弹性力学试题及答案讲解

合集下载

《弹性力学》试题参考答案(参考题)

《弹性力学》试题参考答案(参考题)

《弹性力学》试题参考答案(答题时间:100分钟)一、填空题(每小题4分)1.最小势能原理等价于弹性力学基本方程中: 平衡微分方程 , 应力边界条件 。

2.一组可能的应力分量应满足: 平衡微分方程 ,相容方程(变形协调条件) 。

3.等截面直杆扭转问题中, M dxdy D=⎰⎰2ϕ的物理意义是 杆端截面上剪应力对转轴的矩等于杆截面内的扭矩M 。

4.平面问题的应力函数解法中,Airy 应力函数ϕ在边界上值的物理意义为 边界上某一点(基准点)到任一点外力的矩 。

5.弹性力学平衡微分方程、几何方程的张量表示为:0,=+i j ij X σ ,)(21,,i j j i ij u u +=ε。

二、简述题(每小题6分)1.试简述力学中的圣维南原理,并说明它在弹性力学分析中的作用。

圣维南原理:如果物体的一小部分边界上的面力变换为分布不同但静力等效的面力(主矢与主矩相同),则近处的应力分布将有显著的改变,但远处的应力所受影响可以忽略不计。

作用:(1)将次要边界上复杂的面力(集中力、集中力偶等)作分布的面力代替。

(2)将次要的位移边界条件转化为应力边界条件处理。

2.图示两楔形体,试分别用直角坐标和极坐标写出其应力函数ϕ的分离变量形式。

题二(2)图(a )⎩⎨⎧=++= )(),(),(222θθϕϕf r r cy bxy ax y x (b )⎩⎨⎧=+++=)(),(),(33223θθϕϕf r r dy cxy y bx ax y x3.图示矩形弹性薄板,沿对角线方向作用一对拉力P ,板的几何尺寸如图,材料的弹性模量E 、泊松比 μ 已知。

试求薄板面积的改变量S ∆。

题二(3)图设当各边界受均布压力q 时,两力作用点的相对位移为l ∆。

由q E)1(1με-=得,)1(2222με-+=+=∆Eb a q b a l设板在力P 作用下的面积改变为S ∆,由功的互等定理有:l P S q ∆⋅=∆⋅将l ∆代入得:221b a P ES +-=∆μ显然,S ∆与板的形状无关,仅与E 、μ、l 有关。

弹性力学考试及答案

弹性力学考试及答案

弹性力学考试及答案 一、单项选择题(每题2分,共20分) 1. 弹性力学中,应力和应变的关系是( )。 A. 线性关系 B. 非线性关系 C. 几何关系 D. 物理关系

答案:A 2. 弹性力学中,平面应力问题是指( )。 A. 应力在平面内分布 B. 应变在平面内分布 C. 应力和应变都在平面内分布 D. 应力和应变都在平面外分布 答案:A 3. 弹性力学中,圣维南原理是指( )。 A. 局部应力和应变的关系 B. 局部应力和位移的关系 C. 局部应变和位移的关系 D. 全局应力和应变的关系

答案:A 4. 弹性力学中,泊松比是描述( )的物理量。 A. 材料的弹性性质 B. 材料的塑性性质 C. 材料的粘性性质 D. 材料的脆性性质

答案:A 5. 弹性力学中,胡克定律适用于( )。 A. 线性弹性材料 B. 非线性弹性材料 C. 塑性材料 D. 粘性材料

答案:A 6. 弹性力学中,应力集中是指( )。 A. 应力在局部区域的增加 B. 应力在局部区域的减少 C. 应变在局部区域的增加 D. 应变在局部区域的减少

答案:A 7. 弹性力学中,拉梅常数是描述( )的物理量。 A. 材料的弹性性质 B. 材料的塑性性质 C. 材料的粘性性质 D. 材料的脆性性质

答案:A 8. 弹性力学中,应变能密度是指( )。 A. 单位体积内的应变能 B. 单位面积内的应变能 C. 单位长度内的应变能 D. 单位质量内的应变能

答案:A 9. 弹性力学中,平面应变问题是指( )。 A. 应变在平面内分布 B. 应力在平面内分布 C. 应力和应变都在平面内分布 D. 应力和应变都在平面外分布 答案:A 10. 弹性力学中,应力松弛是指( )。 A. 应力随时间的增加而增加 B. 应力随时间的增加而减少 C. 应变随时间的增加而增加 D. 应变随时间的增加而减少

答案:B 二、多项选择题(每题3分,共30分) 11. 弹性力学中,下列哪些是应力分量( )。 A. σx B. εx C. τxy D. γxy 答案:AC 12. 弹性力学中,下列哪些是应变分量( )。 A. σx B. εx C. τxy D. γxy

《弹性力学》试题答案

《弹性力学》试题答案

ϕ题二(2)图+ 2cy(b )⎨⎧=++= )(),(),(323θθϕϕf r r cxy y bx ax y x 题二(3)图题二(4)图;题三(1)图,可近似视为半平面体边界受一集中力偶题三(2)图,截面惯性矩为123h I =,由材料力学计算公式有My2-==σ题二(3)图。

抗弯刚度为EI,在自由端受集中力题二(3)图4.图示弹性薄板,作用一对拉力P 。

试由功的互等定理证明:薄板的面积改变量S ∆与板的形状无关,仅与材料的弹性模量E 、泊松比 、两力P 作用点间的距离l 有关。

题二(4)图5.下面给出平面问题(单连通域)的一组应变分量,试判断它们是否可能。

),(22y x C x +=ε,2Cy y =εCxy xy 2=γ。

6.等截面直杆扭转问题的应力函数解法中,应力函数),(y x ϕ应满足:GK22-=∇ϕ 式中:G 为剪切弹性模量;K 为杆件单位长度扭转角。

试说明该方程的物理意义。

三、计算题1.图示无限大薄板,在夹角为90°的凹口边界上作用有均匀分布剪应力q 。

已知其应力函数为:)2cos (2B A r +=θϕ 不计体力,试求其应力分量。

(13分)题三(1)图2.图示矩形截面杆,长为l ,截面高为h ,宽为单位1,受偏心拉力N ,偏心距为 e ,不计杆的体力。

试用应力函数23By Ay +=ϕ求杆的应力分量,并与材料力学结果比较。

θθαττ(12分)题三(2)图3.图示简支梁,其跨度为l ,抗弯刚度EI 为常数,受有线性分布载荷q 作用。

试求:(1)用三角函数形式和多项式写出梁挠度(w )近似函数的表达式;(2)在上述梁挠度(w )近似函数中任选一种,用最小势能原理或Ritz 法求梁挠度(w )的近似解(取2项待定系数)。

(13分)题三(3)图4.图示微小四面体OABC ,OA = OB = OC ,D 为AB 的中点。

设O 点的应变张量为:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=03.001.0001.002.0005.00005.001.0ij ε试求D 点处单位矢量v 、t 方向的线应变。

弹性力学试地的题目及答案详解

弹性力学试地的题目及答案详解

弹性力学与有限元分析复习题及其答案一、填空题1、弹性力学研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、形变和位移。

2、在弹性力学中规定,线应变以伸长时为正,缩短时为负,与正应力的正负号规定相适应。

3、在弹性力学中规定,切应变以直角变小时为正,变大时为负,与切应力的正负号规定相适应。

4、物体受外力以后,其内部将发生内力,它的集度称为应力。

与物体的形变和材料强度直接有关的,是应力在其作用截面的法线方向和切线方向的分量,也就是正应力和切应力。

应力及其分量的量纲是L -1MT -2。

5、弹性力学的基本假定为连续性、完全弹性、均匀性、各向同性。

6、平面问题分为平面应力问题和平面应变问题。

7、已知一点处的应力分量100=x σMPa ,50=y σMPa ,5010=xy τ MPa ,则主应力=1σ150MPa ,=2σ0MPa ,=1α6135' 。

8、已知一点处的应力分量,200=x σMPa ,0=y σMPa ,400-=xy τ MPa ,则主应力=1σ512 MPa ,=2σ-312 MPa ,=1α-37°57′。

9、已知一点处的应力分量,2000-=x σMPa ,1000=y σMPa ,400-=xy τ MPa ,则主应力=1σ1052 MPa ,=2σ-2052 MPa ,=1α-82°32′。

10、在弹性力学里分析问题,要考虑静力学、几何学和物理学三方面条件,分别建立三套方程。

11、表示应力分量与体力分量之间关系的方程为平衡微分方程。

12、边界条件表示边界上位移与约束,或应力与面力之间的关系式。

分为位移边界条件、应力边界条件和混合边界条件。

13、按应力求解平面问题时常采用逆解法和半逆解法。

14、有限单元法首先将连续体变换成为离散化结构,然后再用结构力学位移法进行求解。

其具体步骤分为单元分析和整体分析两部分。

15、每个单元的位移一般总是包含着两部分:一部分是由本单元的形变引起的,另一部分是由于其他单元发生了形变而连带引起的。

弹性力学试题及解答

弹性力学试题及解答

弹性力学试题及解答一、试确定应变状态()22y x k x +=ε,2ky y =ε,0=z ε,kxy xy 2=γ,0=yz γ,0=zx γ是否存在。

(10分)解:是平面应变问题,满足变形协调方程因此该应变状态存在。

二、已知应力分量q x -=σ,q y -=σ,0=xy τ,判断该应力分量是否满足平衡微分方程和相容方程。

(15分) 解:将已知应力分量q x -=σ,q y -=σ,0=xy τ,代入平衡微分方程⎪⎪⎭⎪⎪⎬⎫=+∂∂+∂∂=+∂∂+∂∂00Y x y X y x xyy yxx τστσ可知,已知应力分量q x -=σ,q y -=σ,0=xy τ一般不满足平衡微分方程,只有体力忽略不计时才满足。

按应力求解平面应力问题的相容方程:y x xy xy x y y x ∂∂∂+=-∂∂+-∂∂τννσσνσσ22222)1(2)()( 将已知应力分量q x -=σ,q y -=σ,0=xy τ代入上式,可知满足相容方程。

按应力求解平面应变问题的相容方程:y x xy xyx y y x ∂∂∂-=--∂∂+--∂∂τνσννσσννσ2222212)1()1( 将已知应力分量q x -=σ,q y -=σ,0=xy τ代入上式,可知满足相容方程。

三、已知应力分量312x C Qxy x +-=σ,2223xyC y -=σ,y x C y C xy 2332--=τ,体力不计,Q 为常数。

试利用平衡微分方程求系数C 1,C 2,C 3。

(15分) 解:将所给应力分量代入平衡微分方程⎪⎪⎩⎪⎪⎨⎧=∂∂+∂∂=∂∂+∂∂00x yy xxy y yxx τστσ 得⎩⎨⎧=--=--+-023033322322212xy C xy C x C y C x C Qy 即()()()⎩⎨⎧=+=+--0230333222231xy C C y C Q x C C 由x ,y 的任意性,得⎪⎩⎪⎨⎧=+=+=-023030332231C C C Q C C 由此解得,61Q C =,32QC -=,23Q C = 四、如果ϕ为平面调和函数,满足02=∇ϕ,问ϕϕ)(221y x +=可否能作为应力函数?(15分)解:五、设有楔形体如图所示,左面铅直,右面与铅直面成角α,下端作为无限长,承受重力及液体压力,楔形体的密度为1ρ,液体的密度为2ρ,试求应力分量。

弹性力学试题及答案

弹性力学试题及答案

弹性力学试题及答案题目一:弹性力学基础知识试题:1. 弹性力学是研究什么样的物体的变形与应力关系?答案:弹性力学是研究具有弹性的物体(即能够恢复原状的物体)的变形与应力关系的学科。

2. 弹性力学中的“应力”是指什么?答案:应力是物体内部相邻两部分之间的相互作用力与其接触面积之比。

3. 弹性力学中的“应变”是指什么?答案:应变是物体在受力作用下发生形变的程度。

正应变表示物体在拉伸力作用下的伸长程度与原始长度之比,负应变表示物体在压缩力作用下的压缩程度与原始长度之比。

4. 弹性力学中的“胡克定律”是什么?答案:胡克定律描述了弹簧的弹性特性。

根据胡克定律,当弹簧的变形量(即伸长或缩短的长度)与施加在弹簧上的力成正比时,弹簧的弹性变形是符合弹性恢复原状的规律的。

题目二:弹性系数计算试题:1. 弹性模量是用来衡量什么的物理量?答案:弹性模量是衡量物体在受力作用下发生弹性形变的硬度和刚度的物理量。

2. 如何计算刚体材料的弹性模量?答案:刚体材料的弹性模量可以通过应力与应变之间的关系来计算。

弹性模量E等于应力σ与应变ε之比。

3. 如何计算各向同性材料的体积弹性模量(Poisson比)?答案:各向同性材料的体积弹性模量(Poisson比)可以通过材料的横向应变与纵向应变之比来计算。

Poisson比v等于横向应变ε横与纵向应变ε纵之比。

4. 如何计算材料的剪切弹性模量?答案:材料的剪切弹性模量G(也称剪切模量或切变模量)可以通过材料的剪应力与剪应变之比来计算。

题目三:弹性体的应力分析试题:1. 弹性体的应力状态可以用什么来表示?答案:弹性体的应力状态可以用应力张量来表示。

2. 什么是平面应力状态和轴对称应力状态?答案:平面应力状态是指在某一平面上的应力分量仅存在拉伸(或压缩)和剪切,而垂直于该平面的应力分量为零的应力状态。

轴对称应力状态是指应力分量只与径向位置有关,而与角度无关的应力状态。

3. 弹性体的应力因子有哪些?答案:弹性体的应力因子包括主应力、主应力差、偏应力、平均应力、最大剪应力、最大剪应力平面等。

弹性力学试题及答案

弹性力学试题及答案

弹性⼒学试题及答案《弹性⼒学》试题参考答案(答题时间:100分钟)⼀、填空题(每⼩题4分)1.最⼩势能原理等价于弹性⼒学基本⽅程中:平衡微分⽅程,应⼒边界条件。

2.⼀组可能的应⼒分量应满⾜:平衡微分⽅程,相容⽅程(变形协调条件)。

3.等截⾯直杆扭转问题中, M dxdy D=??2?的物理意义是杆端截⾯上剪应⼒对转轴的矩等于杆截⾯的扭矩M 。

4.平⾯问题的应⼒函数解法中,Airy 应⼒函数?在边界上值的物理意义为边界上某⼀点(基准点)到任⼀点外⼒的矩。

5.弹性⼒学平衡微分⽅程、⼏何⽅程的量表⽰为:0,=+i j ij X σ,)(21,,i j j i ij u u +=ε。

⼆、简述题(每⼩题6分)1.试简述⼒学中的圣维南原理,并说明它在弹性⼒学分析中的作⽤。

圣维南原理:如果物体的⼀⼩部分边界上的⾯⼒变换为分布不同但静⼒等效的⾯⼒(主⽮与主矩相同),则近处的应⼒分布将有显著的改变,但远处的应⼒所受影响可以忽略不计。

作⽤:(1)将次要边界上复杂的⾯⼒(集中⼒、集中⼒偶等)作分布的⾯⼒代替。

(2)将次要的位移边界条件转化为应⼒边界条件处理。

2.图⽰两楔形体,试分别⽤直⾓坐标和极坐标写出其应⼒函数?的分离变量形式。

题⼆(2)图(a )=++= )(),(),(222θθ??f r r cy bxy ax y x (b )?=+++= )(),(),(33223θθ??f r r dy cxy y bx ax y x 3.图⽰矩形弹性薄板,沿对⾓线⽅向作⽤⼀对拉⼒P ,板的⼏何尺⼨如图,材料的弹性模量E 、泊松⽐ µ 已知。

试求薄板⾯积的改变量S ?。

题⼆(3)图设当各边界受均布压⼒q 时,两⼒作⽤点的相对位移为l ?。

由q E)1(1µε-=得,)1(2222µε-+=+=?Eb a q b a l设板在⼒P 作⽤下的⾯积改变为S ?,由功的互等定理有:l P S q ??=??将l ?代⼊得:221b a P ES +-=µ显然,S ?与板的形状⽆关,仅与E 、µ、l 有关。

弹性力学试地的题目及答案详解

弹性力学试地的题目及答案详解

弹性力学与有限元分析复习题及其答案一、填空题1、弹性力学研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、形变和位移。

_2、在弹性力学中规定,线应变以伸长时为正,缩短时为负,与正应力的正负号规定相适应。

3、在弹性力学中规定,切应变以直角变小时为正,变大时为负,与切应力的正负号规定相适应。

4、物体受外力以后,其内部将发生内力,它的集度称为应力。

与物体的形变和材料强度直接有关的,是应力在其作用截面的法线方向和切线方向的分量, 也就是正应力和切应力。

应力及其分量的量纲是L-1MT-2。

5、弹性力学的基本假定为连续性、完全弹性、均匀性、各向同性 ________6、平面问题分为平面应力问题和平面应变问题。

7、已知一点处的应力分量匚x =100 MPa,二y =50 MPa,X^1O 50 MPa,则主应力G = 150MPa,~2 = 0MPa,-冷=35 16 。

&已知一点处的应力分量,二x=200 MPa,二y=0MPa ,“*400 MPa,则主应力G = 512 MPa,二2 =-312 MPa,: 1 = -37° 57'。

9、已知一点处的应力分量,;「x=:-2000MPa,匚y=1000 MPa, xy*400 MPa,则主应力匚尸1052MPa,匚2二-2052 MPa ,:计-82° 32'。

10、在弹性力学里分析问题,要考虑静力学、几何学和物理学三方面条件,分别建立三套方程。

11、表示应力分量与体力分量之间关系的方程为平衡微分方程。

12、边界条件表示边界上位移与约束,或应力与面力之间的关系式。

分为位移边界条件、应力边界________________ 条件和混合边界条件。

13、按应力求解平面问题时常采用逆解法和半逆解法。

14、有限单元法首先将连续体变换成为离散化结构,然后再用结构力学位移法讲行求解。

其具体步骤分为单元分析和整体分析两部分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 弹性力学与有限元分析复习题及其答案 一、填空题 1、弹性力学研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、形变和位移。 2、在弹性力学中规定,线应变以伸长时为正,缩短时为负,与正应力的正负号规定相适应。 3、在弹性力学中规定,切应变以直角变小时为正,变大时为负,与切应力的正负号规定相适应。

4、物体受外力以后,其内部将发生内力,它的集度称为应力。与物体的形变和材料强度直接有关的,是应力在其作用截面的法线方向和切线方向的分量,也就是正应力和切应力。应力及其分量的量纲是L-1MT-2。 5、弹性力学的基本假定为连续性、完全弹性、均匀性、各向同性。 6、平面问题分为平面应力问题和平面应变问题。

7、已知一点处的应力分量100xMPa,50yMPa,5010xy MPa,则主应力1150MPa,

20MPa,16135

8、已知一点处的应力分量, 200xMPa,0yMPa,400xy MPa,则主应力1512 MPa,2-312 MPa,1

-37°57′。

9、已知一点处的应力分量,2000xMPa,1000yMPa,400xy MPa,则主应力11052 MPa,2-2052 MPa,1-82°32′。 10、在弹性力学里分析问题,要考虑静力学、几何学和物理学三方面条件,分别建立三套方程。 11、表示应力分量与体力分量之间关系的方程为平衡微分方程。

12、边界条件表示边界上位移与约束,或应力与面力之间的关系式。分为位移边界条件、应力边界条件和混合边界条件。 13、按应力求解平面问题时常采用逆解法和半逆解法。 14、有限单元法首先将连续体变换成为离散化结构,然后再用结构力学位移法进行求解。其具体步骤分为单元分析和整体分析两部分。 15、每个单元的位移一般总是包含着两部分:一部分是由本单元的形变引起的,另一部分是由于其他单元发生了形变而连带引起的。 16、每个单元的应变一般总是包含着两部分:一部分是与该单元中各点的位置坐标有关的,是各点不相同的,即所谓变量应变;另一部分是与位置坐标无关的,是各点相同的,即所谓常量应变。 17、为了能从有限单元法得出正确的解答,位移模式必须能反映单元的刚体位移和常量应变,还应当尽可能反映相邻单元的位移连续性。

18、为了使得单元内部的位移保持连续,必须把位移模式取为坐标的单值连续函数,为了使得相邻单元的位移保持连续,就不仅要使它们在公共结点处具有相同的位移时,也能在整个公共边界上具有相同的位移。 19、在有限单元法中,单元的形函数Ni在i结点Ni=1;在其他结点Ni=0及∑Ni=1。 20、为了提高有限单元法分析的精度,一般可以采用两种方法:一是将单元的尺寸减小,以便较好地反映位移和应力变化情况;二是采用包含更高次项的位移模式,使位移和应力的精度提高。 2

二、判断题(请在正确命题后的括号内打“√”,在错误命题后的括号内打“×”) 1、连续性假定是指整个物体的体积都被组成这个物体的介质所填满,不留下任何空隙。(√) 5、如果某一问题中,0zyzxz,只存在平面应力分量x,y,xy,且它们不沿z方向变化,仅为x,y的函数,此问题是平面应力问题。(√) 6、如果某一问题中,0zyzxz,只存在平面应变分量x,y,xy,且它们不沿z方向变化,仅为x,y的函数,此问题是平面应变问题。(√) 9、当物体的形变分量完全确定时,位移分量却不能完全确定。(√) 10、当物体的位移分量完全确定时,形变分量即完全确定。(√) 14、在有限单元法中,结点力是指结点对单元的作用力。(√) 15、在平面三结点三角形单元的公共边界上应变和应力均有突变。(√ )

三、分析计算题 1、试写出无体力情况下平面问题的应力分量存在的必要条件,并考虑下列平面问题的应力分量是否可能在弹性体中存在。

(1)ByAxx,DyCxy,FyExxy;

(2))(22yxAx,)(22yxBy,Cxyxy; 其中,A,B,C,D,E,F为常数。

解:应力分量存在的必要条件是必须满足下列条件:(1)在区域内的平衡微分方程00xyyxxyyyxx;(2)在区域内的相容方程02222yxyx;(3)在边界上的应力边界条件







sflmsfml

ysxyy

xsyxx





;(4)对于多连体的位移单值条件。

(1)此组应力分量满足相容方程。为了满足平衡微分方程,必须A=-F,D=-E。此外还应满足应力边界条件。 (2)为了满足相容方程,其系数必须满足A+B=0;为了满足平衡微分方程,其系数必须满足A=B=-C/2。上两式是矛盾的,因此,此组应力分量不可能存在。

2、已知应力分量312xCQxyx,2223xyCy,yxCyCxy2332,体力不计,Q为常数。试利用平衡微分方程求系数C1,C2,C3。 解:将所给应力分量代入平衡微分方程 3





00

xyyx

xyy

yxx





得 023033322322212xyCxyCxCyCxCQy

即 

0230333222231xyCCyCQxCC

由x,y的任意性,得





023030332231CCCQCC

由此解得,61QC,32QC,23QC 3、已知应力分量qx,qy,0xy,判断该应力分量是否满足平衡微分方程和相容方程。 解:将已知应力分量qx,qy,0xy,代入平衡微分方程





00Yxy

Xyx

xyy

yxx





可知,已知应力分量qx,qy,0xy一般不满足平衡微分方程,只有体力忽略不计时才满足。 按应力求解平面应力问题的相容方程:

yxxyxyxyyx22222)1(2)()(

将已知应力分量qx,qy,0xy代入上式,可知满足相容方程。 按应力求解平面应变问题的相容方程:

yxxyxyxyyx2222212)1()1(

将已知应力分量qx,qy,0xy代入上式,可知满足相容方程。 4

4、试写出平面问题的应变分量存在的必要条件,并考虑下列平面问题的应变分量是否可能存在。 (1)Axyx,3Byy,2DyCxy;

(2)2Ayx,yBxy2,Cxyxy; (3)0x,0y,Cxyxy; 其中,A,B,C,D为常数。 解:应变分量存在的必要条件是满足形变协调条件,即

yxxyxyyx



222

22

将以上应变分量代入上面的形变协调方程,可知: (1)相容。

(2)CByA22(1分);这组应力分量若存在,则须满足:B=0,2A=C。

(3)0=C;这组应力分量若存在,则须满足:C=0,则0x,0y,0xy(1分)。 5、证明应力函数2by能满足相容方程,并考察在如图所示的矩形板和坐标系中能解决什么问题(体力不计,0b)。

解:将应力函数2by代入相容方程 024422444yyxx



可知,所给应力函数2by能满足相容方程。 由于不计体力,对应的应力分量为

byx222,022xy,02yxxy

对于图示的矩形板和坐标系,当板内发生上述应力时,根据边界条件,上下左右四个边上的面力分别为:

上边,2hy,0l,1m,0)(2hyxyxf,0)(2hyyyf;

l/2 l/2 h/2 h/2

y

x O 5

下边,2hy,0l,1m,0)(2hyxyxf,0)(2hyyyf; 左边,2lx,1l,0m,bflxxx2)(2,0)(2lxxyyf; 右边,2lx,1l,0m,bflxxx2)(2,0)(2lxxyyf。 可见,上下两边没有面力,而左右两边分别受有向左和向右的均布面力2b。因此,应力函数2by

能解决矩形板在x方向受均布拉力(b>0)和均布压力(b<0)的问题。

6、证明应力函数axy能满足相容方程,并考察在如图所示的矩形板和坐标系中能解决什么问题(体力不计,0a)。

解:将应力函数axy代入相容方程 024422444yyxx



可知,所给应力函数axy能满足相容方程。 由于不计体力,对应的应力分量为

022yx

,022xy,ayxxy2

对于图示的矩形板和坐标系,当板内发生上述应力时,根据边界条件,上下左右四个边上的面力分别为:

上边,2hy,0l,1m,afhyxyx2)(,0)(2hyyyf;

下边,2hy,0l,1m,afhyxyx2)(,0)(2hyyyf; 左边,2lx,1l,0m,0)(2lxxxf,aflxxyy2)(; 右边,2lx,1l,0m,0)(2lxxxf,aflxxyy2)(。

l/2 l/2 h/2 h/2

y

x O

相关文档
最新文档