涵洞水力计算
(完整版)排洪沟与集水箱涵计算(用于计算雨水洪峰流量)

附表三:涵洞水力计算洪水量采用公路科学研究所经验公式(适用于汇水面积小于10 Km2)):Q p =KpF mQp——设计洪峰洪量(m3/s)K p——流量模数,根据地区划分及设计标准(广州地区属东南沿海,重现期采用25年一遇时, Kp=22)F—汇水面积(Km2)) ,m——面积指数,当F≤1Km2时,m=1;当1<F<10 Km2时,m=0.751、K6+140~K6+220 2-4x3m箱涵汇水面积:F=0.45+0.50+1.31=2.26(Km2)) Q p=K p F m =22* 2.340.75 =40.5(m3/s)2-4x3m箱涵,坡度为0.001,箱涵过水流量为52(m3/s)> 40.5(m3/s),因此K6+140~K6+220 2-4x3m箱涵可满足排洪要求。
2、K6+700 3-Φ1.5m圆管涵汇水面积:F=0.50(Km2)) Q p=K p F m =22* 0.501 =11(m3/s)3-Φ1.5m圆管涵,坡度为0.004,管涵过水流量为13.44(m3/s)> 11(m3/s),因此K6+700 3-Φ1.5m圆管涵可满足排洪要求。
3、K6+923.2 1-3x2.5m箱涵汇水面积:F=0.45(Km2)) Q p=K p F m =22* 0.451 =9.9(m3/s)1-3x2.5m箱涵,坡度为0.003,箱涵过水流量为19.2(m3/s)> 9.9(m3/s),因此K6+923.2 1-3x2.5m箱涵可满足排洪要求。
4、K8+675.3 2-4x2m箱涵汇水面积:F=1.10(Km2)) Q p=K p F m =22* 1. 10.75=23.6(m3/s)2-4x2m箱涵,坡度为0.003,箱涵过水流量为46.8(m3/s)> 23.6(m3/s),因此K8+675.3 2-4x2m箱涵可满足排洪要求。
涵洞水力计算

5
0
0.4
Σξ 0.90
洞底比降 i
0.020
洞宽 B 洞高 D 过水面积 A
χ
1.5
2
3
7
R 0.429
n 0.014
C
流量系数m3
62.02 0.852
动能修正系 数α
1.05
H0
淹没系数σ Q计算
8.80 0.2375 14.08
Q设计 5
进口水深 流量系数
H
m2
8.8 0.636
H0
Q计算
8.80 23.74
Q设计 5
进口水深 出口水深 出口下游过
H
h
水面积A下
8.8
8.7
13.05
上游行近流 速V0
H0
Q计算
0.04 8.80 10.75
Q设计 5
洞宽
B
8.8
1.5
上游行近流 速V0
H0
0.04
8.80
洞高 D
2
Q计算
25.37
过水面积 A
3
Q设计
5
三、非淹没压力流涵洞过流能力
2
非淹没压力流涵洞过流能力计算表
进口损失系 拦污栅损失 闸门损失系
数ξ1
系数ξ2
数ξ3
0.2
0.3
0
进口渐变段ξ5
0
洞宽B
洞高D 过水面积A
χ
1.5
2
3
7
出口渐变段 ξ6
2
0.36
0.95
进口水深 洞进口内水深 洞底比降 上游行近流
H
hs
i
速V0
8.8
8.77
小桥涵水力计算及确定孔径经验方法

6
大中桥与小桥孔径计算有什么不同?
临界流就是水深等于临界水深时的一种特殊的水流状态。 主要参数有:
(1)临界水深 (2)临界流速 (3)临界坡度
20
(1)临界水深
临界水深时的能率最小,有 d E 0 0 dH
d dE H 0dd HH2Q g 221gQ 23d dH
对任何形状的断面,有 dBdH,B为水面宽度。
因此
1
Q2
g 3
水位
天然水深 h t
x
R
x
i
1
C mR6
21
v mR 3i2
Q v
如求得流量与已知的设计流量相差不超过10%,则所假定的 ht及vt可作为以后孔径计算的依据,否则应另行假定ht ,重 新计算。
30
确定天然水深
b. 公式法 如将河床断面规则化,用三角形代替,
3
1
ht
1.1892
Qs8
(a2 1)8
(3)公路沿线的小桥、涵洞布置的数量少,排水系统不完 善,或河沟上游有堆积物、漂浮物,导致小桥涵堵塞,引 起洪水漫流路面,冲蚀路肩乃至毁坏路基或桥涵。
13
公路桥涵水毁的成因分析
(4)小桥涵进水口紧接较陡的山坡,进水口处的路基及防 护构造物由于洪水急流的顶冲而被摧毁,或因为淘刷基 础造成了水毁。 (5)受资金、材料的限制,公路标准低、质量差,缺少 排水和防护构造物;平原地区的路基标高太低,填土高 度较小;多年来农、林、水和公路建设欠协调,破坏了 生态平衡,同时公路桥涵的抗灾能力降低,严重的则发 生了水毁。
(完整版)涵管水力计算书

63.727
0.5936
4.3791
389.5
11.5
0.5024
0.2
0.01
1.5
0.019
14
0.8
63.727
0.5936
4.4775
390
12
0.5024
0.2
0.01
1.5
0.019
14
0.8
63.727
0.5936
4.5738
390.5
12.4
0.5024
0.2
0.01
1.5
0.019
0.019
14
0.8
63.727
0.5936
1.8672
380.5
2.5
0.5024
0.2
0.01
1.5
0.019
14
0.8
63.727
0.5936
2.0876
381
3
0.5024
0.2
0.01
1.5
0.019
14
0.8
63.727
0.5936
2.2869
381.5
3.5
0.5024
0.2
0.01
1.5
0.01
1.5
0.019
14
0.8
63.727
0.5936
5.5234
0.019
14
0.8
63.727
0.5936
2.4701
382
4
0.5024
0.2
0.01
1.5
0.019
14
0.8
63.727
输水涵管隧洞水力计算书

砌型式参照已有工程综合分析选用;局部水头损失计算中采用的局部 阻力系数,参照水力学资料分析采用。
1.2.3 计算公式:
引水放空隧洞的过流能力采用《水力学》(高等教育出版社 1984)
上册第四章有压管中的恒定流中的公式计算:
H 0
2v2 2g
hf
hj
(1)
式中: H0 —包括行近流速水头在内的总水头 m ,这里取上下游水
0.0509684 Q2
0.012356971 Q2
0.049564032 Q2
根据表 2-2 计算,总沿程损失 hj 0.049564Q2 2.2.3 流速水头
2v2 2g
2Q2 2gA2
1.0 Q2 2 9.81 0.78552
0.082605Q2
2.3 涵管泄流能力计算
由公式(1)可得:
2.1 沿程水头损失计算 2.1.1 各参数取值 涵管为混凝土涵管取糙率 n=0.014; 喇叭段估计 d=1.5m
2.1.2 沿ห้องสมุดไป่ตู้水头损失计算
沿程损失
hf
l 2 d 2g
l d
Q2 2gA2
表 2-1 沿程水头损失计算表
长度
断面面 水力半 糙率 谢才系
项目 (m) d(m) 积(㎡) 径 R(m)
H0
2Q2 2gA2
h f
h j
1.水库正常水位 232.8m 时相应的泄流能力:
232.8 219.4 0.082605Q2 0.189292Q2 0.049564Q2
求得:Q=6.456m3/s
2. 水库设计水位 234.15m 时相应的泄流能力:
234.15 219.4 0.082605Q2 0.189292Q2 0.049564Q2
渠涵水力计算书

渠涵水力计算书项目名称_____________日期_____________设计者_____________校对者_____________一、示意图:二、基本设计资料1.依据规范及参考书目:武汉大学水利水电学院《水力计算手册》(第二版)中国水利水电出版社《涵洞》(熊启钧编著)2.计算参数:计算目标: 已知断面尺寸、纵坡求总水面降落。
洞身型式: 矩形断面。
进口渐变段型式: 扭曲面;出口渐变段型式: 扭曲面。
设计流量Q = 20.000 m3/s洞内水深= 2.700m洞身宽度B = 2.500m洞身长度L = 900.000m 糙率n = 0.0140洞身纵坡i = 0.0005600上游渠道水深h1 = 3.000m;下游渠道水深h2 = 3.000m上游渠道流速v1 = 0.702m/s;下游渠道流速v2 = 0.702m/s上游渠道底部高程▽1 = 100.000m三、计算过程1.进口水头损失(水面降落)计算洞身流速:v = Q/A = 20.000/6.750 = 2.963 m/s进口渐变段型式为扭曲面,取进口水头损失ξ1 = 0.10进口水头损失(水面降落)计算公式为:z1= (1+ξ1)×(v2-v12)/2/g= (1+0.10)×(2.9632-0.7022)/2/9.81 = 0.465 m 2.出口水面回升(恢复落差)计算出口渐变段型式为扭曲面,取进口水头损失ξ2 = 0.30出口水面回升(恢复落差)计算公式为:z2 = (1-ξ2)×(v2-v22)/2/g= (1-0.30)×(2.9632-0.7022)/2/9.81 = 0.296 m 3.总水头损失(上下游总水面降落)及各部位高程计算总水头损失(上下游总水面降落)值为:z = z1 + i×L - z2= 0.465 + 0.0005600×900.00 - 0.296 = 0.673 m 上游渠道水位为:▽2 = ▽1+h1 = 100.000+3.000 = 103.000m 涵洞进口底部高程为:▽3 = ▽2-z1-h = 103.000-0.465-2.700 = 99.835m 涵洞出口底部高程为:▽4 = ▽3-i×L = 99.835-0.000560×900.00 = 99.331m 出口渐变段末端(下游渠道)水位为:▽5 = ▽2-z = 103.000-0.673 = 102.327m出口渐变段末端(下游渠道)底部高程为:▽6 = ▽5-h2 = 102.327-3.000 = 99.327m。
无压涵洞水力计算方法
Qa: 相当 于洞前 水深 H的涵 洞断面 面积。 矩形 断面时 ‘‘ ) H=bH:
Q: 洞前 水位的 过水 断面 面积 。
2.当0<i <i k或接近i k时,可增加30%。
3.当i >i k时( 急坡涵洞) ,全洞水流为急流,不可能形成缓流,因
而不 存在 长、 短涵 洞的 区别 。
( 三) 自由出流 、淹没出流
于断面面积的10~25% ,净空高度应不小于30~40c m。涵洞高度a 取 1.2hc、hc+O.3、H/1.15三者的较大值。
无压涵洞流量按下式计算:Q=口al mb 、l /29 Hi 式中b :矩形断面涵洞宽度,对于非矩形断面可取。2百,即用水流 在临界水深断面中的平均宽度来计算。 ∑1:受洞身长度影响的淹没系数,可根据丽图3中曲线查得。
1.h :和^: 的计算
对于矩形断面渠槽,跃前水深h 。可按下式通过试算法求得。
To=屯+_- ‰
29 妒彤
矗广.
跃后水深(如图4) 可按下式求得:1/=鸶“1+8威一1)
式中TO:以出水渠底为基准面的涵洞出口总能头( m) ;
l <l k为短洞
f >l k为长洞
式中1 :涵洞的长度 l k :短洞极限长度
当涵洞的长度恰好能使涵洞出口附近的断面K—K上水深达到临界
水深时,洞中水流运动绝不影响进洞水流的自由进流条件,涵洞的过 水能力仍然只由进口情况来决定,此时的洞长,称为短涵洞的极限长
度 。见图
图1 1k可 根据 下列 经验 公式 确定 :
生≥1.15为有压涵洞
2.涵 洞断面为 圆形或接 近圆形时 :
鲁<1.12为无压涵洞 晏≥1.12为有压涵洞
有压涵洞水力计算
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。
涵洞设计细则(7)
计 算
相同数值。
图7.3.3多级跌水布置图式
七
4) 急流槽的水力计算
涵
急流槽是由进口、陡坡槽身、消能设施和出口等
洞 水
四部分组成,如图7.3.4所示
力
计
算
图7.3.4急流槽
①
急流槽的宽度一般与涵洞孔径大致相同,或
七 涵
根据需要通过的设计流量计算确定。
洞
②
急流槽中水流在整个槽身长度内处于急流状
水 力
2) 根据公路等级,求得涵洞规定设计洪水频
率的设计流量,并初拟涵洞的类型、洞口式
样和孔径后,应进行水力计算;验算涵内流
速、水深和涵前壅水位。
七
3) 涵洞水力计算图示应采用无压力式,并应符 涵
合4.3.7条规定;仅在特殊情况下,有充分的技
洞 水
术经济比较依据时,方可采用半压力式或压力 力
式涵洞。
计 算
七
表7.3.2消力槛的淹没系数σs值
涵 洞
水
力
计
算
③ 消力槛高P1的确定
Ⅰ 根据公式(7.3.2-1)(7.3.2-3)、表7.3.2,
先假定σs =1求得消力槛淹没系数σs,判断出槛 水流情况。当为自由出流时,则P1值即为所求得
的值;当为淹没出流时,可重新假定P1值,
七
计试算算σs值。H试10 算中hc-以P1公 式2g (qh72c.32.2-1)的变形式
态,起点断面水深为临界水深hk,随后各断面水 计
深小于临界水深hk,即出现降水曲线。
算
③ 按均匀流公式试算槽中正常水深h0、流速V0,
最后验算流量并检验与设计流量差不大于±5%。
④ 降水曲线范围内可按分段求和法计算完整的
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
进口渐变 段损失系 数ξ 5
出口渐变段 损失系数ξ 6
Σ ξ 0.90 C 62.02
洞底比降 i
0.2
洞宽 B
0.3
洞高 D
0
过水面积 A
0 χ 7
0
0.4
0.020
流量系数 m3
R 0.429
n 0.014
1.5
2
3
0.852
算【黑色数为输入值,红色数值为计算值】
动能修正 系数α
H0
淹没系数σ
Q计算 14.08
Q设计 5
1.05
8.80
0.2375
进口水深 H
流量系 数m2
8.8 H0 8.80
0.636 Q计算 23.74
Q设计 5
进口水深 H
出口水 深 h
出口下游过 水面积A下
8.8
上游行近 流速V0
8.7 H0 8.80
13.05 Q计算 10.75 Q设计 5
0.04
5
出口渐变 段ξ 6
Σ ξ
洞底比降 i
修正系数 β 2
0.2
洞宽B
0.3
洞高D
0
过水面积A
0 χ 7
0.5 R 0.429
1.00 n 0.014
0.020 C 62.02
0.85
上游行近 流速V0
1.5
2
3
0.04
四、淹没压力流涵洞过流能力
淹没压力流涵洞过流计算表
进口损失 系数ξ 1 拦污栅损 闸门损失系 出口损失系数ξ 失系数ξ 2 数ξ 3
0.670 χ 7
40 R 0.429
0.74 n 0.014
0.020 C 62.02
8.8
上游行近 流速V0
1.5 H0 8.80
2 Q计算 25.37
3
Q设计 5
0.04
三、非淹没压力流涵洞过流能力 2
非淹没压力流涵洞过流能力计算表
进口损失 系数ξ 1 拦污栅损 闸门损失系 失系数ξ 2 数ξ 3 进口渐变段ξ
70.4
为短洞
一、无压流涵洞过流能力
无压流涵洞过流能力计算表
洞宽B 洞高D 流量系数 m 侧收缩系数ε 进口水深 H 洞进口内水 深hs 洞底比降 i 上游行近 流速V0
1.5
2
0.36
0.95
8.8
8.77
0.020
0.039
二、半有压流涵洞过流能力
半有压力流涵ቤተ መጻሕፍቲ ባይዱ过流能力计算表
流量系数 m1 洞身长 L 修正系数β 1 洞底比降 i 进口水深 H 洞宽 B 洞高 D 过水面积 A
涵洞过流能力采用《灌溉与排水渠系建筑物设计规范》(SL482-2011)附录D公式计算【黑色数为输入值,红色
设计流量Q= 洞宽 B 洞高 D 出口水深 h
5 m3 /s
水流流态
1.5
2
1.2D
8.70
1.5D
淹没压力流 Q计算 10.75
2.4
进口水深H 洞身长 L 8H
3.00
8.8
长短洞判别
40