《弹性力学》试题参考答案

合集下载

弹性力学-答案-知识归纳整理

弹性力学-答案-知识归纳整理

知识归纳整理《弹性力学》习题答案一、单选题1、所谓“彻底弹性体”是指(B)A、材料应力应变关系满足虎克定律B、材料的应力应变关系与加载时光、历史无关C、本构关系为非线性弹性关系D、应力应变关系满足线性弹性关系2、对于弹性力学的正确认识是(A )A、计算力学在工程结构设计中的作用日益重要B、弹性力学从微分单元体入手分析弹性体,所以与材料力学不同,不需要对问题作假设C、任何弹性变形材料都是弹性力学的研究对象D、弹性力学理论像材料力学一样,可以没有困难的应用于工程结构分析3、下列对象不属于弹性力学研究对象的是(D ) 。

A、杆件B、块体C、板壳D、质点4、弹性力学对杆件分析(C)A、无法分析B、得出近似的结果C、得出精确的结果D、需采用一些对于变形的近似假定5、图示弹性构件的应力和位移分析要用什么分析想法?(C)A、材料力学B、结构力学C、弹性力学D、塑性力学6、弹性力学与材料力学的主要不同之处在于( B )A、任务B、研究对象C、研究想法D、基本假设7、下列外力不属于体力的是(D)A、重力B、磁力C、惯性力D、静水压力8、应力不变量说明( D ) 。

A. 应力状态特征方程的根是不确定的B. 一点的应力分量不变C. 主应力的方向不变D. 应力随着截面方位改变,可是应力状态不变9、对于应力状态分析, (D)是正确的。

A. 应力状态特征方程的根是确定的,所以任意截面的应力分量相同求知若饥,虚心若愚。

B. 应力不变量表示主应力不变C. 主应力的大小是可以确定的,可是方向不是确定的D. 应力分量随着截面方位改变而变化,可是应力状态是不变的10、应力状态分析是建立在静力学基础上的,这是因为( D ) 。

A. 没有思量面力边界条件B. 没有讨论多连域的变形C. 没有涉及材料本构关系D. 没有思量材料的变形对于应力状态的影响11、下列对于几何方程的叙述,没有错误的是( C ) 。

A. 由于几何方程是由位移导数组成的,所以,位移的导数描述了物体的变形位移B. 几何方程建立了位移与变形的关系,所以,经过几何方程可以确定一点的位移C. 几何方程建立了位移与变形的关系,所以,经过几何方程可以确定一点的应变分量D. 几何方程是一点位移与应变分量之间的唯一关系12、平面应变问题的应力、应变和位移与这个(些)坐标无关(纵向为 z 轴方向)( C )A、 xB、 yC、 zD、 x, y, z13、平面应力问题的外力特征是(A)A 只作用在板边且平行于板中面B 垂直作用在板面C 平行中面作用在板边和板面上D 作用在板面且平行于板中面 。

(完整版)《弹性力学》试题参考答案

(完整版)《弹性力学》试题参考答案

《弹性力学》试题参考答案(答题时间:100分钟)一、填空题(每小题4分)1.最小势能原理等价于弹性力学基本方程中: 平衡微分方程 , 应力边界条件 。

2.一组可能的应力分量应满足: 平衡微分方程 ,相容方程(变形协调条件) 。

3.等截面直杆扭转问题中, 的物理意义是 杆端截面上剪应力对转轴的矩等于M dxdy D=⎰⎰2ϕ杆截面内的扭矩M 。

4.平面问题的应力函数解法中,Airy 应力函数在边界上值的物理意义为 边界上某一点(基准ϕ点)到任一点外力的矩 。

5.弹性力学平衡微分方程、几何方程的张量表示为: ,。

0,=+i j ij X σ)(21,,i j j i ij u u +=ε二、简述题(每小题6分)1.试简述力学中的圣维南原理,并说明它在弹性力学分析中的作用。

圣维南原理:如果物体的一小部分边界上的面力变换为分布不同但静力等效的面力(主矢与主矩相同),则近处的应力分布将有显著的改变,但远处的应力所受影响可以忽略不计。

作用:(1)将次要边界上复杂的面力(集中力、集中力偶等)作分布的面力代替。

(2)将次要的位移边界条件转化为应力边界条件处理。

2.图示两楔形体,试分别用直角坐标和极坐标写出其应力函数的分离变量形式。

ϕ题二(2)图(a ) (b )⎩⎨⎧=++= )(),(),(222θθϕϕf r r cy bxy ax y x ⎩⎨⎧=+++= )(),(),(33223θθϕϕf r r dy cxy y bx ax y x 3.图示矩形弹性薄板,沿对角线方向作用一对拉力P ,板的几何尺寸如图,材料的弹性模量E 、泊松比 μ 已知。

试求薄板面积的改变量。

S∆题二(3)图设当各边界受均布压力q 时,两力作用点的相对位移为。

由得,l ∆q E)1(1με-=)1(2222με-+=+=∆Eb a q b a l 设板在力P 作用下的面积改变为,由功的互等定理有:S ∆lP S q ∆⋅=∆⋅将代入得:l ∆221b a P ES +-=∆μ显然,与板的形状无关,仅与E 、、l 有关。

弹性力学习题解答

弹性力学习题解答

习题解答 第二章2.1计算:(1)pi iq qj jk δδδδ,(2)pqi ijk jk e e A ,(3)ijp klp ki lj e e B B 。

解:(1)pi iq qj jkpq qj jk pj jk pk δδδδδδδδδδ===;(2)()pqi ijk jkpj qk pk qj jk pq qp e e A A A A δδδδ=-=-;(3)()ijp klp ki ljik jl il jk ki lj ii jj ji ij e e B B B B B B B B δδδδ=-=-。

2.2证明:若ijji a a =,则0ijk jk e a =。

证:20ijk jkjk jk ikj kj ijk jk ijk kj ijk jk ijk jk i e a e a e a e a e a e a e a ==-=-=+。

2.3设a 、b 和c 是三个矢量,试证明:证:1231112123222123333[,,]i i i i i i i i i i i i i i i i i i a a a b a c a a a a b c b a b b b c b b b a b c c a c b c c c c c a b c ⋅⋅⋅⋅⋅⋅=⋅⋅⋅==a a a b a c b a b b b c a b c c a c b c c 。

2.4设a 、b 、c 和d 是四个矢量,证明:证:()()i j ijk k l m lmn n i j l m ijk lmk a b e c d e a b c d e e ⨯⋅⨯=⋅=a b c d e e ()()()()=⋅⋅-⋅⋅a c b d a d b c 。

2.5设有矢量i i u =u e 。

原坐标系绕z 轴转动θu 在新坐标系中的分量。

解:11cos βθ'=,12sin βθ'=,130β'=, 21sin βθ'=-,22cos βθ'=,230β'=, 310β'=,320β'=,331β'=。

弹性力学试题及答案

弹性力学试题及答案

弹性力学试题及答案处具有相同的位移时,也能在整个公共边界上具有相同的位移。

19、在有限单元法中,单元的形函数N i 在i 结点N i =1;在其他结点N i =0及∑N i =1。

20、为了提高有限单元法分析的精度,一般可以采用两种方法:一是将单元的尺寸减小,以便较好地反映位移和应力变化情况;二是采用包含更高次项的位移模式,使位移和应力的精度提高。

二、判断题(请在正确命题后的括号内打“√”,在错误命题后的括号内打“×”)1、连续性假定是指整个物体的体积都被组成这个物体的介质所填满,不留下任何空隙。

(√) 5、如果某一问题中,0===zy zx zττσ,只存在平面应力分量xσ,yσ,xyτ,且它们不沿z 方向变化,仅为x ,y的函数,此问题是平面应力问题。

(√) 6、如果某一问题中,0===zy zx zγγε,只存在平面应变分量xε,yε,xyγ,且它们不沿z 方向变化,仅为x ,y的函数,此问题是平面应变问题。

(√) 9、当物体的形变分量完全确定时,位移分量却不能完全确定。

(√)10、当物体的位移分量完全确定时,形变分量即完全确定。

(√)14、在有限单元法中,结点力是指结点对单元的作用力。

(√)15、在平面三结点三角形单元的公共边界上应变和应力均有突变。

(√ )三、分析计算题1、试写出无体力情况下平面问题的应力分量存在的必要条件,并考虑下列平面问题的应力分量是否可能在弹性体中存在。

(1)ByAx x+=σ,DyCx y+=σ,FyEx xy+=τ; (2))(22y x A x+=σ,)(22y x B y+=σ,Cxyxy=τ;其中,A ,B ,C ,D ,E ,F 为常数。

解:应力分量存在的必要条件是必须满足下列条件:(1)在区域内的平衡微分方程⎪⎪⎩⎪⎪⎨⎧=∂∂+∂∂=∂∂+∂∂00x yy x xy y yxx τστσ;(2)在区域内的相容方程()02222=+⎪⎪⎭⎫⎝⎛∂∂+∂∂y x y x σσ;(3)在边界上的应力边界条件()()()()⎪⎩⎪⎨⎧=+=+s fl m s fm l y s xy y xs yx x τστσ;(4)对于多连体的位移单值条件。

《弹性力学》试题(重学考试试卷 参考答案)

《弹性力学》试题(重学考试试卷  参考答案)

(1)将φ代入相容方程
4Φ x 4
2
4Φ x 2 y
2
4Φ y 4
0 ,显然满足。因此,该函数可以作为应力函数。
O
(2)应力分量的表达式:
x
2 y 2
6qx2 h3
y
4qy3 h3
3qy 3h
,
y
y
2 x 2
q 2
4y3 h3
3y h
1
xy
2 xy
6qx h3
h2 4
y2
考察边界条件:在主要边界 y=±h/2 上,应精确满足应力边界条件
响可以不计。
A.几何上等效
B.静力上等效
C.平衡 D.任意
3、弹性力学平面问题的求解中,平面应力问题与平面应变问题的三类基本方程不完全相同,其比较关系为( B )。
A.平衡方程、几何方程、物理方程完全相同
B.平衡方程、几何方程相同,物理方程不同
C.平衡方程、物理方程相同,几何方程不同
D.平衡方程相同,物理方程、几何方程不同
(在各个方向上相同)。
2、位移法求解的条件是什么?怎样判断一组位移分量是否为某一问题的真实位移?(5 分)
答: 按位移法求解时,u,v 必须满足求解域内的平衡微分方程,位移边界条件和应力边界条件。 平衡微分方程、位移边界条件和(用位移表示的)应力边界条件既是求解的条件,也是校核 u,v 是否正确的条件。
1
3i
m
2
j
4
5
6
7
89
j
m
i
(a)
(b)
题八图
解:
因结构关于沿编码 2、5、8 的轴线对称,故可取左半部分进行分析,见下图所示。

弹性力学 - 答案

弹性力学 - 答案

《弹性力学》习题答案一、单选题1、所谓“完全弹性体”是指(B)A、材料应力应变关系满足虎克定律B、材料的应力应变关系与加载时间、历史无关C、本构关系为非线性弹性关系D、应力应变关系满足线性弹性关系2、关于弹性力学的正确认识是(A )A、计算力学在工程结构设计中的作用日益重要B、弹性力学从微分单元体入手分析弹性体,因此与材料力学不同,不需要对问题作假设C、任何弹性变形材料都是弹性力学的研究对象D、弹性力学理论像材料力学一样,可以没有困难的应用于工程结构分析3、下列对象不属于弹性力学研究对象的是(D )。

A、杆件B、块体C、板壳D、质点4、弹性力学对杆件分析(C)A、无法分析B、得出近似的结果C、得出精确的结果D、需采用一些关于变形的近似假定5、图示弹性构件的应力和位移分析要用什么分析方法?(C)A、材料力学B、结构力学C、弹性力学D、塑性力学6、弹性力学与材料力学的主要不同之处在于( B )A、任务B、研究对象C、研究方法D、基本假设7、下列外力不属于体力的是(D)A、重力B、磁力C、惯性力D、静水压力8、应力不变量说明( D )。

A. 应力状态特征方程的根是不确定的B. 一点的应力分量不变C. 主应力的方向不变D. 应力随着截面方位改变,但是应力状态不变9、关于应力状态分析,(D)是正确的。

A. 应力状态特征方程的根是确定的,因此任意截面的应力分量相同B. 应力不变量表示主应力不变C. 主应力的大小是可以确定的,但是方向不是确定的D. 应力分量随着截面方位改变而变化,但是应力状态是不变的10、应力状态分析是建立在静力学基础上的,这是因为( D )。

A. 没有考虑面力边界条件B. 没有讨论多连域的变形C. 没有涉及材料本构关系D. 没有考虑材料的变形对于应力状态的影响11、下列关于几何方程的叙述,没有错误的是( C )。

A. 由于几何方程是由位移导数组成的,因此,位移的导数描述了物体的变形位移B. 几何方程建立了位移与变形的关系,因此,通过几何方程可以确定一点的位移C. 几何方程建立了位移与变形的关系,因此,通过几何方程可以确定一点的应变分量D. 几何方程是一点位移与应变分量之间的唯一关系12、平面应变问题的应力、应变和位移与那个(些)坐标无关(纵向为 z 轴方向)( C )A、 xB、 yC、 zD、 x, y, z13、平面应力问题的外力特征是(A)A 只作用在板边且平行于板中面B 垂直作用在板面C 平行中面作用在板边和板面上D 作用在板面且平行于板中面。

《弹性力学》试题参考标准答案与弹性力学复习题

《弹性力学》试题参考标准答案与弹性力学复习题

《弹性力学》试题参考答案与弹性力学复习题————————————————————————————————作者:————————————————————————————————日期:弹性力学复习资料一、简答题√1.试写出弹性力学平面问题的基本方程,它们揭示的是那些物理量之间的相互关系?在应用这些方程时,应注意些什么问题?答:平面问题中的平衡微分方程:揭示的是应力分量与体力分量间的相互关系。

应注意两个微分方程中包含着三个未知函数σx、σy、τxy=τyx ,因此,决定应力分量的问题是超静定的,还必须考虑形变和位移,才能解决问题。

√平面问题的几何方程: 揭示的是形变分量与位移分量间的相互关系。

应注意当物体的位移分量完全确定时,形变量即完全确定。

反之,当形变分量完全确定时,位移分量却不能完全确定。

√平面问题中的物理方程:揭示的是形变分量与应力分量间的相互关系。

应注意平面应力问题和平面应变问题物理方程的转换关系。

√2.按照边界条件的不同,弹性力学问题分为那几类边界问题?试作简要说明。

答:按照边界条件的不同,弹性力学问题分为位移边界问题、应力边界问题和混合边界问题。

位移边界问题是指物体在全部边界上的位移分量是已知的,也就是位移的边界值是边界上坐标的已知函数。

应力边界问题中,物体在全部边界上所受的面力是已知的,即面力分量在边界上所有各点都是坐标的已知函数。

混合边界问题中,物体的一部分边界具有已知位移,因而具有位移边界条件;另一部分边界则具有应力边界条件。

√3.弹性体任意一点的应力状态由几个应力分量决定?试将它们写出。

如何确定它们的正负号? 答:弹性体任意一点的应力状态由6个应力分量决定,它们是:σx 、σy 、σz 、τxy 、τyz 、、τzx 。

正面上的应力以沿坐标轴正方向为正,沿坐标轴负方向为负。

负面上的应力以沿坐标轴负方向为正,沿坐标轴正方向为负。

√4.在推导弹性力学基本方程时,采用了那些基本假定?什么是“理想弹性体”?试举例说明。

本科弹性力学试题及答案

本科弹性力学试题及答案

本科弹性力学试题及答案一、选择题(每题2分,共20分)1. 弹性力学中,下列哪一项不是基本假设?A. 连续性假设B. 均匀性假设C. 各向异性假设D. 小变形假设答案:C2. 在弹性力学中,下列哪一项不是应力的类型?A. 正应力B. 剪应力C. 拉应力D. 弯应力答案:D3. 弹性模量E和泊松比μ之间存在以下哪种关系?A. E = 2G(1+μ)B. E = 3G(1-2μ)C. E = 3G(1+μ)D. E = 2G(1-μ)答案:C4. 弹性力学中的圣维南原理适用于以下哪种情况?A. 仅适用于平面应力问题B. 仅适用于平面应变问题C. 适用于平面应力和平面应变问题D. 不适用于任何情况答案:C5. 弹性力学中,下列哪一项不是位移场的基本方程?A. 几何方程B. 物理方程C. 运动方程D. 边界条件答案:D6. 弹性力学中,下列哪一项不是平面应力问题的特点?A. 应力分量σz=0B. 应变分量εz≠0C. 应力分量τxz=τyz=0D. 应变分量γxz=γyz=0答案:B7. 弹性力学中,下列哪一项不是平面应变问题的特点?A. 应力分量σz≠0B. 应变分量εz=0C. 应力分量τxz=τyz=0D. 应变分量γxz=γyz=0答案:A8. 弹性力学中,下列哪一项不是应力集中的类型?A. 几何不连续引起的应力集中B. 材料不连续引起的应力集中C. 载荷不连续引起的应力集中D. 温度不连续引起的应力集中答案:D9. 弹性力学中,下列哪一项不是弹性常数?A. 杨氏模量EB. 泊松比μC. 剪切模量GD. 体积模量K答案:D10. 弹性力学中,下列哪一项不是弹性体的基本性质?A. 均匀性B. 连续性C. 各向同性D. 各向异性答案:D二、填空题(每题2分,共20分)1. 弹性力学中,应力状态的基本方程包括______、______和______。

答案:几何方程、物理方程、平衡方程2. 弹性力学中,应变能密度W与应力分量和应变分量的关系为W=______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《弹性力学》试题参考答案(答题时间:100分钟)一、填空题(每小题4分)1.最小势能原理等价于弹性力学基本方程中: 平衡微分方程 , 应力边界条件 。

2.一组可能的应力分量应满足: 平衡微分方程 ,相容方程(变形协调条件) 。

3.等截面直杆扭转问题中,M dxdy D=⎰⎰ 2ϕ的物理意义是 杆端截面上剪应力对转轴的矩等于杆截面内的扭矩M 。

4.平面问题的应力函数解法中,Airy 应力函数ϕ在边界上值的物理意义为 边界上某一点(基准点)到任一点外力的矩 。

5.弹性力学平衡微分方程、几何方程的张量表示为:0,=+i j ij X σ ,)(21,,i j j i ij u u +=ε。

二、简述题(每小题6分)1.试简述力学中的圣维南原理,并说明它在弹性力学分析中的作用。

圣维南原理:如果物体的一小部分边界上的面力变换为分布不同但静力等效的面力(主矢与主矩相同),则近处的应力分布将有显著的改变,但远处的应力所受影响可以忽略不计。

作用:(1)将次要边界上复杂的面力(集中力、集中力偶等)作分布的面力代替。

(2)将次要的位移边界条件转化为应力边界条件处理。

2.图示两楔形体,试分别用直角坐标和极坐标写出其应力函数ϕ的分离变量形式。

题二(2)图(a )⎩⎨⎧=++= )(),(),(222θθϕϕf r r cy bxy ax y x (b )⎩⎨⎧=+++=)(),(),(33223θθϕϕf r r dy cxy y bx ax y x3.图示矩形弹性薄板,沿对角线方向作用一对拉力P ,板的几何尺寸如图,材料的弹性模量E 、泊松比 μ 已知。

试求薄板面积的改变量S ∆。

题二(3)图设当各边界受均布压力q 时,两力作用点的相对位移为l ∆。

由q E)1(1με-=得, )1(2222με-+=+=∆Eb a q b a l设板在力P 作用下的面积改变为S ∆,由功的互等定理有:l P S q ∆⋅=∆⋅将l ∆代入得:221b a P ES +-=∆μ显然,S ∆与板的形状无关,仅与E 、μ、l 有关。

4.图示曲杆,在b r=边界上作用有均布拉应力q ,在自由端作用有水平集中力P 。

试写出其边界条件(除固定端外)。

题二(4)图(1)0 ,====br r br r q θτσ; (2)0 ,0====ar r a r r θτσ(3)sin cos θτθσθθP dr P dr bar ba=-=⎰⎰2cos b a P rdr ba+-=⎰θσθ5.试简述拉甫(Love )位移函数法、伽辽金(Galerkin )位移函数法求解空间弹性力学问题的基本思想,并指出各自的适用性Love 、Galerkin 位移函数法求解空间弹性力学问题的基本思想: (1)变求多个位移函数),(),,(),,(y x w y x v y x u 或),(),,(θθθr u r u r 为求一些特殊函数,如调和函数、重调和函数。

(2)变求多个函数为求单个函数(特殊函数)。

适用性:Love 位移函数法适用于求解轴对称的空间问题; Galerkin 位移函数法适用于求解非轴对称的空间问题。

三、计算题1.图示半无限平面体在边界上受有两等值反向,间距为d 的集中力作用,单位宽度上集中力的值为P ,设间距d 很小。

试求其应力分量,并讨论所求解的适用范围。

(提示:取应力函数为 θθϕB A +=2sin )(13分)题三(1)图解:d 很小,Pd M=∴,可近似视为半平面体边界受一集中力偶M 的情形。

将应力函数),(θϕr 代入,可求得应力分量:θθϕϕσ2sin 4112222A r r r r r -=∂∂+∂∂=; 022=∂∂=rϕσθ;)2cos 2(112B A r r r r +=⎪⎭⎫ ⎝⎛∂∂∂∂-=θθϕτθ 边界条件:(1)0 ,0000==≠=≠=r r r θθθθτσ; 0 ,00==≠=≠=r r r πθθπθθτσ代入应力分量式,有0)2(12=+B A r 或 02=+B A (1) (2)取一半径为r 的半圆为脱离体,边界上受有:θτσr r ,,和M = Pd由该脱离体的平衡,得0222=+⎰-M d rr ππθθτ将θτr 代入并积分,有0)2cos 2(12222=++⎰-M d r B A r ππθθ 02sin 22=++-M BA ππθ 得 0=+M B π (2)联立式(1)、(2)求得:ππPd M B -=-=,π2Pd A =代入应力分量式,得22sin 2rPd r θπσ-==;0=θσ; 22sin 2rPd r θπτθ-=。

结果的适用性:由于在原点附近应用了圣维南原理,故此结果在原点附近误差较大,离原点较远处可适用。

2.图示悬臂梁,受三角形分布载荷作用,若梁的正应力x σ由材料力学公式给出,试由平衡微分方程求出y xy στ,,并检验该应力分量能否满足应力表示的相容方程。

(12分)题三(2)图解:(1)求横截面上正应力x σ任意截面的弯矩为306x l q M -=,截面惯性矩为123h I =,由材料力学计算公式有 y x lhq I Myx 3302-==σ (1) (2)由平衡微分方程求xy τ、y σ平衡微分方程:⎪⎪⎩⎪⎪⎨⎧=+∂∂+∂∂=+∂∂+∂∂(3)0(2) 0Y y x X yx y yx xyx σττσ 其中,0,0==Y X 。

将式(1)代入式(2),有 y x lhq y xy 2306=∂∂τ 积分上式,得)(312230x f y x lh q xy +=τ 利用边界条件:02=±=hy xyτ,有0)(4312230=+x f h x lh q 即 2230143)(h x lh q x f -=)41(322230h y x lh q xy -=τ (4)将式(4)代入式(3),有0)41(62230=∂∂+-y h y x lh q y σ 或 )41(62230h y x lh q y y --=∂∂σ积分得)()4133(62230x f y h y x lh q y +--=σ利用边界条件:x lq hy y2-=-=σ,02=+=hy y σ得:⎪⎩⎪⎨⎧=+---=++--0)()8124(6)()8124(623330023330x f h h x lhq x l q x f h h x lh q由第二式,得x lq x f 2)(02-= 将其代入第一式,得x lqx l q x l q 00022-=--自然成立。

将)(2x f 代入y σ的表达式,有x l qy h y x lhq y 2)413(602330---=σ (5)所求应力分量的结果:y x lhq I Myx 3302-==σ )41(322230h y x lh q xy -=τ (6)x l qy h y x lhq y 2)413(602330---=σ校核梁端部的边界条件: (1)梁左端的边界(x = 0):022=⎰-=h h x xdy σ,022=⎰-=h h x xydy τ 代入后可见:自然满足。

(2)梁右端的边界(x = l ):022233022=-=⎰⎰-=-=h h lx hh lx xdy y lh x q dy σ2)4(30222232022lq dy h y lh x q dy h h l x h h lx xy=-=⎰⎰-=-=τM l q y lh l q dy y lhx q ydy hh h h lx h h lx x=-=-=-=--=-=⎰⎰63222022333022233022σ可见,所有边界条件均满足。

检验应力分量y xy x στσ,,是否满足应力相容方程: 常体力下的应力相容方程为0))(()(22222=+∂∂+∂∂=+∇y x y x y x σσσσ 将应力分量y xy x στσ,,式(6)代入应力相容方程,有xy lh q x yx 302212)(-=+∂∂σσ,xy lh q y y x 302212)(-=+∂∂σσ024))(()(3022222≠-=+∂∂+∂∂=+∇xy lh q y x y x y x σσσσ显然,应力分量y xy x στσ,,不满足应力相容方程,因而式(6)并不是该该问题的正确解。

3.一端固定,另一端弹性支承的梁,其跨度为l ,抗弯刚度EI 为常数,梁端支承弹簧的刚度系数为k 。

梁受有均匀分布载荷q 作用,如图所示。

试:(1)构造两种形式(多项式、三角函数)的梁挠度试函数)(x w ;(2)用最小势能原理或Ritz 法求其多项式形式的挠度近似解(取1项待定系数)。

(13分)题二(3)图解:两种形式的梁挠度试函数可取为)()(23212 +++=x A x A A x x w —— 多项式函数形式)2cos1()(1∑=-=nm m lxm A x w π —— 三角函数形式 此时有:0)()(023212=+++==x x A x A A x x w0)()(2)(03222321=++++++='=x x A A x x A x A A x x w0)2cos1()(01=-===∑x nm m l xm A x w π 02sin 2)(01=='==∑x nm mlx m m l A x w ππ即满足梁的端部边界条件。

梁的总势能为[]202022)(21)(21l w k dx x qw dx dx w d EI Πl l +-⎪⎪⎭⎫ ⎝⎛=⎰⎰ 取:21)(x A x w =,有1222A dxw d =,21)(l A l w = 代入总势能计算式,有221012021)(21)2(21l A k dx A qx dx A EI Πl l +-=⎰⎰ 42131212132l kA l qA EIlA +-= 由0=Πδ,有0343411=-+l q l kA EIlA )4(34301kl EIl l q A += 代入梁的挠度试函数表达式,得一次近似解为2430)4(3)(x kl EIl l q x w += 4.已知受力物体内某一点的应力分量为:0=xσ,MPa 2=y σ,MPa 1=z σ,MPa 1=xy τ,0=yz τ,MPa2=zx τ,试求经过该点的平面13=++z y x 上的正应力。

(12分)解:由平面方程13=++z y x ,得其法线方向单位矢量的方向余弦为1111311222=++=l ,1131313222=++=m,1111311222=++=n⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=102021210ij σ, {}⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=131111n m l L[][][][]111131102021210131111⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡==L L T Nσσ[]MPa 64.21129111131375==⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=《弹性力学》课程考试试卷学号: 姓名: 工程领域: 建筑与土木工程一、简述题(40分) 1. 试叙述弹性力学两类平面问题的几何、受力、应力、应变特征,并指出两类平面问题中弹性常数间的转换关系。

相关文档
最新文档