度的升高,材料的拉伸强度通常会降低,而塑性则 会增加。

弹性力学中的基本假定


均匀性假定在弹性力学中的意义
01
均匀性假定使得弹性力学问题简 化,可以通过建立统一的数学模 型来描述整个物体的行为。
02
在实际问题中,许多材料都可以 被视为均匀的,例如常见的金属 、塑料等,因此均匀性假定具有 广泛的应用价值。
均匀性假定在实际问题中的应用
在工程设计中,许多结构部件都是由 均匀材料制成的,如桥梁、建筑物的 梁和柱等。Leabharlann 各向异性假定在弹性力学中的作用
描述材料在不同方向上的弹性行为
各向异性假定使得弹性力学能够更准确地描述材料在不同方向上的弹性行为,从而更准确 地预测结构的应力、应变等响应。
考虑材料内部微观结构的影响
各向异性假定将材料的弹性性质与其内部微观结构相联系,使得弹性力学能够考虑材料内 部微观结构对宏观弹性行为的影响。
理论发展
连续性假定推动了弹性力学理 论的发展,为进一步研究材料 的力学行为提供了基础。
03
均匀性假定
均匀性的定义
均匀性假定是指在弹性力学中,假设 材料在整个区域内具有相同的性质, 即材料在各个方向上的物理性质(如 弹性模量、泊松比等)都是一致的。
这一假定基于材料在宏观尺度上表现 出的一致性,忽略了微观结构或局部 变化对材料性质的影响。
小变形假定在弹性力学中的作用
提供数学模型简化
小变形假定使得弹性力学中的数学模型得以简化,因为物体变形 后仍可视为连续介质,无需考虑离散化问题。
导出应变和应力关系
在小变形假定下,可以推导出应变和应力之间的关系,即本构方 程,从而描述物体的弹塑性行为。
小变形假定在实际问题中的应用
01
02
03
薄壳结构分析
弹性力学中的基本假定

弹性力学平面应力问题和平面应变问题

在弹性力学平面应力问题和平面应变问题中,有限差分法常用于求解偏微 分方程,特别是对于规则的网格划分,计算效率较高。
有限差分法的精度取决于差分格式的选择和网格的划分,同时需要注意数 值稳定性和计算精度的问题。
边界元法
边界元法是一种基于边界积 分方程的数值分析方法,通 过将微分方程转化为边界积
分方程来求解。
变形特点
应用领域
在平面应力问题中,变形主要发生在作用 面上,而在平面应变问题中,变形可以发 生在整个结构中。
平面应力问题在桥梁、建筑和机械等领域 有广泛应用,而平面应变问题在岩土、地 质和材料等领域有广泛应用。
06
结论与展望
结论总结
平面应力问题和平面应变问题在弹性力学中具有重要地位,它们是描述物体在应力作用下的变形和应 力分布的基础。
弹性模量表示材料在受力作用下的刚度,是衡量材料抵 抗弹性变形能力的重要参数。
剪切模量表示材料在剪切力作用下的刚度,与弹性模量 和泊松比有关。
03
平面应变问题
应变状态分析
平面应变条件
应变分量中,只有$varepsilon_{x}$ 、$varepsilon_{y}$和 $gamma_{xy}$不为零,其余分量为 零。
有限元法在弹性力学平面应力问题和平面应变问题中广泛 应用,因为它能够处理复杂的几何形状和边界条件,且计 算精度高。
有限元法的实现需要建立离散化的模型、选择合适的单元 类型和求解算法,并进行数值稳定性和误差分析。
有限差分法
有限差分法是一种基于差分原理的数值分析方法,通过将微分方程转化为 差分方程来求解。
薄板弯曲问题
考虑一个矩形薄板,受到一对相距较远的集中力作用,使板发生弯曲。根据平面应力问题,可以分析 板的应力分布、中性面位置以及挠度等。

弹塑性力学第四章弹性力学的求解方法


微分方程并求解,最后根据边界条件确定待定常数。
逆解法求解空间问题
逆解法的基本思想
从已知的空间应力或位移函数出发,反推得到弹性体的形状和边界条件。
适用于具有特定应力或位移分布的空间问题
如无限大体、半无限大体等具有特殊应力或位移分布的空间问题。
求解步骤
假设空间应力或位移函数,根据弹性力学基本方程推导得到弹性体的形状和边界条件,并 验证假设的合理性。
04
半解析法在弹性力学中的应用
有限差分法基本原理及步骤
差分原理
有限差分法基于差分原理,将连续问 题离散化,通过求解差分方程得到近 似解。
网格划分
将求解区域划分为规则的网格,每个 网格节点对应一个未知数。
差分格式
根据问题的性质和精度要求,选择合 适的差分格式,如向前差分、向后差 分、中心差分等。
边界处理
电测实验方法介绍及优缺点分析
电阻应变片法
利用电阻应变片将试件表面的应变转换 为电阻变化,通过测量电路获取应变信 息。该方法具有测量精度高、稳定性好 、适用于各种环境和试件形状的优点, 但需要粘贴应变片并进行温度补偿,且 只能进行点测量。
VS
电容传感器法
利用电容传感器将试件表面的位移或应变 转换为电容变化,通过测量电路获取相关 信息。电容传感器法具有非接触、高灵敏 度、宽频响等优点,但易受环境干扰,且 需要进行复杂的电路设计和信号处理。
04 边界条件处理 根据边界条件对总体刚度矩阵和荷载向量进行修正。
05
求解线性方程组
求解总体刚度矩阵和荷载向量构成的线性方程组,得 到节点位移。
边界元法基本原理及步骤
边界积分方程
边界离散化
单元分析
总体合成
求解线性方程组
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档