概率论与数理统计第三章课件
合集下载
3-1概率论与数理统计PPT课件

随机变量的分布包含两个部分: 取哪些值? 取这些值相应的概率是多少?
3.1.2 离散随机变量及其概率分布
离散随机变量 如果一个随机变量只取有限多个或者可数无穷多个 (可列个) 可能值,这种随机变量就称为离散随机变量。
离散随机变量所有可能的取值以及相应的概率
称为它的概率分布(律),简称分布律。一般表示成:
X
x1 x2 x3 … xn …
pk
p1 p2 p3 … pn …
根据概率的定义,离散随机变量分布律
必须满足下面两个条件:
(1) pi ≥ 0 , i = 1, 2, 3, …
(2) ∑ pi = 1
看例题
3.2 重要的离散型随机变量
3.2.1 独立重复实验序列
1. 随机试验的独立性
对于一些随机试验来说,如果它们的结果互相 不影响,即每个随机试验的各种结果出现的概率不依 赖于其它随机试验出现的结果,就称这些随机试验是 相互独立的。
第3章 离散随机变量
3.1.1随机变量的概念 在涉及随机试验的实际问题中,经常遇到这样的
情况,很大一部分问题与数值发生联系,从而可以 将随机试验量化。
例1. 电话的次数 ,可能是0,1,2,… 例2 某射手对一活动靶进行射击,到击中目标为止, 所进行的射击次数,可能是1,2,…
例3 某一时间段内,车站到来的乘客数, 或在某一个区域里,野生动物的数量 ·····; 它所有可能的取值是一切非负整数。
看例9
例 (金融保险) 根据生命表知道,在某个年龄段的投保人中一年内 每个人死亡的概率是 0.005 ,现在有 10,000 人参加 保险,问未来一年中死亡人数不超过 60 人的概率。
解。 分析: 以 X 记这 10,000 人中死亡的人数,则显然有 X ~ B (104,0.005 ) ,需要计算P { X ≤ 60 } 。 P { X ≤ 60 } = ∑k6=00 [C10000k 0.005k 0.99510000 – k ] ≈ 0.9222 。
3.1.2 离散随机变量及其概率分布
离散随机变量 如果一个随机变量只取有限多个或者可数无穷多个 (可列个) 可能值,这种随机变量就称为离散随机变量。
离散随机变量所有可能的取值以及相应的概率
称为它的概率分布(律),简称分布律。一般表示成:
X
x1 x2 x3 … xn …
pk
p1 p2 p3 … pn …
根据概率的定义,离散随机变量分布律
必须满足下面两个条件:
(1) pi ≥ 0 , i = 1, 2, 3, …
(2) ∑ pi = 1
看例题
3.2 重要的离散型随机变量
3.2.1 独立重复实验序列
1. 随机试验的独立性
对于一些随机试验来说,如果它们的结果互相 不影响,即每个随机试验的各种结果出现的概率不依 赖于其它随机试验出现的结果,就称这些随机试验是 相互独立的。
第3章 离散随机变量
3.1.1随机变量的概念 在涉及随机试验的实际问题中,经常遇到这样的
情况,很大一部分问题与数值发生联系,从而可以 将随机试验量化。
例1. 电话的次数 ,可能是0,1,2,… 例2 某射手对一活动靶进行射击,到击中目标为止, 所进行的射击次数,可能是1,2,…
例3 某一时间段内,车站到来的乘客数, 或在某一个区域里,野生动物的数量 ·····; 它所有可能的取值是一切非负整数。
看例9
例 (金融保险) 根据生命表知道,在某个年龄段的投保人中一年内 每个人死亡的概率是 0.005 ,现在有 10,000 人参加 保险,问未来一年中死亡人数不超过 60 人的概率。
解。 分析: 以 X 记这 10,000 人中死亡的人数,则显然有 X ~ B (104,0.005 ) ,需要计算P { X ≤ 60 } 。 P { X ≤ 60 } = ∑k6=00 [C10000k 0.005k 0.99510000 – k ] ≈ 0.9222 。
《概率论与数理统计》全套课件PPT(完整版)

m?????若对于一随机试验每个样本点出现是等可能的样本空间所含的样本点个数为无穷多个且具有非零的有限的几何度量即则称这一随机试验是一几何概型的20义定义当随机试验的样本空间是某个区域并且任量意一点落在度量长度面积体积相同的子区域是等可能的则事件a的概率可定义为?mamap??说明当古典概型的试验结果为连续无穷多个时就归结为几何概率
P(B| A) P(AB) P(A)
为在事件A发生的条件下事件B发生的条件概率2.9
2. 性质: 条件概率符合概率定义中的三个条件, 即
10 对于每一个事件B, 有 1 P(B | A) 0.
20 P(S | A) 1.
30 设B1 , B2 ,两两互不相容, 则
P( Bi | A) P(B i | A).
i1
i1
此外, 条件概率具有无条件概率类似性质.例如:
(1) P( | A) 0.
(2) 设B1 ,B2 ,, Bn两两互不相容,则
n
n
P( Bi | A) P(B i | A).
30
i1
i1
(3) P(B | A) 1 P(B | A).
(4) P(B C | A) P(B | A) P(C | A) - P(BC | A).
在其中计算B发生的概率, 从而得到P(B|A). 例2. 在1, 2, 3, 4, 5这5个数码中, 每次取一个数码, 取后不放回, 连取两次, 求在第1次取到偶数的条 件下, 第2次取到奇数的概率.
32
(二) 乘法公式: 由条件概率定义, 立即可得P(A) 0, 则有 P(AB) P(A)P(B | A).
注 当A=S时, P(B|S)=P(B), 条件概率化为无 条件概率, 因此无条件概率可看成条件概率.
P(B| A) P(AB) P(A)
为在事件A发生的条件下事件B发生的条件概率2.9
2. 性质: 条件概率符合概率定义中的三个条件, 即
10 对于每一个事件B, 有 1 P(B | A) 0.
20 P(S | A) 1.
30 设B1 , B2 ,两两互不相容, 则
P( Bi | A) P(B i | A).
i1
i1
此外, 条件概率具有无条件概率类似性质.例如:
(1) P( | A) 0.
(2) 设B1 ,B2 ,, Bn两两互不相容,则
n
n
P( Bi | A) P(B i | A).
30
i1
i1
(3) P(B | A) 1 P(B | A).
(4) P(B C | A) P(B | A) P(C | A) - P(BC | A).
在其中计算B发生的概率, 从而得到P(B|A). 例2. 在1, 2, 3, 4, 5这5个数码中, 每次取一个数码, 取后不放回, 连取两次, 求在第1次取到偶数的条 件下, 第2次取到奇数的概率.
32
(二) 乘法公式: 由条件概率定义, 立即可得P(A) 0, 则有 P(AB) P(A)P(B | A).
注 当A=S时, P(B|S)=P(B), 条件概率化为无 条件概率, 因此无条件概率可看成条件概率.
概率论与数理统计(完整版)(课堂PPT)

E3: 将一枚硬币抛三次,观察出现正面的情况. E4: 电话交换台一分钟内接到的呼唤次数. E5: 在一批灯泡中任取一只, 测试它的寿命.
3
随机试验:
(1) 可在相同的条件下重复试验; (2) 每次试验的结果不止一个,且能事先明确所有可能的结 果; (3) 一次试验前不能确定会出现哪个结果.
4
§2. 样本空间与随机事件
(一) 样本空间:
定义 随机试验E的所有可能结果组成的集合称为 E的样 本空间, 记为S. 样本空间的元素称为样本点,用表示.
样本空间的分类:
1.离散样本空间:样本点为有限个或可列个. 例 E1,E2等. 2.无穷样本空间:样本点在区间或区域内取值. 例 灯泡的寿命{t|t≥0}.
5
(二) 随机事件
定义 样本空间S的子集称为随机事件, 简称事件. 在一 次试验中, 当且仅当这一子集中的一个样本点出现时, 称 这一事件发生.
基本事件: 由一个样本点组成的单点集. 如:{H},{T}.
复合事件: 由两个或两个以上的基本事件复合而成的事件 为复合事件. 如:E3中{出现正面次数为奇数}.
必然事件: 样本空间S是自身的子集,在每次试验中总是 发生的,称为必然事件。
为在事件A发生的条件下事件B发生的条件概率2.9
2. 性质: 条件概率符合概率定义中的三个条件, 即 10 对于每一 B有 个 , 1 事 P(件 |B A)0.
20 P (|SA) 1.
30 设B1,B2,两两互不,则 相容
P ( Bi |A)P(Bi |A.)
i1
i1
此外, 条件概率具有无条件概率类似性质.例如:
P(A 1)P(A 2)P(A n).(有限)可
性3质 . 若 AB,则有 P(BA)P(B)P(A);
3
随机试验:
(1) 可在相同的条件下重复试验; (2) 每次试验的结果不止一个,且能事先明确所有可能的结 果; (3) 一次试验前不能确定会出现哪个结果.
4
§2. 样本空间与随机事件
(一) 样本空间:
定义 随机试验E的所有可能结果组成的集合称为 E的样 本空间, 记为S. 样本空间的元素称为样本点,用表示.
样本空间的分类:
1.离散样本空间:样本点为有限个或可列个. 例 E1,E2等. 2.无穷样本空间:样本点在区间或区域内取值. 例 灯泡的寿命{t|t≥0}.
5
(二) 随机事件
定义 样本空间S的子集称为随机事件, 简称事件. 在一 次试验中, 当且仅当这一子集中的一个样本点出现时, 称 这一事件发生.
基本事件: 由一个样本点组成的单点集. 如:{H},{T}.
复合事件: 由两个或两个以上的基本事件复合而成的事件 为复合事件. 如:E3中{出现正面次数为奇数}.
必然事件: 样本空间S是自身的子集,在每次试验中总是 发生的,称为必然事件。
为在事件A发生的条件下事件B发生的条件概率2.9
2. 性质: 条件概率符合概率定义中的三个条件, 即 10 对于每一 B有 个 , 1 事 P(件 |B A)0.
20 P (|SA) 1.
30 设B1,B2,两两互不,则 相容
P ( Bi |A)P(Bi |A.)
i1
i1
此外, 条件概率具有无条件概率类似性质.例如:
P(A 1)P(A 2)P(A n).(有限)可
性3质 . 若 AB,则有 P(BA)P(B)P(A);
概率论与数理统计习题课件第3章

次品, 求( X,Y )的联合分布律及关于X, Y 的边缘
分布律.
解答
3.2 把三个球以等概率投入三个盒子中,设
随机变量X,Y分别表示投入第一个与第二个盒子
中的球数, 求( X,Y )的联合分布律及关于X, Y 的
边缘分布律.
解答 返回
3.3
设( X ,Y )在区域 D
( x,
y)
x2 a2
x2 b2
(1) ( X,Y ) 的两个边缘分布密度;
(2) 边缘分布密度大于0时的条件分布密度.
解答 返回
3.12 3.1题中的随机变量 X 与 Y 是否相互
独立?若将抽样方式改为有放回抽样, X 与Y 是
否相互独立?
解答
3.13 下表列出了相互独立随机变量 X 与Y
的联合分布律及边缘分布律中的部分数值, 试将 其余数值填入表中空白处.
1 e0.5x e0.5 y e , 0.5( x y) x 0, y 0
F(x, y) 0,
其他
问X与Y是否相互独立?并求两个寿命都超
过0.1kh的概率.
解答 返回
1
上服从均匀分布, 试写出( X,Y )的分布密度.
解答
3.4 设二维随机变量( X,Y )的分布函数为
F ( x, y) A(B arctan x )(C arctan y )
2
3
求:(1)常数A, B, C ;
(2)( X,Y ) 的分布密度;
(3) ( X,Y ) 落在 D={(x, y)| x>0, y>0}内的概率.
解答 返回
3.6 求3.4题中二维随机变量( X,Y )的边缘
分布函数和边缘分布密度.
第三章概率论与数理统计教程课件

例2. 设r.v.X服从泊松分布,求其 D(X)
3 - 17
方差的性质定理
(1) D(c)=0;
(2) D(aX)=a2D(X)
(3) D(X+b)=D(X)
(4)D(aX+b)=a2D(X)
(5)两个独立随机变量 X 1 , X 2
D( X 1 X 2 ) D( X 1 ) D( X 2 )
例题
1 设随机变量X~P(2), 则E(X)=( D(X)= ( ), E(X2)=( ) ),
2 若随机变量X~B(n, p), 已知E(X)=2.4, D(X)=1.44, 则n=( ), p=( )
3 若随机变量X~U(a, b), 已知E(X)=2.4, D(X)=3, 则a=( ), b=( )
(如甲进行很多次射击, 其得分的平均分为1.8) 而乙的得分为 E(X2)=00.6+1 0.3+2 0.1=0.5 显然,乙的成绩比甲的差.
3-5
连续随机变量的数学期望
设X是连续型随机变量,其密度函数为f(x),如果
积分 xf ( x)dx 绝对收敛,即
x f ( x)dx
1 f ( x) , x 2 (1 x )
求X的数学期望。
3-7
二维随机变量的数学期望
离散r.v.
E( X ) x i p( x i , y j )
i j
E( X ) xi p X ( xi )
i
E (Y ) y j p( x i , y j )
3 - 21
§3.6 原点矩与中心矩
(1) 若E(Xk), k=1, 2, …存在, 则称它为X k 的k阶原点矩. 记作 k E( X )
概率论与数理统计Chapter+3多维随机变量及其分布.ppt

P{X i}p{Y j|X i}141i, i1,2,3,4, j1, i.
(X ,Y)关于X的边缘分布律为
p{X i} ji 1pij ji 11i1414, i1,2,3,4.
(X ,Y)关于Y的边缘分布律为
p1 j
p2
j
p3
j
p4
j
25 48
,
j 1
p2 j p3 j p4 j 1438, j2
类似一维情形,在 f (x,y)的连续点处
lim x0,y0
p{x
X
xx, y Y xy
yy}
2F(x, xy
y)
f
(x,
y).
从而当x,y很小时 p{x X xx,yY yy} f (x,y)xy.
即(x,y)落在小长方形(x,xx](y, yy]内的
概率 f (x,y)xy. 例2:设随机变量(X ,Y)具有概率密度
0,
else
例3:设二维随机变量(X,Y)具有概率密度
6, x2 y x. f (x, y)
0, else.
求边缘概率密度.
解:确定区域: x 2
y
x
0 y 1
0 x 1 y x y
fX (x)
f
(x,
ቤተ መጻሕፍቲ ባይዱ
y)dy
x 6dy 6(x x2 ), 0 x 1
x2
这些随机变量之间有某种联系,需要作为一 个整体来考虑.
X (e)
e S
Y (e)
§1.二维随机变量
一. 二维随机变量的定义: 设为E随机实验,样本空间是 S {e},设
X X (e)和Y Y(e)是定义在S的随机变量, 由它们构成的一个向量( X ,Y ),叫做二维随 机向量或二维随机变量
(X ,Y)关于X的边缘分布律为
p{X i} ji 1pij ji 11i1414, i1,2,3,4.
(X ,Y)关于Y的边缘分布律为
p1 j
p2
j
p3
j
p4
j
25 48
,
j 1
p2 j p3 j p4 j 1438, j2
类似一维情形,在 f (x,y)的连续点处
lim x0,y0
p{x
X
xx, y Y xy
yy}
2F(x, xy
y)
f
(x,
y).
从而当x,y很小时 p{x X xx,yY yy} f (x,y)xy.
即(x,y)落在小长方形(x,xx](y, yy]内的
概率 f (x,y)xy. 例2:设随机变量(X ,Y)具有概率密度
0,
else
例3:设二维随机变量(X,Y)具有概率密度
6, x2 y x. f (x, y)
0, else.
求边缘概率密度.
解:确定区域: x 2
y
x
0 y 1
0 x 1 y x y
fX (x)
f
(x,
ቤተ መጻሕፍቲ ባይዱ
y)dy
x 6dy 6(x x2 ), 0 x 1
x2
这些随机变量之间有某种联系,需要作为一 个整体来考虑.
X (e)
e S
Y (e)
§1.二维随机变量
一. 二维随机变量的定义: 设为E随机实验,样本空间是 S {e},设
X X (e)和Y Y(e)是定义在S的随机变量, 由它们构成的一个向量( X ,Y ),叫做二维随 机向量或二维随机变量
概率论与数理统计PPT课件第三章随机向量及其独立性02

求Z=X+Y的概率密度.
解 X ~ N (0,1), f X ( x)
z2
2
2
FZ
(z)
1
exp
z2
2 2
,
z
0
0,
其它
f
Z
(z)
z2
exp
z2
2
2
,
z
0
0,
其它
Z服从参数为 ( 0)的瑞利(Rayleigh)分布.
例7 已知(X,Y) ~ f(x, y),求Z=X+Y的概率密度.
132 12 12 12
12 2 12 12 12
X Y 0
1
P
1
4
12 12
3
5
2
235
1
2 22
12 12 12 12
例2 设两个独立的随机变量 X 与 Y 的分布律为
X1 3
Y2 4
PX 0.3 0.7
PY 0.6 0.4
求随机变量 Z=X+Y 的分布律. 解 因为 X 与 Y 相互独立, 所以
k 0
X, Y 相互独立
n
p(k)q(n k), n 0,1,2,... k 0
n
P{Z n} p(k)q(n k), n 0,1,2,... k 0
例4 设X ,Y是相互独立的随机变量,X ~ (1 ), Y ~ (2 ),则X Y ~ (1 2 ).
被积函数 的非零域
0,
其 他.
0 x 10 0 z x 10
概率论与数理统计第四版第三章PPT课件

例2 设二维连续型随机变量( X , Y )具有概率密
度为:
ke(2x3y) x0,y0
f(x,y) 0
其它
1. 求常数 k ;
2. 求 F( x , y ) ;
3. 求 P{ X < Y }
休息 结束
解: 1. 求常数 k ;
y
ke(2x3y) x0,y0
f(x,y)
0
其它
x
Q f(u ,v)du dvF ( , )1
3) P{(X,Y)G} f (u,v)dudv G y
(X,Y)
G
x
休息 结束
4) 若 f ( x , y ) 在 ( x , y ) 处连续,则有:
2F( x, y) f( x, y)
xy
以上关于二维随机变量的讨论,可以 容易地推广到 n ( n > 2 )维随机变量的情 况。
休息 结束
第三章 多维随机变量及其分布
休息 结束
§3.1 二维随机变量
到现在为止,我们只讨论了一维随机变量 及其分布。 但有些随机现象用一个随机变量 来描述还不够,而需要用几个随机变量来描述。
休息 结束
在射箭时,命中点的位
置是由一对坐标( X, Y )来
确定的。
飞机的重心在空中的位置是
由三个随机变量( X,Y,Z )来
休息 结束
F(x2,y2)F(x1,y2)(F (x2,y1)F (x1,y1))
P{(X,Y)D} 0
y
( x1 , y2 ) ( x2 , y2 )
D
( x1 , y1 )
( x2 , y1 )
x
休息 结束
二维离散型随机变量的联合分布列 设二维离散型随机变量( X , Y )所有可