(完整)弹性力学试题及答案,推荐文档

合集下载

《弹性力学》复习 学习材料 试题与参考答案

《弹性力学》复习 学习材料 试题与参考答案

《弹性力学》复习学习材料试题与参考答案一、单选题1.利用有限单元法求解弹性力学问题时,不包括哪个步骤(D)A.结构离散化B.单元分析C.整体分析D.应力分析2.如果必须在弹性体上挖空,那么孔的形状应尽可能采用(C)A.正方形B.菱形C.圆形D.椭圆形3.每个单元的位移一般总是包含着(B)部分A.一B.二C.三D.四4.在弹性力学中规定,线应变(C),与正应力的正负号规定相适应。

A.伸长时为负,缩短时为负B.伸长时为正,缩短时为正C.伸长时为正,缩短时为负D.伸长时为负,缩短时为正5.在弹性力学中规定,切应变以直角( C ),与切应力的正负号规定相适应。

A.变小时为正,变大时为正B.变小时为负,变大时为负C.变小时为负,变大时为正D.变小时为正,变大时为负6.物体受外力以后,其内部将发生内力,它的集度称为(C )A应变B应力C变形D切变力7.平面问题分为平面(A)问题和平面( )问题。

A应力,应变B切变、应力C内力、应变D外力,内力8.在弹性力学里分析问题,要建立( C )套方程。

A一B二C三D四9.下列关于几何方程的叙述,没有错误的是(C)A.由于几何方程是由位移导数组成的,因此,位移的导数描述了物体的变形位移B.几何方程建立了位移与变形的关系,因此,通过几何方程可以确定一点的位移C.几何方程建立了位移与变形的关系,因此,通过几何方程可以确定一点的应变分量D.几何方程是一点位移与应变分量之间的唯一关系10.用应力分量表示的相容方程等价于(B)A.平衡微分方程B.几何方程和物理方程C.用应变分量表示的相容方程D.平衡微分方程.几何方程和物理方程11.平面应变问题的应力、应变和位移与那个(些)坐标无关(纵向为z轴方向)(C)A.xB.yC.zD.x,y,z12.在平面应力问题中(取中面作xy平面)则(C)A.σz=0,w=0B.σz≠0,w≠0C.σz=0,w≠0D.σz≠0,w=013.下面不属于边界条件的是(B)。

弹性力学考试和答案

弹性力学考试和答案

弹性力学考试和答案一、单项选择题(每题2分,共20分)1. 弹性力学中,应力状态的基本方程是()。

A. 平衡方程B. 几何方程C. 物理方程D. 边界条件答案:A2. 弹性力学中,位移场的三个基本方程是()。

A. 平衡方程B. 几何方程C. 物理方程D. 边界条件答案:B3. 弹性力学中,平面应力问题与平面应变问题的主要区别是()。

A. 应力分量不同B. 位移分量不同C. 应变分量不同D. 边界条件不同答案:C4. 弹性力学中,圣维南原理是指()。

A. 应力集中现象B. 应力释放现象C. 应力平衡现象D. 应力松弛现象答案:B5. 弹性力学中,莫尔圆表示的是()。

A. 应力状态B. 应变状态C. 位移状态D. 应力-应变关系答案:A6. 弹性力学中,平面问题的基本解法有()。

A. 直接积分法B. 叠加原理C. 变分法D. 能量法答案:A7. 弹性力学中,轴对称问题的基本解法是()。

A. 直接积分法B. 叠加原理C. 变分法D. 能量法答案:A8. 弹性力学中,扭转问题的解法是()。

A. 直接积分法B. 叠加原理C. 变分法D. 能量法答案:A9. 弹性力学中,平面应力问题的应力函数是()。

A. 单一函数B. 两个函数C. 三个函数D. 四个函数答案:A10. 弹性力学中,平面应变问题的应力函数是()。

A. 单一函数B. 两个函数C. 三个函数D. 四个函数答案:B二、多项选择题(每题3分,共15分)11. 弹性力学中,应力状态的基本方程包括()。

A. 平衡方程B. 几何方程C. 物理方程D. 边界条件答案:AC12. 弹性力学中,位移场的三个基本方程包括()。

A. 平衡方程B. 几何方程C. 物理方程D. 边界条件答案:BC13. 弹性力学中,平面应力问题与平面应变问题的主要区别包括()。

A. 应力分量不同B. 位移分量不同C. 应变分量不同D. 边界条件不同答案:AC14. 弹性力学中,圣维南原理包括()。

弹性力学100题

弹性力学100题

一、单项选择题1.弹性力学建立的基本方程多是偏微分方程,还必须结合( C )求解这些微分方程,以求得具体问题的应力、应变、位移。

A .相容方程B .近似方法C .边界条件D .附加假定2.根据圣维南原理,作用在物体一小部分边界上的力系可以用( B )的力系代替,则仅在近处应力分布有改变,而在远处所受的影响可以不计。

A .几何上等效B .静力上等效C .平衡D .任意3.弹性力学平面问题的求解中,平面应力问题与平面应变问题的三类基本方程不完全相同,其比较关系为( B )。

A .平衡方程、几何方程、物理方程完全相同B .平衡方程、几何方程相同,物理方程不同C .平衡方程、物理方程相同,几何方程不同D .平衡方程相同,物理方程、几何方程不同4.不计体力,在极坐标中按应力求解平面问题时,应力函数必须满足( A )①区域内的相容方程;②边界上的应力边界条件;③满足变分方程;④如果为多连体,考虑多连体中的位移单值条件。

A. ①②④B. ②③④C. ①②③D. ①②③④5.如下图1所示三角形薄板,按三结点三角形单元划分后,对于与局部编码ijm 对应的整体编码,以下叙述正确的是( D )。

① I 单元的整体编码为162② II 单元的整体编码为426③ II 单元的整体编码为246④ III 单元的整体编码为243⑤ IV 单元的整体编码为564图1A. ①③B. ②④C. ①④D. ③⑤ 6.平面应变问题的微元体处于( C )A.单向应力状态B.双向应力状态C.三向应力状态,且z 是一主应力D.纯剪切应力状态7.圆弧曲梁纯弯时,( C )A.应力分量和位移分量都是轴对称的 463521I III II IVB.应力分量和位移分量都不是轴对称的C.应力分量是轴对称的,位移分量不是轴对称的D.位移分量是轴对称的,应力分量不是轴对称的8.下左图2中所示密度为ρ的矩形截面柱,应力分量为:0,,0=+==xy y x B Ay τσσ对图(a )和图(b)两种情况由边界条件确定的常数A 及B 的关系是( C )A.A 相同,B 也相同B.A 不相同,B 也不相同C.A 相同,B 不相同D.A 不相同,B 相同图 2 图 39、上右图3示单元体剪应变γ应该表示为( B )10、设有平面应力状态x ay dx dy cx by ax xy y x γτσσ---=+=+=,,,其中,d c b a ,,,均为常数,γ为容重。

弹性力学试题含答案

弹性力学试题含答案

弹性力学与有限元分析复习题及其答案一、填空题1、弹性力学研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、形变和位移」_2、在弹性力学中规定,线应变以伸长时为正,缩短时为负,与正应力的正负号规定相适应。

3、在弹性力学中规定,切应变以直角变小时为正,变大时为负,与切应力的正负号规定相适应。

4、物体受外力以后,其内部将发生内力,它的集度称为应力。

与物体的形变和材料强度直接有关的,是应力在其作用截面的法线方向和切线方向的分量, 也就是正应力和切应力。

应力及其分量的量纲是L M T。

5、弹性力学的基本假定为连续性、完全弹性、均匀性、各向同性_________6、平面问题分为平面应力问题和平面应变问题。

7、已知一点处的应力分量J=100MPa 口y=50MPa弋xy=10/5O MPa,则主应力6= 150MPao^nQMPa a r=35l6"。

&已知一点处的应力分量, a ^200 MPa 口y=0MPa Jy=—400 MPa,则主应力▽“=512 MPa, 二2 =-312 MPa,: 1 =-37 ° 57'。

9、已知一点处的应力分量,匚x=-2000 MPa匚y =1000 MPa,岑=-400 MPa,则主应力匚1 = 1052 MPa二2= -2052 MPa , :- "-82 ° 32'。

10、在弹性力学里分析问题,要考虑静力学、几何学和物理学三方面条件,分别建立三套方程。

11、表示应力分量与体力分量之间关系的方程为平衡微分方程。

12、边界条件表示边界上位移与约束,或应力与面力之间的关系式。

分为位移边界条件、应力边界________________ 条件和混合边界条件。

13、按应力求解平面问题时常采用逆解法和半逆解法。

14、有限单元法首先将连续体变换成为离散化结构,然后再用结构力学位移法进行求解。

其具体步骤分为单元分析和整体分析两部分。

弹性力学试题及答案

弹性力学试题及答案

弹性力学试题及答案一、选择题(每题10分,共40分)1. 在弹性力学中,下列哪个物理量表示应变能密度?A. 应力B. 应变C. 位移D. 应力能密度答案:D2. 在平面应力状态下,下列哪个方程是正确的?A. σ_x + σ_y = 0B. σ_x + σ_y = σ_zC. σ_x + σ_y = τ_xyD. σ_x + σ_y = 0答案:D3. 在弹性体中,应力与应变之间的关系可以用下列哪个关系式表示?A. σ = EεB. σ = GγC. τ = μγD. σ = λε答案:A4. 在弹性力学中,下列哪个方程表示平衡方程?A. σ_x + σ_y + σ_z = 0B. ε_x + ε_y +ε_z = 0 C. τ_xy = τ_yx D. σ_x + σ_y + σ_z = F答案:D二、填空题(每题10分,共30分)1. 弹性力学中的基本假设有:连续性假设、线性假设和________假设。

答案:各向同性2. 在三维应力状态下,应力分量可以表示为:σ_x, σ_y, σ_z, τ_xy, τ_xz, τ_yz。

其中,τ_xy表示________面上的切应力。

答案:xOy3. 在弹性力学中,位移与应变之间的关系可以用________方程表示。

答案:几何方程三、计算题(每题30分,共90分)1. 已知一弹性体在平面应力状态下的应力分量为:σ_x = 100 MPa,σ_y = 50 MPa,τ_xy = 25 MPa。

弹性模量E = 200 GPa,泊松比μ = 0.3。

求应变分量ε_x, ε_y, γ_xy。

解:首先,利用胡克定律计算应变分量:ε_x = σ_x / E = 100 MPa / 200 GPa = 0.0005ε_y = σ_y / E = 50 MPa / 200 GPa = 0.00025γ_xy = τ_xy / G = 25 MPa / (E / 2(1 + μ)) = 25 MPa / (200 GPa / 2(1 + 0.3)) = 0.000375答案:ε_x = 0.0005,ε_y = 0.00025,γ_xy = 0.0003752. 一弹性体在三维应力状态下的应力分量为:σ_x = 120 MPa,σ_y = 80 MPa,σ_z = 40 MPa,τ_xy = 30 MPa,τ_xz = 20 MPa,τ_yz = 10 MPa。

(完整版)《弹性力学》试题参考答案

(完整版)《弹性力学》试题参考答案

《弹性力学》试题参考答案(答题时间:100分钟)一、填空题(每小题4分)1.最小势能原理等价于弹性力学基本方程中: 平衡微分方程 , 应力边界条件 。

2.一组可能的应力分量应满足: 平衡微分方程 ,相容方程(变形协调条件) 。

3.等截面直杆扭转问题中, 的物理意义是 杆端截面上剪应力对转轴的矩等于M dxdy D=⎰⎰2ϕ杆截面内的扭矩M 。

4.平面问题的应力函数解法中,Airy 应力函数在边界上值的物理意义为 边界上某一点(基准ϕ点)到任一点外力的矩 。

5.弹性力学平衡微分方程、几何方程的张量表示为: ,。

0,=+i j ij X σ)(21,,i j j i ij u u +=ε二、简述题(每小题6分)1.试简述力学中的圣维南原理,并说明它在弹性力学分析中的作用。

圣维南原理:如果物体的一小部分边界上的面力变换为分布不同但静力等效的面力(主矢与主矩相同),则近处的应力分布将有显著的改变,但远处的应力所受影响可以忽略不计。

作用:(1)将次要边界上复杂的面力(集中力、集中力偶等)作分布的面力代替。

(2)将次要的位移边界条件转化为应力边界条件处理。

2.图示两楔形体,试分别用直角坐标和极坐标写出其应力函数的分离变量形式。

ϕ题二(2)图(a ) (b )⎩⎨⎧=++= )(),(),(222θθϕϕf r r cy bxy ax y x ⎩⎨⎧=+++= )(),(),(33223θθϕϕf r r dy cxy y bx ax y x 3.图示矩形弹性薄板,沿对角线方向作用一对拉力P ,板的几何尺寸如图,材料的弹性模量E 、泊松比 μ 已知。

试求薄板面积的改变量。

S∆题二(3)图设当各边界受均布压力q 时,两力作用点的相对位移为。

由得,l ∆q E)1(1με-=)1(2222με-+=+=∆Eb a q b a l 设板在力P 作用下的面积改变为,由功的互等定理有:S ∆lP S q ∆⋅=∆⋅将代入得:l ∆221b a P ES +-=∆μ显然,与板的形状无关,仅与E 、、l 有关。

弹性力学试题及标准答案

弹性力学试题及标准答案

弹性力学与有限元分析复习题及其答案一、填空题1、弹性力学研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、形变和位移。

2、在弹性力学中规定,线应变以伸长时为正,缩短时为负,与正应力的正负号规定相适应。

3、在弹性力学中规定,切应变以直角变小时为正,变大时为负,与切应力的正负号规定相适应。

4、物体受外力以后,其内部将发生内力,它的集度称为应力。

与物体的形变和材料强度直接有关的,是应力在其作用截面的法线方向和切线方向的分量,也就是正应力和切应力。

应力及其分量的量纲是L -1MT -2。

5、弹性力学的基本假定为连续性、完全弹性、均匀性、各向同性。

6、平面问题分为平面应力问题和平面应变问题。

7、已知一点处的应力分量100=x σMPa ,50=y σMPa ,5010=xy τ MPa ,则主应力=1σ150MPa ,=2σ0MPa ,=1α6135' 。

8、已知一点处的应力分量, 200=x σMPa ,0=y σMPa ,400-=xy τ MPa ,则主应力=1σ512 MPa ,=2σ-312 MPa ,=1α-37°57′。

9、已知一点处的应力分量,2000-=x σMPa ,1000=y σMPa ,400-=xy τ MPa ,则主应力=1σ1052 MPa ,=2σ-2052 MPa ,=1α-82°32′。

10、在弹性力学里分析问题,要考虑静力学、几何学和物理学三方面条件,分别建立三套方程。

11、表示应力分量与体力分量之间关系的方程为平衡微分方程。

12、边界条件表示边界上位移与约束,或应力与面力之间的关系式。

分为位移边界条件、应力边界条件和混合边界条件。

13、按应力求解平面问题时常采用逆解法和半逆解法。

14、有限单元法首先将连续体变换成为离散化结构,然后再用结构力学位移法进行求解。

其具体步骤分为单元分析和整体分析两部分。

15、每个单元的位移一般总是包含着两部分:一部分是由本单元的形变引起的,另一部分是由于其他单元发生了形变而连带引起的。

弹性力学期末考试试题及答案

弹性力学期末考试试题及答案

弹性力学期末考试试题及答案一、名词解释(每题5分,共25分)1. 弹性力2. 弹簧常数3. 应力4. 应变5. 胡克定律6. 弹性模量7. 弹性体的形变8. 弹性位移9. 弹性能量10. 弹性碰撞二、选择题(每题2分,共20分)1. 以下哪种材料不属于弹性材料?A. 钢铁B. 橡胶C. 玻璃D. 水2. 在弹性限度内,弹性力与形变量之间的关系遵循哪一定律?A. 平方律B. 立方律C. 直线律D. 反比律3. 一弹簧的弹簧常数为50N/m,当一个力作用于弹簧上使其压缩0.1m时,弹簧的弹性势能为多少?A. 0.5JB. 1JC. 2JD. 5J4. 下列哪种情况下,弹簧的弹性力最大?A. 弹簧处于自然长度时B. 弹簧被压缩时C. 弹簧被拉伸时D. 弹簧被压缩或拉伸到极限时5. 两个相同的弹性球碰撞,如果它们的弹性系数不同,那么碰撞后它们的速度关系是?A. 速度大小不变,方向相反B. 速度大小不变,方向相同C. 速度大小发生变化,方向相反D. 速度大小发生变化,方向相同三、填空题(每题5分,共25分)1. 一弹性体的形变是指其_________的变化。

2. 在弹性碰撞中,两个物体的速度满足_________定律。

3. 弹簧的弹簧常数_________,表示弹簧的_________。

4. 当一个力作用于弹性体上时,该力与弹性体的_________之比称为应力。

5. 弹性模量是衡量材料_________的物理量。

四、计算题(共40分)1. 一弹簧的弹簧常数为200N/m,当一个力作用于弹簧上使其压缩0.5m时,求弹簧的弹性势能。

(5分)2. 质量为2kg的物体从静止开始沿斜面滑下,斜面与水平面的夹角为30°,斜面长度为10m,摩擦系数为0.2。

求物体滑到斜面底部时的速度。

(5分)3. 两个弹性球A和B,质量分别为m1和m2,弹性系数分别为k1和k2。

它们从静止开始相互碰撞,求碰撞后A和B的速度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解:应力分量存在的必要条件是必须满足下列条件:(1)在区域内的平衡微分方程
x x y y
yx y xy x
0 0
;(2)在区域内的相容方程
2 x 2
2 y 2
x y
0 ;(3)在边界上的应力边界
l x m yx
条件
m y l xy
f
s
f
s
x s y s;(4)对于多连体的位移单值条件。
4、物体受外力以后,其内部将发生内力,它的集度称为应力。与物体的形变和材料强度直接有关
的,是应力在其作用截面的法线方向和切线方向的分量,也就是正应力和切应力。应力及其分
量的量纲是 L-1MT-2。 5、弹性力学的基本假定为连续性、完全弹性、均匀性、各向同性。 6、平面问题分为平面应力问题和平面应变问题。
18、为了使得单元内部的位移保持连续,必须把位移模式取为坐标的单值连续函数,为了使得相邻 单元的位移保持连续,就不仅要使它们在公共结点处具有相同的位移时,也能在整个公共边界 上具有相同的位移。
19、在有限单元法中,单元的形函数 Ni 在 i 结点 Ni=1;在其他结点 Ni=0 及∑Ni=1。 20、为了提高有限单元法分析的精度,一般可以采用两种方法:一是将单元的尺寸减小,以便较好
(1)此组应力分量满足相容方程。为了满足平衡微分方程,必须 A=-F,D=-E。此外还应满足 应力边界条件。
(2)为了满足相容方程,其系数必须满足 A+B=0;为了满足平衡微分方程,其系数必须满足 A=B=-C/2。上两式是矛盾的,因此,此组应力分量不可能存在。
2、已知应力分量
x
Qxy
2
C1
x
3

y
他单元发生了形变而连带引起的。 16、每个单元的应变一般总是包含着两部分:一部分是与该单元中各点的位置坐标有关的,是各点
不相同的,即所谓变量应变;另一部分是与位置坐标无关的,是各点相同的,即所谓常量应变。
17、为了能从有限单元法得出正确的解答,位移模式必须能反映单元的刚体位移和常量应变,还应 当尽可能反映相邻单元的位移连续性。
9、已知一点处的应力分量, x 2000 MPa, y 1000 MPa, xy 400
MPa,则主应力
1 1052 MPa, 2 -2052 MPa,1 -82°32′。
10、在弹性力学里分析问题,要考虑静力学、几何学和物理学三方面条件,分别建立三套方程。
11、表示应力分量与体力分量之间关系的方程为平衡微分方程。
X
0
y y
xy x
Y
0
可知,已知应力分量 x q , y q , xy 0 一般不满足平衡微分方程,只有体力忽略不计时才
满足。 按应力求解平面应力问题的相容方程:
2 y 2
(
x
y
)
2 x 2
(
y
x
)2(1
)
2 xy xy
将已知应力分量 x q , y q , xy 0 代入上式,可知满足相容方程。
由 x,y 的任意性,得
由此解得,
C1
Q 6

C2
Q 3

C3
Q 2
3QC13CC2300 3C2 2C3 0
3、已知应力分量 x q , y q , xy 0 ,判断该应力分量是否满足平衡微分方程和相容方程。
解:将已知应力分量 x q , y q , xy 0 ,代入平衡微分方程
x x
yx y
弹性力学与有限元分析复习题及其答案
一、填空题 1、弹性力学研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、形变和位移。
2、在弹性力学中规定,线应变以伸长时为正,缩短时为负,与正应力的正负号规定相适应。 3、在弹性力学中规定,切应变以直角变小时为正,变大时为负,与切应力的正负号规定相适应。
7、已知一点处的应力分量 x 100 MPa, y 50 MPa, xy 10 50
MPa,则主应力
1 150MPa, 2 0MPa,1 3516 。 8、已知一点处的应力分量, x 200 MPa, y 0 MPa, xy 400 MPa,则主应力 1 512
MPa, 2 -312 MPa,1 -37°57′。
12、边界条件表示边界上位移与约束,或应力与面力之间的关系式。分为位移边界条件、应力边界
条件和混合边界条件。 13、按应力求解平面问题时常采用逆解法和半逆解法。 14、有限单元法首先将连续体变换成为离散化结构,然后再用结构力学位移法进行求解。其具体步
骤分为单元分析和整体分析两部分。 15、每个单元的位移一般总是包含着两部分:一部分是由本单元的形变引起的,另一部分是由于其
化,仅为 x,y 的函数,此问题是平面应力问题。(√)
6、如果某一问题中, z zx zy 0 ,只存在平面应变分量 x , y , xy ,且它们不沿 z 方向变
化,仅为 x,y 的函数,此问题是平面应变问题。(√) 9、当物体的形变分量完全确定时,位移分量却不能完全确定。(√) 10、当物体的位移分量完全确定时,形变分量即完全确定。(√) 14、在有限单元法中,结点力是指结点对单元的作用力。(√) 15、在平面三结点三角形单元的公共边界上应变和应力均有突变。(√ )
3 2
C
2
xy
2

xy
C
2
y
3
C3
x
2
y
,体力不计,Q
为常数。
试利用平衡微分方程求系数 C1,C2,C3。
2
解:将所给应力分量代入平衡微分方程
x x
yx y
0
y y
xy x
0

3QCy22xy3C21Cx
2 3
3C2 xy0
y
2
C
3
x
2
0


33CC12C2C3 3x2xyQ03C2 y 2 0
三、分析计算题
1、试写出无体力情况下平面问题的应力分量存在的必要条件,并考虑下列平面问题的应力分量是 否可能在弹性体中存在。
(1) x AxBy , y CxDy , xy ExFy ;
(2) x A(x 2 y 2 ) , y B(x 2 y 2 ) , xy Cxy ;
其中,A,B,C,D,E,F 为常数。
1
地反映位移和应力变化情况;二是采用包含更高次项的位移模式,使位移和应力的精度提高。
二、判断题(请在正确命题后的括号内打“√”,在错误命题后的括号内打“×”)
1、连续性假定是指整个物体的体积都被组成这个物体的介质所填满,不留下任何空隙。(√)
5、如果某一问题中, z zx zy 0 ,只存在平面应力分量 x , y , xy ,且它们不沿 z 方向变
相关文档
最新文档