弹性力学答案清晰修改

合集下载

弹性力学基础习题答案

弹性力学基础习题答案

1图2.4习题解答第二章2.1计算:(1)pi iq qj jk δδδδ,(2)pqi ijk jk e e A ,(3)ijp klp ki lj e e B B 。

解:(1)pi iq qj jkpq qj jk pj jk pk δδδδδδδδδδ===;(2)()pqi ijk jkpj qk pk qj jk pq qp e e A A A A δδδδ=-=-;(3)()ijp klp ki ljik jl il jk ki lj ii jj ji ij e e B B B B B B B B δδδδ=-=-。

2.2证明:若ijji a a =,则0ijk jk e a =。

证:20ijk jk jk jk ikj kj ijk jk ijk kj ijk jk ijk jk i e a e a e a e a e a e a e a ==-=-=+。

2.3设a 、b 和c 是三个矢量,试证明:2[,,]⋅⋅⋅⋅⋅⋅=⋅⋅⋅a a a b a cb a b b bc a b c c a c b c c证:1231112123222123333[,,]i i i i i i i i i i i i i i i i i i a a a b a c a a a a b c b a b b b c b b b a b c c a c b c c c c c a b c ⋅⋅⋅⋅⋅⋅=⋅⋅⋅==a a a b a c b a b b b c a b c c a c b c c 。

2.4设a 、b 、c 和d 是四个矢量,证明:()()()()()()⨯⋅⨯=⋅⋅-⋅⋅a b c d a c b d a d b c证:()()i j ijk k l m lmn n i j l m ijk lmk a b e c d e a b c d e e ⨯⋅⨯=⋅=a b c d e e ()()()()()i j l m il jm im jl i i j j i i j j a b c d a c b d a d b c δδδδ=-=- ()()()()=⋅⋅-⋅⋅a c b d a d b c 。

弹性力学简明教程课后习题解答(精校版)

弹性力学简明教程课后习题解答(精校版)

弹性力学简明教程(第四版)课后习题解答第一章绪论【1-1】试举例说明什么是均匀的各向异性体,什么是非均匀的各向同性体?【分析】均匀的各项异形体就是满足均匀性假定,但不满足各向同性假定;非均匀的各向异性体,就是不满足均匀性假定,但满足各向同性假定。

【解答】均匀的各项异形体如:竹材,木材。

非均匀的各向同性体如:混凝土。

【1-2】一般的混凝土构件和钢筋混凝土构件能否作为理想弹性体?一般的岩质地基和土质地基能否作为理想弹性体?【分析】能否作为理想弹性体,要判定能否满足四个假定:连续性,完全弹性,均匀性,各向同性假定。

【解答】一般的混凝土构件和土质地基可以作为理想弹性体;一般的钢筋混凝土构件和岩质地基不可以作为理想弹性体。

【1-3】五个基本假定在建立弹性力学基本方程时有什么作用?【解答】(1)连续性假定:假定物体是连续的,也就是假定整个物体的体积都被组成这个物体的介质所填满,不留下任何空隙。

引用这一假定后,物体的应力、形变和位移等物理量就可以看成是连续的。

因此,建立弹性力学的基本方程时就可以用坐标的连续函数来表示他们的变化规律。

完全弹性假定:假定物体是完全弹性的,即物体在对应形变的外力被去除后,能够完全恢复原型而无任何形变。

这一假定,还包含形变与引起形变的应力成正比的涵义,亦即两者之间是成线性关系的,即引用这一假定后,应力与形变服从胡克定律,从而使物理方程成为线性的方程,其弹性常数不随应力或形变的大小而变。

均匀性假定:假定物体是均匀的,即整个物体是由同一材料组成的,引用这一假定后整个物体的所有各部分才具有相同的弹性,所研究物体的内部各质点的物理性质都是相同的,因而物体的弹性常数不随位置坐标而变化。

各向同性假定:假定物体是各向同性的,即物体的弹性在所有各个方向都相同,引用此假定后,物体的弹性常数不随方向而变。

小变形假定:假定位移和变形是微小的。

亦即,假定物体受力以后整个物体所有各点的位移都远远小于物体原来的尺寸,而且应变和转角都远小于1。

弹性力学课后习题答案

弹性力学课后习题答案

弹性力学课后习题答案弹性力学课后习题答案弹性力学是研究物体在外力作用下发生形变后能够恢复原状的力学学科。

在学习弹性力学的过程中,课后习题是巩固理论知识、检验学习效果的重要方式。

本文将为大家提供一些弹性力学课后习题的答案,希望能够帮助大家更好地理解和应用弹性力学的知识。

1. 一根长度为L,截面积为A的均匀杆,受到一个沿杆轴方向的拉力F。

求杆的伸长量。

答案:根据胡克定律,拉力F和伸长量ΔL之间存在线性关系,即F = kΔL,其中k为弹性系数。

根据定义,弹性系数k等于应力σ和应变ε的比值,即k = σ/ε。

应力σ等于拉力F除以截面积A,即σ = F/A。

应变ε等于伸长量ΔL除以杆的原始长度L,即ε = ΔL/L。

将以上三个等式联立,可以得到ΔL = FL/(kA)。

2. 一个弹簧的弹性系数为k,原长为L。

如果将该弹簧拉长ΔL,求弹簧的应变能。

答案:弹簧的应变能可以通过应变能密度公式计算。

应变能密度W是单位体积内的应变能,等于单位体积内的弹性势能。

对于弹簧来说,单位体积内的弹性势能等于弹簧的弹性系数k乘以弹性势能密度的平方,即W = (1/2)k(ΔL/L)^2。

将ΔL/L替换为应变ε,可以得到W = (1/2)kε^2。

3. 一个圆形薄膜的半径为R,厚度为t,杨氏模量为E。

如果该薄膜受到一个沿法线方向的压力P,求薄膜的弯曲半径。

答案:薄膜的弯曲半径可以通过弯曲方程计算。

弯曲方程表明,弯曲半径R和薄膜的杨氏模量E、厚度t以及法线方向的压力P之间存在线性关系,即R =Et^3/(12P)。

4. 一个长为L,截面积为A的梁,受到一个沿梁轴方向的力F。

如果梁的杨氏模量为E,求梁的弯曲度。

答案:梁的弯曲度可以通过弯曲方程计算。

弯曲方程表明,弯曲度θ和梁的杨氏模量E、力F以及梁的长度L之间存在线性关系,即θ = FL^3/(3EI)。

其中I为梁的截面惯性矩,可以根据梁的几何形状计算得到。

5. 一个长为L,截面积为A的圆柱体材料,受到一个沿轴向的拉力F。

弹性力学(徐芝纶)前四章习题答案

弹性力学(徐芝纶)前四章习题答案

著应力,对远处影响忽略不计。
3.解:平衡微分方程组为:
3
其中
fx
V x
V , f y y .
x x
yx y
fx
0
y
y
xy x
fy
0
取该方程组的一组特解: x V , y V , xy 0
齐次方程组
x x y
y
yx y
xy x
0
的通解为
0
所以微分平衡方程组的解为
界条件。
(4)位移单值条件为:令应力分量表达式中可能留有的待定函数或待定常数通过积分产生
的多值项为 0。
1
2.解:
1
F X
Y 图a
F
X
Y 图b
h Z
Y 图c
(1) 在图 b 中,我们由剪力平衡方程和弯矩平衡方程得到:
1
F Q 0 ,即 Q F
M Fx 0 ,即 M Fx
在图 a 中,有:
4
4
x(3h 2 A hB C) 0 即 3h 2 A hB C 0
4
4
以上四式联立得:
A
2 g h2
,
B
0, C
3 g 2h
,
D
g 2
代入(a),并注意 E F G 0 得:
x
6 g h2
x2 y+
4 g h2
y3
6Hy
2K
y
2 g h2
y3
3 g 2h
y
gy
g 2
xy
x
2 y 2
y
2 x2
xy
2 xy
x
2 y 2
V
y

弹性力学(徐芝纶)第四章习题答案

弹性力学(徐芝纶)第四章习题答案

第四章 习题解答4-14-2、解:本题为轴对称应力问题,相应的径向位移为: ()()()()()θ+θ+⎥⎦⎤⎢⎣⎡υ-+υ-+-υ-+υ+-=sin cos ln K I Cr 12Br 311r Br 12r A 1E 1u r (1) 轴对称应力通式为()()02ln 232ln 2122=+++-=+++=θθτσσr r C r B rAC r B r A由应力边界条件()()()()0,00,===-=====b r r b r r a r r a r r q θθτστσ并结合位移单值条件可知B=0,求得:22222222ab qa C a b qb a A -=--= 因半径的改变与刚体位移I ,K 无关,且为平面应变问题,将A 、B 、C 代入(1)式,并将υυυυ-→-→1,12EE 得:内半径的改变:()()()⎪⎪⎭⎫⎝⎛-+-+-=⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛--+-⎪⎭⎫ ⎝⎛-+-=∆=υυυυυυυυ11*111112222222222222a b a b Eqa a a b qa a a b q b a E u ar r外半径的改变:()()()2222222222221*11111a b ab E qa b a b qa b a b q b a Eu br r --=⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛--+-⎪⎭⎫ ⎝⎛-+-=∆=υυυυυυ 圆筒厚度的改变:()()()⎪⎪⎭⎫⎝⎛-++---=∆-∆=∆==υυυ112a b a b E qa u u R ar r b r r4-2另解:半径为r 的圆筒周长为r π2,受载后周长则为 ()θθεπεππ+=+1222r r r , 于是半径为 ()θε+1r ,半径的改变量则为:⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+--⎪⎭⎫ ⎝⎛+--=⎪⎭⎫⎝⎛---=C r A C rA r E E r r r 212111*2222υυυσυυσυεθθ将对应的A 、C 及r=a,b 分别代入,可求出内外半径的改变及圆筒厚度的改变。

《弹性力学》试题参考答案(2021年整理精品文档)

《弹性力学》试题参考答案(2021年整理精品文档)

(完整版)《弹性力学》试题参考答案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整版)《弹性力学》试题参考答案)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整版)《弹性力学》试题参考答案的全部内容。

《弹性力学》试题参考答案(答题时间:100分钟)一、填空题(每小题4分)1.最小势能原理等价于弹性力学基本方程中: 平衡微分方程 , 应力边界条件 。

2.一组可能的应力分量应满足: 平衡微分方程 ,相容方程(变形协调条件) 。

3.等截面直杆扭转问题中, M dxdy D=⎰⎰ 2ϕ的物理意义是 杆端截面上剪应力对转轴的矩等于杆截面内的扭矩M .4.平面问题的应力函数解法中,Airy 应力函数ϕ在边界上值的物理意义为 边界上某一点(基准点)到任一点外力的矩 。

5.弹性力学平衡微分方程、几何方程的张量表示为:0,=+i j ij X σ ,)(21,,i j j i ij u u +=ε。

二、简述题(每小题6分)1.试简述力学中的圣维南原理,并说明它在弹性力学分析中的作用.圣维南原理:如果物体的一小部分边界上的面力变换为分布不同但静力等效的面力(主矢与主矩相同),则近处的应力分布将有显著的改变,但远处的应力所受影响可以忽略不计。

作用:(1)将次要边界上复杂的面力(集中力、集中力偶等)作分布的面力代替.(2)将次要的位移边界条件转化为应力边界条件处理。

2.图示两楔形体,试分别用直角坐标和极坐标写出其应力函数ϕ的分离变量形式。

题二(2)图(a )⎩⎨⎧=++= )(),(),(222θθϕϕf r r cy bxy ax y x (b )⎩⎨⎧=+++=)(),(),(33223θθϕϕf r r dy cxy y bx ax y x3.图示矩形弹性薄板,沿对角线方向作用一对拉力P ,板的几何尺寸如图,材料的弹性模量E 、泊松比 已知。

弹性力学-04(习题答案)

弹性力学-04(习题答案)

1 )
(sin
22
sin
21)
y
q0
2
2(2
1) (sin
22
sin
21)
xy
q0
2
(cos 22
cos 21)
aa q
证法1:(叠加法)
y
1
O 2
P
x
证法1:(叠加法) 分析思路:
aa q
y
1
O 2
P
x
aa
q
y
O
P x
q
aa
y
O
P x
求解步骤: 由楔形体在一面受均布压力问题的结果:
刚体
r
a2b2
(1 2)b2
a2
q(
1 b2
1
r
2
2
)
a2b2
(1 2)b2
a2
q(
1 b2
1
2
r2
)
ra
r
a2b2
(1 2)b2
a2
q(
1 b2
1
2
a2
)
q
a2b2
(1 2)b2
a2
q(
1 b2
1
2
a2
)
习题4-4 矩形薄板受纯剪,剪力集度为q,如图所示。如果离板边较 远处有一小圆孔,试求孔边的最大和最小正应力。
解:由图(a)给出的孔 边应力结果:
q
q(1 2cos 2 )
得:
q
x
q
r
q
q
x
r
q 1 2cos 2( 45)
y (a)
q1 2cos 2( 45)
q1 2sin 2 q1 2sin 2

《弹性力学》试题答案

《弹性力学》试题答案

ϕ题二(2)图+ 2cy(b )⎨⎧=++= )(),(),(323θθϕϕf r r cxy y bx ax y x 题二(3)图题二(4)图;题三(1)图,可近似视为半平面体边界受一集中力偶题三(2)图,截面惯性矩为123h I =,由材料力学计算公式有My2-==σ题二(3)图。

抗弯刚度为EI,在自由端受集中力题二(3)图4.图示弹性薄板,作用一对拉力P 。

试由功的互等定理证明:薄板的面积改变量S ∆与板的形状无关,仅与材料的弹性模量E 、泊松比 、两力P 作用点间的距离l 有关。

题二(4)图5.下面给出平面问题(单连通域)的一组应变分量,试判断它们是否可能。

),(22y x C x +=ε,2Cy y =εCxy xy 2=γ。

6.等截面直杆扭转问题的应力函数解法中,应力函数),(y x ϕ应满足:GK22-=∇ϕ 式中:G 为剪切弹性模量;K 为杆件单位长度扭转角。

试说明该方程的物理意义。

三、计算题1.图示无限大薄板,在夹角为90°的凹口边界上作用有均匀分布剪应力q 。

已知其应力函数为:)2cos (2B A r +=θϕ 不计体力,试求其应力分量。

(13分)题三(1)图2.图示矩形截面杆,长为l ,截面高为h ,宽为单位1,受偏心拉力N ,偏心距为 e ,不计杆的体力。

试用应力函数23By Ay +=ϕ求杆的应力分量,并与材料力学结果比较。

θθαττ(12分)题三(2)图3.图示简支梁,其跨度为l ,抗弯刚度EI 为常数,受有线性分布载荷q 作用。

试求:(1)用三角函数形式和多项式写出梁挠度(w )近似函数的表达式;(2)在上述梁挠度(w )近似函数中任选一种,用最小势能原理或Ritz 法求梁挠度(w )的近似解(取2项待定系数)。

(13分)题三(3)图4.图示微小四面体OABC ,OA = OB = OC ,D 为AB 的中点。

设O 点的应变张量为:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=03.001.0001.002.0005.00005.001.0ij ε试求D 点处单位矢量v 、t 方向的线应变。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2-16设有任意形状的等厚度薄板,体力可以不计,在全部边界上(包括孔口边界上)受有均匀压力q 试证q y x -==σσ 及0=xy τ能满足平衡微分方程、相容方程和应力边界条件,也能满足位移单值条件,因而就是正确的解答。

证明: (1)将应力分量q y x -==σσ,0=xy τ和0==y x f f 分别代入平衡微分方程、相容方程⎪⎪⎩⎪⎪⎨⎧=+∂∂+∂∂=+∂∂+∂∂00y x xy yy x yyxx x f f τστσ (a ) 0)1())((2222=∂∂+∂∂+-=+∂∂+∂∂)(y f x f yx y x y x μσσ (b )显然(a )、(b )是满足的(2)对于微小的三角板dy dx A ,,都为正值,斜边上的方向余弦),cos(x n l =,),cos(y n m =,将q y x -==σσ,0=xy τ代入平面问题的应力边界条件的表达式⎪⎩⎪⎨⎧=+=+)()()()(s f l m s f m l y s xy y x s yx x τστσ (c ) 则有),cos(),cos(x n q x n x -=σ ),cos(),cos(y n q y n y -=σ 所以q x -=σ,q y -=σ。

对于单连体,上述条件就是确定应力的全部条件。

(3)对于多连体,应校核位移单值条件是否满足。

该题为平面应力的情况,首先,将应力分量q y x -==σσ及0=xy τ代入物理方程,得形变分量q E x )1(-=με,q Ey )1(-=με,0=xy γ (d ) 然后,将(d )的变形分量代入几何方程,得q Ex u )1(-=∂∂μ,q E y v )1(-=∂∂μ,0=∂∂+∂∂y u x v (e ) 前而式的积分得到 )()1(1y f qx E u +-=μ,)()1(2x f qy Ev +-=μ (f ) 其中的1f 和2f 分别是y 和x 的待定函数,可以通过几何方程的第三式求出,将式(f )代入(e )的第三式得 dxx df dy y df )()(21=-等式左边只是y 的函数,而等式右边只是x 的函数。

因此,只可能两边都等于同一个常数ω,于是有ω-=dy y df )(1,ω=dxx df )(2,积分以后得01)(u y y f +-=ω,02)(v x x f +=ω 代入(f )得位移分量⎪⎩⎪⎨⎧++-=+--=vx qy E v u y qx E u ωμωμ)1()1(0 其中ω,,00v u 为表示刚体位移量的常数,须由约束条件求得。

从式(g )可见,位移是坐标的单值连续函数,满足位移单值条件,因而,应力分量是正确的解答。

2-17设有矩形截面的悬臂粱,在自由端受有集中荷载F ,体力可以不计。

试根据材料力学公式,写出弯应力x σ和切应力xy τ的表达式,并取挤压应力0=y σ,然后证明,这些表达式满足平衡微分方程和相容方程,再说明,这些表达式是否就表示正确的解答。

解〔1〕矩形悬臂梁发生弯曲变形,任意横截面上的弯矩方程为Fx x M -=)(,横截面对z 轴(中性轴)的惯性矩为123h I z =,根据材料力学公式,弯应力xy hFI y x M z x 312)(-==σ;该截面上的剪力为F x F s -=)(,剪应力22223()346()()24s xy F x y F h I y h h h τ=-=--;并取挤压应力0=y σ(2)经验证,上述表达式能满足平衡微分方程⎪⎪⎩⎪⎪⎨⎧=+∂∂+∂∂=+∂∂+∂∂00y x xy y y x y yxxx f f τστσ 也能满足相容方程0)1())((2222=∂∂+∂∂+-=+∂∂+∂∂)(y f x f yx y x y x μσσ再考察边界条件:在2/h y ±=的主要边界上,应精确满足应力边界条件:0)(2/==h y y σ,0)(2/==h y yx τ; 0)(2/=-=h y y σ,0)(2/=-=h y yx τ。

能满足在次要边界x=0上,列出三个积分的应力边界条件:/20/2/20/2/20/2()0()0()h x x h h x x h h xy x h dy ydy dy F σστ=-=-=-⎧=⎪⎪=⎨⎪⎪=-⎩⎰⎰⎰ 满足应力边界条件。

在次要边界l x =上,列出三个积分的应力边界条件:⎪⎪⎪⎩⎪⎪⎪⎨⎧-=-=-====⎰⎰⎰⎰⎰⎰-=--=--=-Fy h h F dy Fl ly h F ydy lydy h F dy h h x xy h h h h l x x h h h h l x x h h )4(6)(12)(012)(2232/2/02/2/232/2/2/2/32/2/2/2/τσσ满足应力边界条件因此,他们是该问题的解答。

3-6如题3-6图所示的墙,高度为h ,宽度为b ,h»b ,在两侧面上受到均布剪力q 的作用。

试用应力函数y Bx Axy 2+=Φ求解应力分量。

解(1)相容条件:将应力函数Φ代人相容方程04=Φ∇中,其中044=∂Φ∂x ,044=∂Φ∂y ,0224=∂∂Φ∂yx 很明显满足相容方程。

(2)应力分量表达式022=∂Φ∂=yx σ,Bxy x y 622=∂Φ∂=σ,223Bx A y x xy --=∂∂Φ∂-=τ (3)考察边界条件:在主要边界2/b x ±=上,各有两个应精确满足的边界条件,即0)(2/=±=b x x σ,q b x xy -=±=2/)(τ。

在次要边界0=y 上,0)(0==y y σ,而0)(0==y yx τ的条件不可能精确满足(否则只有A=B=0),可用积分的应力边界条件代替0)(02/2/==-⎰dx y yx b b τ(4)把各应力分量代入边界条件,得 2q A -=,22bq B =。

应力分量为0=x σ,xy bqy 212=σ,)121(222b x q xy -=τ3-8设题3-8图中的三角形悬臂梁只受重力作用,而梁的密度为ρ,试用纯三次式的应力函数求解。

解(1)相容条件:设3223Dy Cxy y Bx Ax +++=Φ (a)不论上述中的系数取何值,纯三次式的应力函数总能满足相容方程。

(2)体力分量g f o f y x ρ==,由应力函数得应力分量的表达式Dy Cx x f y x x 6222+=-∂Φ∂=σ (b)gy By Ax y f yy y ρσ-+=-∂Φ∂=2622 (c)Cy Bx yx xy222--=∂∂Φ∂-=τ (d)(3)考察边界条件:利用边界条件确定待定系数先考察主要边界上0=y 的边界条件:0)(0==y y σ, 0)(0==y yx τ 将应力分量式(b)和式(c )代入,这些边界条件要求06)(0===Ax y y σ,02)(0=-==Bx y xy τ 得A=0,B=0。

式(b)、(c )、(d )成为Dy Cx x 62+=σ (e ) gy y ρσ-= (f )Cy xy 2-=τ (g )根据斜边界的边界条件,它的边界线方程是αtan x y =,在斜面上没有任何面力,即0==y x f f ,按照一般的应力边界条件,有⎪⎩⎪⎨⎧=+=+====0)()(0)()(tan tan tan tan αααατστσx y xy x y y x y xy x y x l m m l 将(e)、(f )、(g )代入得0)tan 2()tan 62(=-++ααCx m Dx Cx l (h ) 0)tan 2()tan (=-+-ααρCx l gx m (i )由图可见,ααπsin)2cos(),cos(-=+==x n l , αcos ),cos(==y n m代入式(h )、(i)求解C 和D,即得αρcot 2g C =,αρ2cot 3gD -=将这些系数代入式(b)、(c )、(d )得应力分量的表达式2cot 2cot cot x y xy gx gy gygy σραρασρτρα⎧=-⎪=-⎨⎪=-⎩ 4-12楔形体在两侧面上受有均布剪力q ,如题4-12图所示.试求其应力分量。

解 (1)应力函数)2sin 2cos (2D C B A +++=Φϕϕϕρ,进行求解 由应力函数Φ得应力分量⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧--=∂Φ∂∂∂-=+++=∂Φ∂=--+-=∂Φ∂+∂Φ∂=C B A D C B A D C B A ϕϕρρρτϕϕϕρσϕϕϕϕρρρσρϕϕρ2cos 22sin 2)1()2sin 2cos (2)2sin 2cos (21122222(2)考察边界条件:根据对称性,得0)(2/=αϕσ (a ) q =2/)(αρϕτ (b ) 0)(2/=-αϕσ (c ) q -=-2/)(αρϕτ (d )由式(a )得2cos 2sin 20A B C D ααα+++= (e ) 由式(b )得2sin 2cos A B C q αα--= (f ) 由式(c )得2cos 2sin 20A B C D ααα--+= (g ) 由式(d )得2sin 2cos A B C q αα---=- (h ) 式(e )、(f )、(g )、(h)联立求解,得ααcot 2,0,sin 2qD C B q A -====将以上系数代入应力分量,得⎪⎪⎪⎩⎪⎪⎪⎨⎧=-=+-=αϕτααϕσααϕσρϕϕρsin 2sin )cot sin 2cos ()cot sin 2cos (q q q 4一13设有内半径为r,外半径为R 的圆筒受内压力q ,试求内半径和外半径的改变,并求圆筒厚度的改变。

解 本题为轴对称问题,只有径向位移而无环向位移。

当圆筒只受内压力q 的情况下,取应力分量表达式(B=0),内外的应力边界条件要求0)(==r ρρϕτ,0)(==R ρρϕτq r -==ρρσ)(,0)(==R ρρσ由表达式可见,前两个关于ρϕτ的条件是满足的,而后两个条件要求⎪⎪⎩⎪⎪⎨⎧=+-=+02222C RA q C r A由上式解得)(2222r R r qR A --=,)(2222r R qr C -= (a) 把A,B,C 值代入轴对称应力状态下对应的位移分量,ϕϕρμρμρsin cos )1()1()(2222K I R r R E qr u ++⎥⎦⎤⎢⎣⎡++--= (b ) 0cos sin =+-=ϕϕρϕK I H u (c)式(c )中的ϕρ,取任何值等式都成立,所以个自由项的系数为零H=I=K=0。

所以,轴对称问题的径向位移式(b )为⎥⎦⎤⎢⎣⎡++--=ρμρμρ2222)1()1()(R r R E qr u , 而圆简是属于平面应变问题,故上式中u E E -→-→1,12μμμ代替,则有)1(1)11()11(22222----+-+=rR E R qu μρρμμμμρ此时内径改变为)1()1()1(1)11()11(2222222222μμμμμμμμ-+-+-=----+-+=rR r R E qr r R Er r R qu r , 外径改变为222222222)1()1(1)11()11(rR RrE qr rR ER R R qu R --=----+-+=μμμμμμ 圆环厚度的改变为)1()1(2μμμ-++---=-r R r R E qr u u r R 4-15在薄板内距边界较远的某一点处,应.力分最为0==y x σσ ,q xy =τ,如该处有一小圆孔.试求孔边的最大正应力。

相关文档
最新文档