弹性力学04习题答案

合集下载

弹塑性力学第四章答案

弹塑性力学第四章答案

第四章 习题答案4.3有一块宽为a ,高为b 的矩形薄板,其左边及下边受链杆支承,在右边及上边分别受均布压力1q 和2q 作用,见题图4.1,如不计体力,试求薄板的位移。

题图4-1解:1.设置位移函数为123123()()u x A A x A y v y B B x B y =+++⎫⎬=+++⎭(1)因为边界上没有不等于零的已知位移,所以式00,m m m m mmu u A u v v A v =+=+∑∑中的0u 、0v 都取为零,显然,不论式(1)中各系数取何值,它都满足左边及下边的位移边界条件,但不一定能满足应力边界条件,故只能采用瑞兹法求解。

2.计算形变势能。

为简便起见,只取1A 、1B 两个系数。

111111,u A x Au v B y B v ==== (2) 11,0,,0uuvu A B x yyx∂∂∂∂====∂∂∂∂ ()()2222111111112200222(1)2(1)a b E Eab U A B A B dxdy A B A B v v νν=++=++--⎰⎰ (3) 3.确定系数1A 和1B ,求出位移解答。

因为不计体力()0X Y ==,且注意到1m =,式4-14简化为11UXu ds A ∂=∂⎰ (4)11UYv ds B ∂=∂⎰ (5) 对式(4)右端积分时,在薄板的上下边和左边,不是0X =,就是10u =,故积分值为零。

在右边界上有11,,X q u x a ds dy =-===()111bXu ds q ady q ab =-=-⎰⎰ (6)同理,式(5)右端的积分只需在薄板的上边界进行,()1220aYv ds q bdx q ab =-=-⎰⎰ (7)将式(3)、式(6)、式(7)分别代入式(4)、式(5)可解出1A 和1B :()1112222(1)EabA B q ab v ν+=---()1122222(1)EabB A q ab v ν+=--- 121q q A E ν-=-, 211q q B E ν-=- (8) 122111,q q q q u A x x v B y y E Eνν--==-==- (9)4.分析:把式(8)代入几何和物理方程可求出应力分量,不难验证这些应力分量可以满足平衡微分方程和应力边界条件,即式(8)所示位移为精确解答。

弹性力学课后习题及答案

弹性力学课后习题及答案

弹性力学课后习题及答案弹性力学课后习题及答案弹性力学是力学的一个重要分支,研究物体在受力作用下的形变和应力分布规律。

在学习弹性力学的过程中,课后习题是巩固所学知识、提高解题能力的重要环节。

本文将为大家提供一些常见的弹性力学课后习题及其答案,希望对大家的学习有所帮助。

一、弹性体的应力与应变1. 一个长为L,截面为A的弹性体,在受力F作用下产生了长度为ΔL的形变。

求该弹性体的应变。

答案:根据胡克定律,应变ε等于形变ΔL与原始长度L的比值,即ε = ΔL / L。

2. 一个弹性体的应变为ε,如果该弹性体的截面积为A,求该弹性体在受力F作用下的应力。

答案:根据胡克定律,应力σ等于受力F与截面积A的比值,即σ = F / A。

二、弹性体的应力分布1. 一个长为L,截面为A的弹性体,在受力F作用下,其应力沿着截面的分布是否均匀?答案:根据胡克定律,应力σ等于受力F与截面积A的比值,即σ = F / A。

由此可知,应力与截面积成反比,即截面积越大,应力越小;截面积越小,应力越大。

因此,弹性体受力作用下的应力分布是不均匀的。

2. 一个长为L,截面为A的弹性体,在受力F作用下,其应力是否与截面的形状有关?答案:根据胡克定律,应力σ等于受力F与截面积A的比值,即σ = F / A。

由此可知,应力与截面积成正比,即截面积越大,应力越小;截面积越小,应力越大。

因此,弹性体受力作用下的应力与截面的形状有关。

三、弹性体的弹性模量1. 一个弹性体的应力为σ,应变为ε,求该弹性体的弹性模量E。

答案:根据胡克定律,应力σ等于弹性模量E与应变ε的乘积,即σ = E * ε。

由此可得,弹性模量E等于应力σ与应变ε的比值,即E = σ / ε。

2. 一个弹性体的弹性模量为E,如果该弹性体的截面积为A,求该弹性体在受力F作用下的形变。

答案:根据胡克定律,形变ΔL等于弹性模量E与受力F的乘积再除以截面积A,即ΔL = (E * F) / A。

弹性力学课后习题答案

弹性力学课后习题答案

弹性力学课后习题答案弹性力学课后习题答案弹性力学是研究物体在外力作用下发生形变后能够恢复原状的力学学科。

在学习弹性力学的过程中,课后习题是巩固理论知识、检验学习效果的重要方式。

本文将为大家提供一些弹性力学课后习题的答案,希望能够帮助大家更好地理解和应用弹性力学的知识。

1. 一根长度为L,截面积为A的均匀杆,受到一个沿杆轴方向的拉力F。

求杆的伸长量。

答案:根据胡克定律,拉力F和伸长量ΔL之间存在线性关系,即F = kΔL,其中k为弹性系数。

根据定义,弹性系数k等于应力σ和应变ε的比值,即k = σ/ε。

应力σ等于拉力F除以截面积A,即σ = F/A。

应变ε等于伸长量ΔL除以杆的原始长度L,即ε = ΔL/L。

将以上三个等式联立,可以得到ΔL = FL/(kA)。

2. 一个弹簧的弹性系数为k,原长为L。

如果将该弹簧拉长ΔL,求弹簧的应变能。

答案:弹簧的应变能可以通过应变能密度公式计算。

应变能密度W是单位体积内的应变能,等于单位体积内的弹性势能。

对于弹簧来说,单位体积内的弹性势能等于弹簧的弹性系数k乘以弹性势能密度的平方,即W = (1/2)k(ΔL/L)^2。

将ΔL/L替换为应变ε,可以得到W = (1/2)kε^2。

3. 一个圆形薄膜的半径为R,厚度为t,杨氏模量为E。

如果该薄膜受到一个沿法线方向的压力P,求薄膜的弯曲半径。

答案:薄膜的弯曲半径可以通过弯曲方程计算。

弯曲方程表明,弯曲半径R和薄膜的杨氏模量E、厚度t以及法线方向的压力P之间存在线性关系,即R =Et^3/(12P)。

4. 一个长为L,截面积为A的梁,受到一个沿梁轴方向的力F。

如果梁的杨氏模量为E,求梁的弯曲度。

答案:梁的弯曲度可以通过弯曲方程计算。

弯曲方程表明,弯曲度θ和梁的杨氏模量E、力F以及梁的长度L之间存在线性关系,即θ = FL^3/(3EI)。

其中I为梁的截面惯性矩,可以根据梁的几何形状计算得到。

5. 一个长为L,截面积为A的圆柱体材料,受到一个沿轴向的拉力F。

弹性力学(徐芝纶)前四章习题答案

弹性力学(徐芝纶)前四章习题答案

著应力,对远处影响忽略不计。
3.解:平衡微分方程组为:
3
其中
fx
V x
V , f y y .
x x
yx y
fx
0
y
y
xy x
fy
0
取该方程组的一组特解: x V , y V , xy 0
齐次方程组
x x y
y
yx y
xy x
0
的通解为
0
所以微分平衡方程组的解为
界条件。
(4)位移单值条件为:令应力分量表达式中可能留有的待定函数或待定常数通过积分产生
的多值项为 0。
1
2.解:
1
F X
Y 图a
F
X
Y 图b
h Z
Y 图c
(1) 在图 b 中,我们由剪力平衡方程和弯矩平衡方程得到:
1
F Q 0 ,即 Q F
M Fx 0 ,即 M Fx
在图 a 中,有:
4
4
x(3h 2 A hB C) 0 即 3h 2 A hB C 0
4
4
以上四式联立得:
A
2 g h2
,
B
0, C
3 g 2h
,
D
g 2
代入(a),并注意 E F G 0 得:
x
6 g h2
x2 y+
4 g h2
y3
6Hy
2K
y
2 g h2
y3
3 g 2h
y
gy
g 2
xy
x
2 y 2
y
2 x2
xy
2 xy
x
2 y 2
V
y

弹性力学(徐芝纶)第四章习题答案

弹性力学(徐芝纶)第四章习题答案

第四章 习题解答4-14-2、解:本题为轴对称应力问题,相应的径向位移为: ()()()()()θ+θ+⎥⎦⎤⎢⎣⎡υ-+υ-+-υ-+υ+-=sin cos ln K I Cr 12Br 311r Br 12r A 1E 1u r (1) 轴对称应力通式为()()02ln 232ln 2122=+++-=+++=θθτσσr r C r B rAC r B r A由应力边界条件()()()()0,00,===-=====b r r b r r a r r a r r q θθτστσ并结合位移单值条件可知B=0,求得:22222222ab qa C a b qb a A -=--= 因半径的改变与刚体位移I ,K 无关,且为平面应变问题,将A 、B 、C 代入(1)式,并将υυυυ-→-→1,12EE 得:内半径的改变:()()()⎪⎪⎭⎫⎝⎛-+-+-=⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛--+-⎪⎭⎫ ⎝⎛-+-=∆=υυυυυυυυ11*111112222222222222a b a b Eqa a a b qa a a b q b a E u ar r外半径的改变:()()()2222222222221*11111a b ab E qa b a b qa b a b q b a Eu br r --=⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛--+-⎪⎭⎫ ⎝⎛-+-=∆=υυυυυυ 圆筒厚度的改变:()()()⎪⎪⎭⎫⎝⎛-++---=∆-∆=∆==υυυ112a b a b E qa u u R ar r b r r4-2另解:半径为r 的圆筒周长为r π2,受载后周长则为 ()θθεπεππ+=+1222r r r , 于是半径为 ()θε+1r ,半径的改变量则为:⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+--⎪⎭⎫ ⎝⎛+--=⎪⎭⎫⎝⎛---=C r A C rA r E E r r r 212111*2222υυυσυυσυεθθ将对应的A 、C 及r=a,b 分别代入,可求出内外半径的改变及圆筒厚度的改变。

弹性力学1--4章典型题目答案

弹性力学1--4章典型题目答案

【1-4】应力和面力的符号规定有什么区别?试画出正坐标面和负坐标面上的正的应力和正的面力的方向。

【解答】应力的符号规定是:当作用面的外法线方向指向坐标轴方向时(即正面时),这个面上的应力(不论是正应力还是切应力)以沿坐标轴的正方向为正,沿坐标轴的负方向为负。

当作用面的外法线指向坐标轴的负方向时(即负面时),该面上的应力以沿坐标轴的负方向为正,沿坐标轴的正方向为负。

面力的符号规定是:当面力的指向沿坐标轴的正方向时为正,沿坐标轴的负方向为负。

由下图可以看出,正面上应力分量与面力分量同号,负面上应力分量与面力分量符号相反。

正的应力正的面力【1-8】试画出图1-5中三角形薄板的正的面力和体力的方向。

【解答】xyxfyfxfyfxfyfyfxfOz【2-1】试分析说明,在不受任何面力作用的空间体表面附近的薄层中(图2-14)其应力状态接近于平面应力的情况。

【解答】在不受任何面力作用的空间表面附近的薄层中,可以认为在该薄层的上下表面都无面力,且在薄层内所有各点都有===z xz yzσττ,只存在平面应力分量,,x y xyσστ,且它们不沿z方向变化,仅为x,y的函数。

可以认为此问题是平面应力问题。

【2-2】试分析说明,在板面上处处受法向约束且不受切向面力作用的等厚度薄片中(2-15),当板边上只受x ,y 向的面力或约束,且不沿厚度变化时,其应变状态接近于平面应变的情况。

【解答】板上处处受法向约束时0z ε=,且不受切向面力作用,则0xz yz γγ==(相应0zx zy ττ==)板边上只受x ,y 向的面力或约束,所以仅存在,,x y xy εεγ,且不沿厚度变化,仅为x ,y 的函数,故其应变状态接近于平面应变的情况。

【2-6】在工地上技术人员发现,当直径和厚度相同的情况下,在自重作用下的钢圆环(接近平面应力问题)总比钢圆筒(接近平面应变问题)的变形大。

试根据相应的物理方程来解释这种现象。

【解答】体力相同情况下,两类平面问题的平衡微分方程完全相同,故所求的应力分量相同。

《弹性力学》试题参考答案(2021年整理精品文档)

《弹性力学》试题参考答案(2021年整理精品文档)

(完整版)《弹性力学》试题参考答案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整版)《弹性力学》试题参考答案)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整版)《弹性力学》试题参考答案的全部内容。

《弹性力学》试题参考答案(答题时间:100分钟)一、填空题(每小题4分)1.最小势能原理等价于弹性力学基本方程中: 平衡微分方程 , 应力边界条件 。

2.一组可能的应力分量应满足: 平衡微分方程 ,相容方程(变形协调条件) 。

3.等截面直杆扭转问题中, M dxdy D=⎰⎰ 2ϕ的物理意义是 杆端截面上剪应力对转轴的矩等于杆截面内的扭矩M .4.平面问题的应力函数解法中,Airy 应力函数ϕ在边界上值的物理意义为 边界上某一点(基准点)到任一点外力的矩 。

5.弹性力学平衡微分方程、几何方程的张量表示为:0,=+i j ij X σ ,)(21,,i j j i ij u u +=ε。

二、简述题(每小题6分)1.试简述力学中的圣维南原理,并说明它在弹性力学分析中的作用.圣维南原理:如果物体的一小部分边界上的面力变换为分布不同但静力等效的面力(主矢与主矩相同),则近处的应力分布将有显著的改变,但远处的应力所受影响可以忽略不计。

作用:(1)将次要边界上复杂的面力(集中力、集中力偶等)作分布的面力代替.(2)将次要的位移边界条件转化为应力边界条件处理。

2.图示两楔形体,试分别用直角坐标和极坐标写出其应力函数ϕ的分离变量形式。

题二(2)图(a )⎩⎨⎧=++= )(),(),(222θθϕϕf r r cy bxy ax y x (b )⎩⎨⎧=+++=)(),(),(33223θθϕϕf r r dy cxy y bx ax y x3.图示矩形弹性薄板,沿对角线方向作用一对拉力P ,板的几何尺寸如图,材料的弹性模量E 、泊松比 已知。

弹性力学-04(习题答案)

弹性力学-04(习题答案)

1 )
(sin
22
sin
21)
y
q0
2
2(2
1) (sin
22
sin
21)
xy
q0
2
(cos 22
cos 21)
aa q
证法1:(叠加法)
y
1
O 2
P
x
证法1:(叠加法) 分析思路:
aa q
y
1
O 2
P
x
aa
q
y
O
P x
q
aa
y
O
P x
求解步骤: 由楔形体在一面受均布压力问题的结果:
刚体
r
a2b2
(1 2)b2
a2
q(
1 b2
1
r
2
2
)
a2b2
(1 2)b2
a2
q(
1 b2
1
2
r2
)
ra
r
a2b2
(1 2)b2
a2
q(
1 b2
1
2
a2
)
q
a2b2
(1 2)b2
a2
q(
1 b2
1
2
a2
)
习题4-4 矩形薄板受纯剪,剪力集度为q,如图所示。如果离板边较 远处有一小圆孔,试求孔边的最大和最小正应力。
解:由图(a)给出的孔 边应力结果:
q
q(1 2cos 2 )
得:
q
x
q
r
q
q
x
r
q 1 2cos 2( 45)
y (a)
q1 2cos 2( 45)
q1 2sin 2 q1 2sin 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解:(1)应力函数 的确定
由因次分析法,可知 (r, ) r 2 f ( )
代入相容方程:
2 r 2
1 r
r
1 r2
2
2
2
0
y
得到:
1 r2
d
4 f ( d 4
)
4
d
2 f ( d 2
)
0
d
4 f ( ) d 4
4
d
2 f ( d 2
)
0
f ( ) Acos 2 Bsin 2 C D
截面弯矩 M Px
O
截面惯性矩 I 2h3 2 x3 tan3 P
12 3
2y
截面正应力
x
My I
2
x
3Py 2 tan 3
2
x
2
2
中的结果对比。
解: 由密切尔( J. H. Michell )解答,得
O
r
2P r
(
sin
sin
)
0, r 0
P
x
2 2
由应力分量的坐标变换式:
x
r
2
r
2cos 2rsiny2
y
r
2
r
2
cos 2
r
sin
2
x y
xy
r
r
2
r
2
2 r
2
r
2
ccoosssin222rr PrrPr(0(c—o2rss—rsPin2isnsi(密0nicno切s尔))((1s(1cinoJcsc.oHoss.2M2si)icn)hells)si(nin解4-2答1))
第四章 平面问题的极坐标解答
(习题讲解)
习题4-1 试导出位移分量的坐标变换式
ur u cos vsin
u u sin v cos
u ur cos u sin v ur sin u cos
o
r Au
x
u
ur
v
y
S
习题4-2 设有内径为 a 而外径为 b 的圆筒受内压力 q ,试求内半径 及外半径的改变,并求圆筒厚度的改变。
ra
1 2
E
a
q
b2 (b2
a2 a2
)
1
ur
r b
1 2
E
aq
2ab (b2 a2 )
ur
r b
ur
ra
1 2
E
a
q
b b
a a
1
习题4-3 设有刚体,具有半径为 b 的圆柱形孔道,孔道内放置一外 半径为 b而内半径为 a的圆筒,受内压力 q ,试求圆筒壁 的应力。
解: 边界条件: r ra q r ra 0
,
x
2P
sin
x2 y (x2 y2)2
,
y xy
2P
sin
2P
sin
( (
x2
x2
xy3y2 )r2
xy2
yy
2)2r
,
2
,
2
r
2xy
r
2
cos22sPin
cos 2
r sinxy22
(x2 y2)2
r sin 2
,
xy
r
2
sin
2
r
cos 2
材料力学结果:
x
, 由对称性, r
应为 的偶函数; r应为 的奇函数, 因而有,
B C 0
r 2Acos 2 2D 2Acos 2 2D r 2Asin 2
(3)由边界条件确定常数
边界条件:
0 2
r q 2
代入,有:
2A
cosr1r2Dr
0r12
2 2
2 2
A A
sinsinqqr22
应力分量:
r
A r2
2C
边界条件: r ra q
r rb 0
A a2
2C
q
A b2
2C
0
A
a2b2 b2 a2
q
2C
a2 b2 a2
q
A
a2b2 b2 a2
q
2C
a2 b2 a2
q
ur
1
E
A r
2(1
2
)Cr
ur
1 a2
E(b2 a2 )
q
b2 r
(1
2 )r
ur
2D rqcotr
1 r
代入应力分量式,有
2A
q
sin
2D q cot
代入应力分量式,有
r 2Acos 2 2D 2Acos 2 2D r 2Asin 2
r
q
cos sin
2
cot
r
q
cos sin
2
cot
r
q
sin sin
2
O y
q q
22
x
习题4-6 三角形悬臂梁在自由端受集中荷载 P,如图所示。试用公式 (4-21)求任一铅直截面上的正应力和剪应力,并与材料力学
x
r
2
r
2
cos 2
P r
(
sin
sin
)(1
cos
2
)
y
r
2
r
2
cos 2
P r
(
sin
sin
)(1
cos
2
)
xy
r sin 2
2
P r
(
sin
sin
)
sin
2
由坐标变换式: r x2 y2 x r cos , y r sin
x
2P sin
x2 y (x2 y2)2
解:由图(a)给出的孔 边应力结果:
q
q(1 2cos 2 )
得:
q
x
q
r
q
q
x
r
q 1 2cos 2( 45 )
y (a)
q1 2cos 2( 45)
q1 2sin 2 q1 2sin 2
qy
q
q
45°
4q sin 2
max 4q min 4q
q
q
习题4-5 楔形体在两侧受有均布剪应力q,如图所示。试求其应力分量。
r
A r2
2C
ur rb
0
A r2
2C
ur
1
E
A r
2(1
2 )Cr
r 0
刚体
代入边界条件,有
A a2
2C
q
A 2(1 2)Cb 0
b
A
a2b2 (1 2) (1 2)b2 a2
q
将常数A、C 代入,有
2C
(1
a2
2 )b 2
a2
q
将常数A、C 代入,有
A
a2b2 (1 2) (1 2)b2 a2
r2 f ( )
r2(Acos 2 Bsin 2 C D)
O
q
q
22
x
r2 f ( ) r2 (Acos 2 Bsin 2 C D) y
O
(2)应力分量的确定
r 2Acos 2 2Bsin 2 2C 2D
q
q
22
2Acos 2 2Bsin 2 2C 2D
r 2Asin 2 2B cos 2 C
解: 轴对称问题的径向位移公式(平面应变):
ur
1
E
A r
2(1
2)Br (ln
r
1) (1
4 ) Br
2(1 2)Cr I cos K sin
对于圆筒轴对称问题,有 ur 不随 变化,即
I K 0 又由位移单值条件,有 B 0
ur
1
E
A r
2(1 2)Cr
常数A、B由应力边界条件确定。
q
2C
(1
a2
2 )b 2
a2
q
r
A r2
2C
A r2
2C
r 0
刚体
r
a2b2
(1 2)b2
a2
q(
1 b2
1
r
2
2
)
a2b2
(1 2)b2
a2
q(
1 b2
1
2
r2
)
ra
r
(1
a2b2
2 )b 2
a2
q(
1 b2
1
2
a2
)
q
a2b2
(1 2)b2
a2
q(
1 b2
1
2
a2
)
习题4-4 矩形薄板受纯剪,剪力集度为q,如图所示。如果离板边较 远处有一小圆孔,试求孔边的最大和最小正应力。
相关文档
最新文档