《弹性力学》试题参考答案与弹性力学复习题

合集下载

《弹性力学》复习 学习材料 试题与参考答案

《弹性力学》复习 学习材料 试题与参考答案

《弹性力学》复习学习材料试题与参考答案一、单选题1.利用有限单元法求解弹性力学问题时,不包括哪个步骤(D)A.结构离散化B.单元分析C.整体分析D.应力分析2.如果必须在弹性体上挖空,那么孔的形状应尽可能采用(C)A.正方形B.菱形C.圆形D.椭圆形3.每个单元的位移一般总是包含着(B)部分A.一B.二C.三D.四4.在弹性力学中规定,线应变(C),与正应力的正负号规定相适应。

A.伸长时为负,缩短时为负B.伸长时为正,缩短时为正C.伸长时为正,缩短时为负D.伸长时为负,缩短时为正5.在弹性力学中规定,切应变以直角( C ),与切应力的正负号规定相适应。

A.变小时为正,变大时为正B.变小时为负,变大时为负C.变小时为负,变大时为正D.变小时为正,变大时为负6.物体受外力以后,其内部将发生内力,它的集度称为(C )A应变B应力C变形D切变力7.平面问题分为平面(A)问题和平面( )问题。

A应力,应变B切变、应力C内力、应变D外力,内力8.在弹性力学里分析问题,要建立( C )套方程。

A一B二C三D四9.下列关于几何方程的叙述,没有错误的是(C)A.由于几何方程是由位移导数组成的,因此,位移的导数描述了物体的变形位移B.几何方程建立了位移与变形的关系,因此,通过几何方程可以确定一点的位移C.几何方程建立了位移与变形的关系,因此,通过几何方程可以确定一点的应变分量D.几何方程是一点位移与应变分量之间的唯一关系10.用应力分量表示的相容方程等价于(B)A.平衡微分方程B.几何方程和物理方程C.用应变分量表示的相容方程D.平衡微分方程.几何方程和物理方程11.平面应变问题的应力、应变和位移与那个(些)坐标无关(纵向为z轴方向)(C)A.xB.yC.zD.x,y,z12.在平面应力问题中(取中面作xy平面)则(C)A.σz=0,w=0B.σz≠0,w≠0C.σz=0,w≠0D.σz≠0,w=013.下面不属于边界条件的是(B)。

弹性力学考试和答案

弹性力学考试和答案

弹性力学考试和答案一、单项选择题(每题2分,共20分)1. 弹性力学中,应力状态的基本方程是()。

A. 平衡方程B. 几何方程C. 物理方程D. 边界条件答案:A2. 弹性力学中,位移场的三个基本方程是()。

A. 平衡方程B. 几何方程C. 物理方程D. 边界条件答案:B3. 弹性力学中,平面应力问题与平面应变问题的主要区别是()。

A. 应力分量不同B. 位移分量不同C. 应变分量不同D. 边界条件不同答案:C4. 弹性力学中,圣维南原理是指()。

A. 应力集中现象B. 应力释放现象C. 应力平衡现象D. 应力松弛现象答案:B5. 弹性力学中,莫尔圆表示的是()。

A. 应力状态B. 应变状态C. 位移状态D. 应力-应变关系答案:A6. 弹性力学中,平面问题的基本解法有()。

A. 直接积分法B. 叠加原理C. 变分法D. 能量法答案:A7. 弹性力学中,轴对称问题的基本解法是()。

A. 直接积分法B. 叠加原理C. 变分法D. 能量法答案:A8. 弹性力学中,扭转问题的解法是()。

A. 直接积分法B. 叠加原理C. 变分法D. 能量法答案:A9. 弹性力学中,平面应力问题的应力函数是()。

A. 单一函数B. 两个函数C. 三个函数D. 四个函数答案:A10. 弹性力学中,平面应变问题的应力函数是()。

A. 单一函数B. 两个函数C. 三个函数D. 四个函数答案:B二、多项选择题(每题3分,共15分)11. 弹性力学中,应力状态的基本方程包括()。

A. 平衡方程B. 几何方程C. 物理方程D. 边界条件答案:AC12. 弹性力学中,位移场的三个基本方程包括()。

A. 平衡方程B. 几何方程C. 物理方程D. 边界条件答案:BC13. 弹性力学中,平面应力问题与平面应变问题的主要区别包括()。

A. 应力分量不同B. 位移分量不同C. 应变分量不同D. 边界条件不同答案:AC14. 弹性力学中,圣维南原理包括()。

弹性力学-答案-知识归纳整理

弹性力学-答案-知识归纳整理

知识归纳整理《弹性力学》习题答案一、单选题1、所谓“彻底弹性体”是指(B)A、材料应力应变关系满足虎克定律B、材料的应力应变关系与加载时光、历史无关C、本构关系为非线性弹性关系D、应力应变关系满足线性弹性关系2、对于弹性力学的正确认识是(A )A、计算力学在工程结构设计中的作用日益重要B、弹性力学从微分单元体入手分析弹性体,所以与材料力学不同,不需要对问题作假设C、任何弹性变形材料都是弹性力学的研究对象D、弹性力学理论像材料力学一样,可以没有困难的应用于工程结构分析3、下列对象不属于弹性力学研究对象的是(D ) 。

A、杆件B、块体C、板壳D、质点4、弹性力学对杆件分析(C)A、无法分析B、得出近似的结果C、得出精确的结果D、需采用一些对于变形的近似假定5、图示弹性构件的应力和位移分析要用什么分析想法?(C)A、材料力学B、结构力学C、弹性力学D、塑性力学6、弹性力学与材料力学的主要不同之处在于( B )A、任务B、研究对象C、研究想法D、基本假设7、下列外力不属于体力的是(D)A、重力B、磁力C、惯性力D、静水压力8、应力不变量说明( D ) 。

A. 应力状态特征方程的根是不确定的B. 一点的应力分量不变C. 主应力的方向不变D. 应力随着截面方位改变,可是应力状态不变9、对于应力状态分析, (D)是正确的。

A. 应力状态特征方程的根是确定的,所以任意截面的应力分量相同求知若饥,虚心若愚。

B. 应力不变量表示主应力不变C. 主应力的大小是可以确定的,可是方向不是确定的D. 应力分量随着截面方位改变而变化,可是应力状态是不变的10、应力状态分析是建立在静力学基础上的,这是因为( D ) 。

A. 没有思量面力边界条件B. 没有讨论多连域的变形C. 没有涉及材料本构关系D. 没有思量材料的变形对于应力状态的影响11、下列对于几何方程的叙述,没有错误的是( C ) 。

A. 由于几何方程是由位移导数组成的,所以,位移的导数描述了物体的变形位移B. 几何方程建立了位移与变形的关系,所以,经过几何方程可以确定一点的位移C. 几何方程建立了位移与变形的关系,所以,经过几何方程可以确定一点的应变分量D. 几何方程是一点位移与应变分量之间的唯一关系12、平面应变问题的应力、应变和位移与这个(些)坐标无关(纵向为 z 轴方向)( C )A、 xB、 yC、 zD、 x, y, z13、平面应力问题的外力特征是(A)A 只作用在板边且平行于板中面B 垂直作用在板面C 平行中面作用在板边和板面上D 作用在板面且平行于板中面 。

《弹性力学》试题参考答案(参考题)

《弹性力学》试题参考答案(参考题)

《弹性力学》试题参考答案(答题时间:100分钟)一、填空题(每小题4分)1.最小势能原理等价于弹性力学基本方程中: 平衡微分方程 , 应力边界条件 。

2.一组可能的应力分量应满足: 平衡微分方程 ,相容方程(变形协调条件) 。

3.等截面直杆扭转问题中, M dxdy D=⎰⎰2ϕ的物理意义是 杆端截面上剪应力对转轴的矩等于杆截面内的扭矩M 。

4.平面问题的应力函数解法中,Airy 应力函数ϕ在边界上值的物理意义为 边界上某一点(基准点)到任一点外力的矩 。

5.弹性力学平衡微分方程、几何方程的张量表示为:0,=+i j ij X σ ,)(21,,i j j i ij u u +=ε。

二、简述题(每小题6分)1.试简述力学中的圣维南原理,并说明它在弹性力学分析中的作用。

圣维南原理:如果物体的一小部分边界上的面力变换为分布不同但静力等效的面力(主矢与主矩相同),则近处的应力分布将有显著的改变,但远处的应力所受影响可以忽略不计。

作用:(1)将次要边界上复杂的面力(集中力、集中力偶等)作分布的面力代替。

(2)将次要的位移边界条件转化为应力边界条件处理。

2.图示两楔形体,试分别用直角坐标和极坐标写出其应力函数ϕ的分离变量形式。

题二(2)图(a )⎩⎨⎧=++= )(),(),(222θθϕϕf r r cy bxy ax y x (b )⎩⎨⎧=+++=)(),(),(33223θθϕϕf r r dy cxy y bx ax y x3.图示矩形弹性薄板,沿对角线方向作用一对拉力P ,板的几何尺寸如图,材料的弹性模量E 、泊松比 μ 已知。

试求薄板面积的改变量S ∆。

题二(3)图设当各边界受均布压力q 时,两力作用点的相对位移为l ∆。

由q E)1(1με-=得,)1(2222με-+=+=∆Eb a q b a l设板在力P 作用下的面积改变为S ∆,由功的互等定理有:l P S q ∆⋅=∆⋅将l ∆代入得:221b a P ES +-=∆μ显然,S ∆与板的形状无关,仅与E 、μ、l 有关。

弹性力学试题及答案

弹性力学试题及答案

弹性力学试题及答案一、选择题(每题10分,共40分)1. 在弹性力学中,下列哪个物理量表示应变能密度?A. 应力B. 应变C. 位移D. 应力能密度答案:D2. 在平面应力状态下,下列哪个方程是正确的?A. σ_x + σ_y = 0B. σ_x + σ_y = σ_zC. σ_x + σ_y = τ_xyD. σ_x + σ_y = 0答案:D3. 在弹性体中,应力与应变之间的关系可以用下列哪个关系式表示?A. σ = EεB. σ = GγC. τ = μγD. σ = λε答案:A4. 在弹性力学中,下列哪个方程表示平衡方程?A. σ_x + σ_y + σ_z = 0B. ε_x + ε_y +ε_z = 0 C. τ_xy = τ_yx D. σ_x + σ_y + σ_z = F答案:D二、填空题(每题10分,共30分)1. 弹性力学中的基本假设有:连续性假设、线性假设和________假设。

答案:各向同性2. 在三维应力状态下,应力分量可以表示为:σ_x, σ_y, σ_z, τ_xy, τ_xz, τ_yz。

其中,τ_xy表示________面上的切应力。

答案:xOy3. 在弹性力学中,位移与应变之间的关系可以用________方程表示。

答案:几何方程三、计算题(每题30分,共90分)1. 已知一弹性体在平面应力状态下的应力分量为:σ_x = 100 MPa,σ_y = 50 MPa,τ_xy = 25 MPa。

弹性模量E = 200 GPa,泊松比μ = 0.3。

求应变分量ε_x, ε_y, γ_xy。

解:首先,利用胡克定律计算应变分量:ε_x = σ_x / E = 100 MPa / 200 GPa = 0.0005ε_y = σ_y / E = 50 MPa / 200 GPa = 0.00025γ_xy = τ_xy / G = 25 MPa / (E / 2(1 + μ)) = 25 MPa / (200 GPa / 2(1 + 0.3)) = 0.000375答案:ε_x = 0.0005,ε_y = 0.00025,γ_xy = 0.0003752. 一弹性体在三维应力状态下的应力分量为:σ_x = 120 MPa,σ_y = 80 MPa,σ_z = 40 MPa,τ_xy = 30 MPa,τ_xz = 20 MPa,τ_yz = 10 MPa。

弹性力学试题及答案

弹性力学试题及答案

弹性力学试题及答案一、选择题(每题5分,共20分)1. 弹性力学中,描述材料弹性特性的基本物理量是()。

A. 应力B. 应变C. 弹性模量D. 泊松比答案:C2. 在弹性力学中,下列哪项不是胡克定律的内容?()A. 应力与应变成正比B. 材料是均匀的C. 材料是各向同性的D. 材料是线性的答案:B3. 弹性模量E和泊松比ν之间的关系是()。

A. E = 2(1 + ν)B. E = 3(1 - 2ν)C. E = 3(1 + ν)D. E = 2(1 - ν)答案:D4. 根据弹性力学理论,下列哪种情况下材料会发生塑性变形?()A. 应力小于材料的弹性极限B. 应力达到材料的弹性极限C. 应力超过材料的屈服强度D. 应力小于材料的屈服强度答案:C二、填空题(每题5分,共20分)1. 弹性力学中,应力的定义是单位面积上的______力。

答案:内2. 弹性力学的基本假设之一是______连续性假设。

答案:材料3. 弹性力学中,应变的量纲是______。

答案:无4. 弹性力学中,当外力撤去后,材料能恢复原状的性质称为______。

答案:弹性三、简答题(每题10分,共30分)1. 简述弹性力学中应力和应变的区别。

答案:应力是描述材料内部单位面积上受到的内力,而应变是描述材料在受力后形状和尺寸的变化程度。

2. 解释弹性力学中的杨氏模量和剪切模量。

答案:杨氏模量(E)是描述材料在拉伸或压缩过程中应力与应变比值的物理量,反映了材料的刚度;剪切模量(G)是描述材料在剪切应力作用下剪切应变与剪切应力比值的物理量,反映了材料抵抗剪切变形的能力。

3. 弹性力学中,如何理解材料的各向异性和各向同性?答案:各向异性是指材料的物理性质(如弹性模量、热膨胀系数等)在不同方向上具有不同的值;而各向同性则是指材料的物理性质在各个方向上都是相同的。

四、计算题(每题15分,共30分)1. 已知一圆柱形试件,其直径为50mm,长度为100mm,材料的弹性模量E=210GPa,泊松比ν=0.3。

(完整版)《弹性力学》试题参考答案

(完整版)《弹性力学》试题参考答案

《弹性力学》试题参考答案(答题时间:100分钟)一、填空题(每小题4分)1.最小势能原理等价于弹性力学基本方程中: 平衡微分方程 , 应力边界条件 。

2.一组可能的应力分量应满足: 平衡微分方程 ,相容方程(变形协调条件) 。

3.等截面直杆扭转问题中, 的物理意义是 杆端截面上剪应力对转轴的矩等于M dxdy D=⎰⎰2ϕ杆截面内的扭矩M 。

4.平面问题的应力函数解法中,Airy 应力函数在边界上值的物理意义为 边界上某一点(基准ϕ点)到任一点外力的矩 。

5.弹性力学平衡微分方程、几何方程的张量表示为: ,。

0,=+i j ij X σ)(21,,i j j i ij u u +=ε二、简述题(每小题6分)1.试简述力学中的圣维南原理,并说明它在弹性力学分析中的作用。

圣维南原理:如果物体的一小部分边界上的面力变换为分布不同但静力等效的面力(主矢与主矩相同),则近处的应力分布将有显著的改变,但远处的应力所受影响可以忽略不计。

作用:(1)将次要边界上复杂的面力(集中力、集中力偶等)作分布的面力代替。

(2)将次要的位移边界条件转化为应力边界条件处理。

2.图示两楔形体,试分别用直角坐标和极坐标写出其应力函数的分离变量形式。

ϕ题二(2)图(a ) (b )⎩⎨⎧=++= )(),(),(222θθϕϕf r r cy bxy ax y x ⎩⎨⎧=+++= )(),(),(33223θθϕϕf r r dy cxy y bx ax y x 3.图示矩形弹性薄板,沿对角线方向作用一对拉力P ,板的几何尺寸如图,材料的弹性模量E 、泊松比 μ 已知。

试求薄板面积的改变量。

S∆题二(3)图设当各边界受均布压力q 时,两力作用点的相对位移为。

由得,l ∆q E)1(1με-=)1(2222με-+=+=∆Eb a q b a l 设板在力P 作用下的面积改变为,由功的互等定理有:S ∆lP S q ∆⋅=∆⋅将代入得:l ∆221b a P ES +-=∆μ显然,与板的形状无关,仅与E 、、l 有关。

《弹性力学》试题参考答案

《弹性力学》试题参考答案

《弹性力学》试题参考答案(答题时间:100分钟)一、填空题(每小题4分)1.最小势能原理等价于弹性力学基本方程中: 平衡微分方程 , 应力边界条件 。

2.一组可能的应力分量应满足: 平衡微分方程 ,相容方程(变形协调条件) 。

3.等截面直杆扭转问题中,Mdxdy D=⎰⎰ 2ϕ的物理意义是 杆端截面上剪应力对转轴的矩等于杆截面内的扭矩M 。

4.平面问题的应力函数解法中,Airy 应力函数ϕ在边界上值的物理意义为 边界上某一点(基准点)到任一点外力的矩 。

5.弹性力学平衡微分方程、几何方程的张量表示为:0,=+i j ij X σ ,)(21,,i j j i ij u u +=ε。

二、简述题(每小题6分)1.试简述力学中的圣维南原理,并说明它在弹性力学分析中的作用。

圣维南原理:如果物体的一小部分边界上的面力变换为分布不同但静力等效的面力(主矢与主矩相同),则近处的应力分布将有显著的改变,但远处的应力所受影响可以忽略不计。

作用:(1)将次要边界上复杂的面力(集中力、集中力偶等)作分布的面力代替。

(2)将次要的位移边界条件转化为应力边界条件处理。

2.图示两楔形体,试分别用直角坐标和极坐标写出其应力函数ϕ的分离变量形式。

题二(2)图(a )⎩⎨⎧=++= )(),(),(222θθϕϕf r r cy bxy ax y x (b )⎩⎨⎧=+++=)(),(),(33223θθϕϕf r r dy cxy y bx ax y x3.图示矩形弹性薄板,沿对角线方向作用一对拉力P ,板的几何尺寸如图,材料的弹性模量E 、泊松比 μ 已知。

试求薄板面积的改变量S ∆。

题二(3)图设当各边界受均布压力q 时,两力作用点的相对位移为l ∆。

由q E)1(1με-=得, )1(2222με-+=+=∆Eb a q b a l设板在力P 作用下的面积改变为S ∆,由功的互等定理有:l P S q ∆⋅=∆⋅将l ∆代入得:221b a P ES +-=∆μ显然,S ∆与板的形状无关,仅与E 、μ、l 有关。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
√8.什么就是圣维南原理?其在弹性力学得问题求解中有什么实际意义?
圣维南原理可表述为:
如果把物体得一小部分边界上得面力变换为分布不同但静力等效得面力(主矢量相同,对于同一点得主矩也相同),那麽近处得应力分布将有显著得改变,但远处所受得影响可以不计.
弹性力学得问题求解中可利用圣维南原理将面力分布不明确得情况转化为静力等效但分布表达明确得情况而将问题解决。还可解决边界条件不完全满足得问题得求解。
答:答:在推导弹性力学基本方程时,采用了以下基本假定:
(1)假定物体就是连续得。
(2)假定物体就是完全弹性得。
(3)假定物体就是均匀得。
(4)假定物体就是各向同性得。
(5)假定位移与变形就是微小得。
符合(1)~(4)条假定得物体称为“理想弹性体”。一般混凝土构件、一般土质地基可近似视为“理想弹性体”。
弹性力学复习资料
一、简答题
√1.试写出弹性力学平面问题得基本方程,它们揭示得就是那些物理量之间得相互关系?在应用这些方程时,应注意些什么问题?
答:平面问题中得平衡微分方程:揭示得就是应力分量与体力分量间得相互关系。应注意两个微分方程中包含着三个未知函数σx、σy、τxy=τyx,因此,决定应力分量得问题就是超静定得,还必须考虑形变与位移,才能解决问题。
√5.什么叫平面应力问题?什么叫平面应变问题?各举一个工程中得实例。
答:平面应力问题就是指很薄得等厚度薄板只在板边上受有平行于板面并且不沿厚度变化得
面力,同时体力也平行于板面并且不沿厚度变化。如工程中得深梁以及平板坝得平板
支墩就属于此类。
平面应变问题就是指很长得柱型体,它得横截面在柱面上受有平行于横截面而且不沿长
√9.什么就是平面应力问题?其受力特点如何,试举例予以说明。
答:平面应力问题就是指很薄得等厚度板,只在板边上受有平行于板面并且不沿厚度变化得面力,这一类问题可以简化为平面应力问题。例如深梁在横向力作用下得受力分析问题。在该种问题中只存在三个应力分量。
无效10.什么就是“差分法”?试写出基本差分公式。
度变化得面力,同时体力也平行于横截面而且也不沿长度变化,即内在因素与外来作
用都不沿长度而变化。
无效6.在弹性力学里分析问题,要从几方面考虑?各方面反映得就是那些变量间得关系?
答:在弹性力学利分析问题,要从3方面来考虑:静力学方面、几何学方面、物理学方面。
平面问题得静力学方面主要考虑得就是应力分量与体力分量之间得关系也就就是平面问
题得平衡微分方程。平面问题得几何学方面主要考虑得就是形变分量与位移分量之间得
关系,也就就是平面问题中得几何方程。平面问题得物理学方面主要反映得就是形变分量与应力分量之间得关系,也就就是平面问题中得物理方程。
√7.按照边界条件得不同,弹性力学平面问题分为那几类?试作简要说明
答:按照边界条件得不同,弹性力学平面问题可分为两类:
答:按照边界条件得不同,弹性力学问题分为位移边界问题、应力边界问题与
混合边界问题。
位移边界问题就是指物体在全部边界上得位移分量就是已知得,也就就是位移得边界值就是边界上坐标得已知函数。
应力边界问题中,物体在全部边界上所受得面力就是已知得,即面力分量在边界上所有各点都就是坐标得已知函数。
混合边界问题中,物体得一部分边界具有已知位移,因而具有位移边界条件;另一部分边界则具有应力边界条件。
证明:
化简并整理上式:
6.图示悬臂梁只受重力作用,而梁得密度为,设应力函数恒能满足双调与方程。试求应力分量并写出边界条件。
解:
所设应力函数。
相应得应力分量为:
=2Cx+6Dy
边界条件为:
上表面(y=0),要求
XN=(,B= 0
,A= 0
斜边界:边界条件得:
《弹性力学》试题参考答案(答题时间:100分钟)
√平面问题得几何方程:揭示得就是形变分量与位移分量间得相互关系。应注意当物体得位移分量完全确定时,形变量即完全确定。反之,当形变分量完全确定时,位移分量却不能完全确定。
√平面问题中得物理方程:揭示得就是形变分量与应力分量间得相互关系。应注意平面应力问题与平面应变问题物理方程得转换关系。
√2.按照边界条件得不同,弹性力学问源自分为那几类边界问题?试作简要说明。
证明:
化简并整理上式,得:
3.图示三角形截面水坝,材料得比重为,承受比重为液体得压力,已求得应力解为,试写出直边及斜边上得边界条件 。
解:由边界条件
左边界:
右边界:
4.已知一点处得应力分量,试求主应力以及与x轴得夹角。
解:
5.在物体内得任一点取一六面体,x、y、z方向得尺寸分别为dx、dy、dz。试依据下图证明:。
(1)平面应力问题:很薄得等厚度板,只在板边上受有平行于板面并且不沿厚度变化得面力。这一类问题可以简化为平面应力问题。例如深梁在横向力作用下得受力分析问题。在该种问题中只存在三个应力分量。
(2)平面应变问题:很长得柱形体,在柱面上受有平行于横截面并且不沿长度变化得面力,而且体力也平行于横截面且不沿长度变化。这一类问题可以简化为平面应变问题。例如挡土墙与重力坝得受力分析。该种问题
√3.弹性体任意一点得应力状态由几个应力分量决定?试将它们写出。如何确定它们得正负号?
答:弹性体任意一点得应力状态由6个应力分量决定,它们就是:x、y、z、xy、yz、、zx。正面上得应力以沿坐标轴正方向为正,沿坐标轴负方向为负。负面上得应力以沿坐标轴负方向为正,沿坐标轴正方向为负。
√4.在推导弹性力学基本方程时,采用了那些基本假定?什么就是“理想弹性体”?试举例说明。
一、填空题(每小题4分)
1.最小势能原理等价于弹性力学基本方程中:平衡微分方程,应力边界条件。
√2.一组可能得应力分量应满足:平衡微分方程,相容方程(变形协调条件)。
3.等截面直杆扭转问题中,得物理意义就是杆端截面上剪应力对转轴得矩等于杆截面内得扭矩M。
答;所谓差分法,就是把基本方程与边界条件(一般为微分方程)近似地改用差分方程(代数方程)来表示,把求解微分方程得问题改换成为求解代数方程得问题。基本差分公式如下:
二、计算题
1.已知过P点得应力分量。求过P点,斜面上得。
解:
2.在物体内得任一点取一六面体,x、y、z方向得尺寸分别为dx、dy、dz。试依据下图证明:。
相关文档
最新文档