RFID标签天线及读写器设计制造

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

RFID标签天线及读写器设计制造

1 芯片设计及制造

1.1 芯片设计技术

按照能量供给方式的不同,RFID标签可以分为被动标签,半主动标签和主动标签,其中半主动标签和主动标签中芯片的能量由电子标签所附的电池提供,主动标签可以主动发出射频信号。按照工作频率的不同,RFID标签可以分为低频(LF)、高频(HF)、超高频(UHF)和微波等不同种类。不同频段的RFID工作原理不同,LF和HF频段RFID电子标签一般采用电磁耦合原理,而UHF及微波频段的RFID一般采用电磁发射原理。不同频段标签芯片的基本结构类似,一般都包含射频前端、模拟前端、数字基带和存储器单元等模块。其中,射频前端模块主要用于对射频信号进行整流和反射调制;模拟前端模块主要用于产生芯片内所需的基准电源和系

统时钟,进行上电复位等;数字基带模块主要用于对数字信号进行编码解编码以及进行防碰撞协议的处理等;存储器单元模块用于信息存储。

目前,发达国家在多种频段都实现了RFID标签芯片的批量生产,模拟前端多采用了低功耗技术,无源微波RFID 标签的工作距离可以超过1米,无源超高频RFID标签的工作距离可以达到5米以上,功耗可以做到几个微瓦,批量成本接近十美分。

射频标签的通信标准是标签芯片设计的依据,目前国际上与RFID相关的通信标准主要有:ISO/IEC 18000标准(包括7个部分,涉及125KHz, 13.56MHz, 433MHz, 860-960MHz, 2.45GHz等频段),ISO11785(低频),ISO/IEC 14443标准(13.56MHz),ISO/IEC 15693标准(13.56MHz),EPC 标准(包括Class0, Class1和GEN2等三种协议,涉及HF和UHF两种频段),DSRC标准(欧洲ETC标准,含5.8GHz)。目前电子标签芯片的国际标准出现了融合的趋势,ISO/IEC 15693标准已经成为ISO18000-3标准的一部分,EPC GEN2标准也已经启动向ISO18000-6 Part C标准的转化。

中国在LF和HF频段RFID标签芯片设计方面的技术比较成熟,HF频段方面的设计技术接近国际先进水平,已经自主开发出符合ISO14443 Type A、Type B和ISO15693标准的RFID芯片,并成功地应用于交通一卡通和中国二代身份证等项目,与国际主要的差距存在于片上天线与芯片的集成上,目前国内还没有相应的产品应用。国内在UHF和微波频段的标签芯片设计方面起步较晚,目前已经掌握UHF频段RFID标签芯片的设计技术,部分公司和研究机构已经研发出标签芯片的样片,但尚未实现量产。国内在UHF频段读写器RF芯片和系统芯片(SOC)的设计方面也具有一定的基础,但目前产品仍主要依赖于进口。在微波频段(2.45GHz及5.8GHz),国内有部分应用在公路不停车收费项目中,相对于国外在这两个频段的技术水平,国内的研究还处于起步阶段,尚无相应产品。

与国际先进水平相比,中国在RFID芯片设计方面的主要差距如下:

1)国外在RFID芯片设计方面起步较早,并申请了许多技术专利,而国内起步相对较晚,尤其在UHF及微波频段的RFID芯片设计方面的基础比较薄弱,取得的自主知识产权较少;同时,一些目前广泛采用的RFID标准中包含了国外的技术要求及专利,在实现这些标准过程中有可能触及一些国外已有的技术及专利;

2)在存储器方面,发达国家已经开始采用标准CMOS工艺设计非挥发存储器,使得RFID标签芯片的所有模块有可能在标准CMOS工艺下制作完成,以降低生产成本,而国内目前仍主要采用传统的OTP工艺或EEPROM工艺,关于标准CMOS工艺下的非挥发存储器的研究刚刚开始;

3)在超低功耗模拟电路研究方面,国内研究较少,而这方面的设计将直接影响到芯片的阅读距离和整体性能;

4)RFID标签对成本比较敏感,芯片设计需要在模拟电路和数模混合电路设计方面具有丰富经验的专业人才,

而国内目前从事射频识别芯片设计的人才较少,技术力量相对薄弱。

1.2 芯片制造技术

半导体芯片制造工艺有多种类型,根据器件类型可分CMOS,Bipolar,BICMOS等,根据材料可分Si,Ge,GaAs 工艺等,根据衬底类型可分体硅工艺、SOI工艺等。RFID应用特点是批量大,但成本极其敏感,尽管有厂家利用特殊工艺设计制造出相应产品,但综合多种因素及国内实际情况,基于CMOS制造工艺的工艺技术比较适合目前应用需求的RFID的加工制造。目前国外也主要采用标准CMOS工艺,且普遍采用0.35μm以下工艺。

2 天线设计与制造技术

2.1 天线设计技术

天线是一种以电磁波形式把无线电收发机的射频信号功率接收或辐射出去的装置。天线按工作频段可分为长波、短波、超短波以及微波天线等;按方向性可分为全向天线、定向天线等;按外形可分为线状天线、面状天线等。在RFID系统中,天线分为标签天线和读写器天线两种情况,当前的RFID系统主要集中在LF、HF (13.56MHz)、UHF和微波频段。天线的原理和设计在LF、HF和UHF频段有根本上的不同。实质上,由于在LF和HF频段系统近场区并没有电磁波的传播,因此天线的问题主要集中在UHF和微波频段。

(1) RFID标签天线设计

天线的目标是传输最大的能量进出标签芯片,这需要仔细的设计天线和自由空间以及其相连的标签芯片的匹配,当工作频率增加到微波区域的时候,天线与标签芯片之间的匹配问题变得更加严峻。一直以来,标签天线的开发基于的是50或者75欧姆输入阻抗,而在RFID应用中,芯片的输入阻抗可能是任意值,并且很难在工作状态下准确测试,缺少准确的参数,天线的设计难以达到最佳。相应的小

尺寸以及低成本等要求也对天线的设计带来挑战,天线的设计面临许多难题。

标签天线特性受所标识物体的形状及物理特性影响,标签到贴标签物体的距离,贴标签物体的介电常数,金属表面的反射,局部结构对辐射模式的影响等都将影响天线的性能。

在国内,有近百家的天线公司或工厂。这些天线厂家主要的产品是基本上传统的卫星接收天线、电视接收天线、车载天线,蜂窝基站天线等等,相对于从事RFID天线设计的单位很少,基础比较薄弱。国内LF和HF的RFID系统的天线设计比较成熟。对于特定环境应用的UHF频段RFID 天线的设计和应用比较成熟,比如应用于铁路运输上的电子车号自动识别系统,该系统中阅读器天线为安装在地面的微带天线,并且带有很坚固的防护外壳。标签体积较大并且封装在塑料壳中,标签天线可靠性高、加工工艺成熟但是成本高。在读写器和标签位置、方向不固定、或者周围电磁影响

相关文档
最新文档