高二数学2.2双曲线,第3课时,双曲线的简单几何性质(一)

合集下载

2013-2014学年 高中数学 人教A版选修1-1 第二章 2.2.2(一)双曲线的简单几何性质(一)

2013-2014学年 高中数学 人教A版选修1-1    第二章   2.2.2(一)双曲线的简单几何性质(一)
跟踪训练 2 求满足下列条件的双曲线方程: (1)以 2x± 3y=0 为渐近线,且经过点(1,2); 5 (2)离心率为 ,半虚轴长为 2; 4
2.2.2(一)
(3)与椭圆 x2+5y2=5 共焦点且一条渐近线方程为 y- 3x
本 讲 栏 目 开 关
=0. 解 (1)设所求双曲线方程为 4x2-9y2=λ (λ≠0),点(1,2)在双
填一填·知识要点、记下疑难点
2.2.2(一)
1.双曲线的几何性质
本 讲 栏 目 开 关
标准方 程
x2 y2 2- 2= 1 a b (a>0,b>0)
y2 x2 2- 2= 1 a b (a>0,b>0)
图形
填一填·知识要点、记下疑难点
范围 对称性 性 质 顶点 坐标 渐近线 离心率
2.2.2(一)
2 2 y x 解 把方程 9y2-16x2=144 化为标准方程 2- 2=1. 4 3 由此可知,半实轴长 a=4,半虚轴长 b=3;
点坐标、离心率、渐近线方程.
本 讲 栏 目 开 关
c= a2+b2= 42+32=5, 焦点坐标是(0,-5),(0,5); c 5 4 离心率 e= = ;渐近线方程为 y=± x. 3 a 4
2.2.2(一)
2.2.2
【学习要求】
本 讲 栏 目 开 关
双曲线的简单几何性质(一)
1.掌握双曲线的简单几何性质. 2.了解双曲线的渐近性及渐近线的概念. 3.能区别椭圆与双曲线的性质. 【学法指导】 利用双曲线的方程研究其图象和几何性质,在自主探究合 作交流中通过类比椭圆的几何性质,分析双曲线的几何性质.
研一研·问题探究、课堂更高效
2.2.2(一)

高二数学双曲线的几何性质1

高二数学双曲线的几何性质1
爱养花的人,都有自己的喜好。这种喜好,大约与花的品质有关吧。或者,和自己的审美有关吧。有时候,还没有什么理由。有一个大姐,把像野草一样的二月兰,养的像油菜花一样繁茂。还有一 个大哥,就种了几株油菜花。我们都相互尊重对方的爱好,也能从中看到别人种的花的独特之美。tt可以提款吗? 也许,种花和读书有着许多相似之处吧。 如果把每一本书都比作一种花的话,并无不妥。有人爱读文学书,有人爱读自然科学书,还有人爱读历史书。有人喜欢博览群书,有人喜欢精读某个作家的书。在我看来,都是好的。我最反感的是 自认自己读的书是好书,而别人读的却是烂书。阅读犹如种花一样,完全是私人化的,悦己的,何必苛求别人非得喜欢自己读的书呢? 非名著不读,只喜欢一个作家的书,并不显得自己比别人高明多少。那仅仅是个人喜欢和爱好而已。牡丹有牡丹的大气,兰花有兰花的娇贵,凤仙花也有自己的清新。 很可惜,在一些人眼里,并不觉得大自然是富有启示性的。恐怕,我把花比作书也是不恰当的。
这春天来了去、去了又来,匆匆忙忙间,天气又转暖了。 忽然想起了一件事:春天里是该有春蚕的,不知我家的蚕出来了没有? 于是,赶忙把去年春上放置于书柜最顶层拐角的那个硬纸盒取下来,轻轻地放在临了窗的写字台上,小心翼翼地掀开盖子,再揉揉眼仔细地搜索:不错,疏疏密密地散布在那片小白纸上比小米粒还 小的蚕卵表面,已零零落落地蠕动着一些小小的黑色的点点,而这些黑点点

课件10:2.2.2 双曲线的简单几何性质

课件10:2.2.2 双曲线的简单几何性质

半虚轴长:_b_
顶点 性
A1(-a,0),A2(a,0)
质 离心率 e=_ac__∈_(_1_,__+__∞_)_
b
渐近线 y=± a x
A1(0,-a), A2(0,a)
a y=± bx
想一想
1.试用 a,b 表示双曲线的离心率,离心率的大小与开口
有关系吗? 提示:e=ac=
a2+a2 b2=
解:将 9y2-4x2=-36 变形为x92-y42=1,即3x22-2y22=1,
所以 a=3,b=2,c= 13,因此顶点坐标为(-3,0),(3,
0),焦点坐标为(- 13,0),( 13,0).
实轴长是 2a=6,虚轴长是 2b=4, 离心率 e=ac= 313, 渐近线方程为 y=±bax=±23x.
题型三 求双曲线的离心率 例 3 已知 F1,F2 是双曲线ax22-by22=1(a>0,b>0)的两 个焦点,PQ 是经过 F1 且垂直于 x 轴的双曲线的弦, 如果∠PF2Q=90°,求双曲线的离心率.
解:设 F1(c,0),将 x=c 代入双曲线的方程得ca22-by22=1, 则 y=±ba2. 由|PF2|=|QF2|,∠PF2Q=90°, 知|PF1|=|F1F2|, ∴ba2=2c,∴b2=2ac,
∴c2-2ac-a2=0,∴ca2-2×ac-1=0. 即 e2-2e-1=0. ∴e=1+ 2或 e=1- 2(舍去). 所以所求双曲线的离心率为 1+ 2.
名师点评 (1)求双曲线的离心率的常见方法:一是依 据条件求出 a,c,算 e=ac;二是依据条件提供的信息建 立关于参数 a,b,c 的等式,进而转化为关于离心率 e 的方程,再解出 e 的值. (2)求离心率的范围时,常结合已知条件构建关于 a,b, c 的不等关系.

双曲线的简单几何性质 高二数学 (人教A版2019选择性 必修第一册)

双曲线的简单几何性质 高二数学 (人教A版2019选择性 必修第一册)

2的等边三角形(O为原点),则双曲线的方程为(
2 2
A. 4 -12=1
2 2
B.12- 4 =1
)
2
C. 3 - 2 =1
2

D. 2 - 3
=1
1
(2)渐近线方程为y=± 2 x,且经过点A(2,-3)的双曲线方程为________.

[解析] (1)不妨设点A在第一象限,由题意可知c=2,点A的坐标为(1, 3),所以 = 3,

2
(2)设F1,F2是双曲线C:2
2
=1(a>
2


2)的两条渐近线的夹角为 3 ,则双曲线的离心率为________;
2
=1(a>0,b>0)的两个焦点,P是C上一点,若|PF1|+|PF2|=6a,且
2

PF1F2的最小内角为30°,则双曲线C的离心率为________.
(2)不妨设|PF1|>|PF2|,则|PF1|-|PF2|=2a,又|PF1|
(2)等轴双曲线具有以下性质:
①方程形式为x2-y2=λ(λ≠0);
②渐近线方程为y=±x,它们互相垂直,并且平分双曲线实轴和虚轴所成的角;
③实轴长和虚轴长都等于2a,离心率e= 2.
(三)典型例题
1.利用双曲线的性质求标准方程
2 2
例1.(1)已知双曲线2-2 =1(a>0,b>0)的右焦点为F,点A在双曲线的渐近线上,△OAF是边长为
[解析] 联立直线与双曲线方程
消去y得:(1-3k2)x2-6 2kx-9=0.
3
当1-3k2=0,即k=± 3 时,直线l1与双曲线C只有一个公共点;
当1-3k2≠0,Δ=(6k)2+36(1-3k2)=36-36k2,

高二数学 2.2.2 双曲线的简单几何性质

高二数学  2.2.2 双曲线的简单几何性质

第26页
返回导航
第二章·2.2 · 2.2.2 ·第一课时
(2)依题意,双曲线的实轴可能在x轴上,也可能在y轴
上,分别讨论如下:
若双曲线的实轴在x轴上,设
x2 a2

y2 b2
=1(a>0,b>0)为所
求.
由e= 25,得ca22=54①
由点P(3,- 2)在双曲线上,得a92-b22=1②
又a2+b2=c2.由①②得a2=1,b2=14③
3.双曲线
x2 a2

y2 b2
=1(a>0,b>0)的顶点坐标为________,
实轴长________,虚轴长________.
4.双曲线xa22-by22=1(a>0,b>0)的渐近线方程为________.
第7页
返回导航
第二章·2.2 · 2.2.2 ·第一课时
自 1.x≤-a x≥a 我 2.原点 x轴与y轴 校 3.(-a,0),(a,0) 2a 2b 对 4.xa±yb=0
名师讲解
双曲线的几何性质.
标准方程
xa22-by22=1 (a>0,b>0)
ya22-bx22=1 (a>0,b>0)
图形
第15页
返回导航
第二章·2.2 · 2.2.2 ·第一课时
第16页
返回导航
第二章·2.2 · 2.2.2 ·第一课时
2.双曲线的离心率.
e=
c a

ba22+1 >1,它决定双曲线的开口大小,e越大,
第8页
返回导航
第二章·2.2 · 2.2.2 ·第一课时
自测自评
1.双曲线x42-y2=1 的离心率是(

高中数学第二章2.2双曲线2.2.2双曲线的简单几何性质讲义(含解析)新人教A版选修1_1

高中数学第二章2.2双曲线2.2.2双曲线的简单几何性质讲义(含解析)新人教A版选修1_1

2.2.2 双曲线的简单几何性质预习课本P49~53,思考并完成以下问题1.双曲线有哪些几何性质?2.双曲线的顶点、实轴、虚轴分别是什么?3.双曲线的渐近线、等轴双曲线的定义分别是什么?[新知初探]1.双曲线的几何性质标准方程x2a2-y2b2=1(a>0,b>0)y2a2-x2b2=1(a>0,b>0)性质图形焦点F1(-c,0),F2(c,0)F1(0,-c),F2(0,c)焦距|F1F2|=2c性质范围x≤-a或x≥a,y∈R y≤-a或y≥a,x∈R 对称性对称轴:坐标轴;对称中心:原点顶点A1(-a,0),A2(a,0)A1(0,-a),A2(0,a) 轴实轴:线段A1A2,长:2a;2.等轴双曲线实轴和虚轴等长的双曲线叫等轴双曲线,它的渐近线是y =±x ,离心率为e = 2. [点睛] 对双曲线的简单几何性质的几点认识 (1)双曲线的焦点决定双曲线的位置;(2)双曲线的离心率和渐近线刻画了双曲线的开口大小,离心率越大,双曲线的开口越大,反之亦然.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”) (1)双曲线x 22-y 24=1的焦点在y 轴上( )(2)双曲线的离心率越大,双曲线的开口越开阔( ) (3)以y =±2x 为渐近线的双曲线有2条( ) 答案:(1)× (2)√ (3)×2.双曲线x 216-y 2=1的顶点坐标是( )A .(4,0),(0,1)B .(-4,0),(4,0)C .(0,1),(0,-1)D .(-4,0),(0,-1)答案:B3.中心在原点,实轴长为10,虚轴长为6的双曲线的标准方程是( ) A.x 225-y 29=1 B.x 225-y 29=1或y 225-x 29=1 C.x 2100-y 236=1 D.x 2100-y 236=1或y 2100-x 236=1 答案:B4.(2017·全国卷Ⅲ)双曲线x 2a 2-y 29=1(a >0)的一条渐近线方程为y =35x ,则a =________.答案:5双曲线的几何性质[典例] 22虚轴长、离心率和渐近线方程.[解] 双曲线的方程化为标准形式是x 29-y 24=1,∴a 2=9,b 2=4,∴a =3,b =2,c =13. 又双曲线的焦点在x 轴上, ∴顶点坐标为(-3,0),(3,0), 焦点坐标为(-13,0),(13,0), 实轴长2a =6,虚轴长2b =4, 离心率e =ca =133,渐近线方程为y =±23x .由双曲线的方程研究几何性质的解题步骤(1)把双曲线方程化为标准形式是解决本题的关键; (2)由标准方程确定焦点位置,确定a ,b 的值;(3)由c 2=a 2+b 2求出c 值,从而写出双曲线的几何性质. [注意] 求性质时一定要注意焦点的位置. 1.已知双曲线x 29-y 216=1与y 216-x 29=1,下列说法正确的是( )A .两个双曲线有公共顶点B .两个双曲线有公共焦点C .两个双曲线有公共渐近线D .两个双曲线的离心率相等解析:选C 双曲线x 29-y 216=1的焦点和顶点都在x 轴上,而双曲线y 216-x 29=1的焦点和顶点都在y 轴上,因此可排除选项A 、B ;双曲线x 29-y 216=1的离心率e 1=9+169=53,而双曲线y 216-x 29=1的离心率e 2=16+916=54,因此可排除选项D ;易得C 正确. 2.(2017·北京高考)若双曲线x 2-y 2m=1的离心率为3,则实数m =________.解析:由双曲线的标准方程可知a 2=1,b 2=m , 所以e =1+b 2a2=1+m =3,解得m =2. 答案:2由双曲线的几何性质求标准方程[典例] (1)(2017·天津高考)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的左焦点为F ,离心率为 2.若经过F 和P (0,4)两点的直线平行于双曲线的一条渐近线,则双曲线的方程为( )A.x 24-y 24=1B.x 28-y 28=1C.x 24-y 28=1 D.x 28-y 24=1(2)过点(2,-2)且与x 22-y 2=1有相同渐近线的双曲线的标准方程为________.[解析] (1)由e =2知,双曲线为等轴双曲线, 则其渐近线方程为y =±x ,故由P (0,4),知左焦点F 的坐标为(-4,0), 所以c =4,则a 2=b 2=c 22=8.故双曲线的方程为x 28-y 28=1.(2)法一:当焦点在x 轴上时,由于b a =22. 故可设方程为x 22b 2-y 2b2=1,代入点(2,-2)得b 2=-2(舍去); 当焦点在y 轴上时,可知a b =22,故可设方程为y 2a 2-x 22a2=1,代入点(2,-2)得a 2=2. 所以所求双曲线方程为y 22-x 24=1.法二:因为所求双曲线与已知双曲线x 22-y 2=1有相同的渐近线,故可设双曲线方程为x 22-y 2=λ(λ≠0),代入点(2,-2)得λ=-2,所以所求双曲线的方程为x 22-y 2=-2,即y 22-x 24=1. [答案] (1)B (2)y 22-x 24=1求双曲线的标准方程的方法与技巧(1)一般情况下,求双曲线的标准方程关键是确定a ,b 的值和焦点所在的坐标轴,若给出双曲线的顶点坐标或焦点坐标,则焦点所在的坐标轴易得.再结合c 2=a 2+b 2及e =c a列关于a ,b 的方程(组),解方程(组)可得标准方程.(2)如果已知双曲线的渐近线方程为y =±b a x ,那么此双曲线方程可设为x 2a 2-y 2b 2=λ(λ≠0).求适合下列条件的双曲线的标准方程: (1)虚轴长为12,离心率为54;(2)焦点在x 轴上,离心率为2,且过点(-5,3); (3)顶点间距离为6,渐近线方程为y =±32x .解:(1)设双曲线的标准方程为x 2a 2-y 2b 2=1或y 2a 2-x 2b 2=1(a >0,b >0).由题意知2b =12,c a =54且c 2=a 2+b 2,∴b =6,c =10,a =8,∴双曲线的标准方程为x 264-y 236=1或y 264-x 236=1.(2)∵e =ca=2,∴c =2a ,b 2=c 2-a 2=a 2. 又∵焦点在x 轴上,∴设双曲线的标准方程为x 2a 2-y 2a2=1(a >0).把点(-5,3)代入方程,解得a 2=16. ∴双曲线的标准方程为x 216-y 216=1.(3)设以y =±32x 为渐近线的双曲线方程为x 24-y 29=λ(λ≠0), 当λ>0时,a 2=4λ,∴2a =24λ=6⇒λ=94.当λ<0时,a 2=-9λ,∴2a =2-9λ=6⇒λ=-1. ∴双曲线的标准方程为x 29-4y 281=1或y 29-x 24=1.双曲线的离心率[典例] 过双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右焦点作一条与其渐近线平行的直线,交C 于点P .若点P 的横坐标为2a ,则C 的离心率为________.[解析] 如图所示,不妨设与渐近线平行的直线l 的斜率为b a,又直线l 过右焦点F (c,0),则直线l 的方程为y =b a(x -c ).因为点P 的横坐标为2a ,代入双曲线方程得4a2a 2-y 2b2=1,化简得y =-3b 或y =3b (点P 在x 轴下方,故舍去),故点P 的坐标为(2a ,-3b ),代入直线方程得-3b =ba(2a -c ),化简可得离心率e =c a=2+ 3.[答案] 2+ 3求双曲线离心率的两种方法(1)直接法:若已知a ,c 可直接利用e =c a求解,若已知a ,b ,可利用e = 1+⎝ ⎛⎭⎪⎫b a2求解.(2)方程法:若无法求出a ,b ,c 的具体值,但根据条件可确定a ,b ,c 之间的关系,可通过b 2=c 2-a 2,将关系式转化为关于a ,c 的齐次方程,借助于e =c a,转化为关于e 的n 次方程求解.[活学活用]1.如果双曲线x 2a 2-y 2b2=1右支上总存在到双曲线的中心与右焦点距离相等的两个相异点,则双曲线离心率的取值范围是________.解析:如图,因为AO =AF ,F (c,0),所以x A =c 2,因为A 在右支上且不在顶点处,所以c 2>a ,所以e =ca >2.答案:(2,+∞)2.设F 1,F 2是双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的两个焦点,P 是C 上一点,若|PF 1|+|PF 2|=6a ,且△PF 1F 2的最小内角为30°,则C 的离心率为________.解析:不妨设|PF 1|>|PF 2|,则|PF 1|-|PF 2|=2a ,又|PF 1|+|PF 2|=6a ,得|PF 1|=4a ,|PF 2|=2a ,|F 1F 2|=2c ,则在△PF 1F 2中,∠PF 1F 2=30°,由余弦定理得(2a )2=(4a )2+(2c )2-2×(4a )×(2c )×cos 30°,整理得(e -3)2=0,所以e = 3.答案: 3层级一 学业水平达标1.双曲线2x 2-y 2=8的实轴长是( ) A .2 B .2 2 C .4D .4 2解析:选C 双曲线方程可变形为x 24-y 28=1,所以a 2=4,a =2,从而2a =4,故选C.2.已知双曲线的实轴和虚轴等长,且过点(5,3),则双曲线方程为( ) A.x 225-y 225=1 B.x 29-y 29=1C.y 216-x 216=1 D.x 216-y 216=1解析:选D 由题意知,所求双曲线是等轴双曲线,设其方程为x 2-y 2=λ(λ≠0),将点(5,3)代入方程,可得λ=52-32=16,所以双曲线方程为x 2-y 2=16,即x 216-y 216=1.3.(2017·全国卷Ⅱ)若a >1,则双曲线x 2a2-y 2=1的离心率的取值范围是( )A .(2,+∞)B .(2,2)C .(1,2)D .(1,2)解析:选C 由题意得双曲线的离心率e =a 2+1a .即e 2=a 2+1a 2=1+1a2.∵a >1,∴0<1a2<1,∴1<1+1a2<2,∴1<e < 2.4.若一双曲线与椭圆4x 2+y 2=64有公共的焦点,且它们的离心率互为倒数,则该双曲线的方程为( )A .y 2-3x 2=36 B .x 2-3y 2=36 C .3y 2-x 2=36D .3x 2-y 2=36解析:选A 椭圆4x 2+y 2=64可变形为x 216+y 264=1,a 2=64,c 2=64-16=48,∴焦点为(0,43),(0,-43),离心率e =32, 则双曲线的焦点在y 轴上,c ′=43,e ′=23, 从而a ′=6,b ′2=12,故所求双曲线的方程为y 2-3x 2=36.5.已知双曲线x 2a2-y 2=1(a >0)的实轴长、虚轴长、焦距长成等差数列,则双曲线的渐近线方程为( )A .y =±35xB .y =±53xC .y =±34xD .y =±43x解析:选D 由双曲线方程为x 2a2-y 2=1,知b 2=1,c 2=a 2+1,∴2b =2,2c =2a 2+1.∵实轴长、虚轴长、焦距长成等差数列,∴2a +2c =4b =4,∴2a +2a 2+1=4,解得a =34.∴双曲线的渐近线方程为y =±43x .6.已知点(2,3)在双曲线C :x 2a 2-y 2b2=1(a >0,b >0)上,C 的焦距为4,则它的离心率为________.解析:由题意知4a 2-9b2=1,c 2=a 2+b 2=4,解得a =1,所以e =c a=2. 答案:27.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一个焦点为F (25,0),且离心率为e =52,则双曲线的标准方程为________.解析:由焦点坐标,知c =25,由e =c a =52,可得a =4,所以b =c 2-a 2=2,则双曲线的标准方程为x 216-y 24=1. 答案:x 216-y 24=18.已知双曲线过点(4,3),且渐近线方程为y =±12x ,则该双曲线的标准方程为________.解析:法一:∵双曲线的渐近线方程为y =±12x ,∴可设双曲线的方程为x 2-4y 2=λ(λ≠0). ∵双曲线过点(4,3),∴λ=16-4×(3)2=4, ∴双曲线的标准方程为x 24-y 2=1.法二:∵渐近线y =12x 过点(4,2),而3<2,∴点(4,3)在渐近线y =12x 的下方,在y =-12x 的上方(如图).∴双曲线的焦点在x 轴上, 故可设双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0). 由已知条件可得⎩⎪⎨⎪⎧b a =12,16a 2-3b 2=1,解得⎩⎪⎨⎪⎧a 2=4,b 2=1,∴双曲线的标准方程为x 24-y 2=1. 答案:x 24-y 2=19.求满足下列条件的双曲线的标准方程.(1)与双曲线y 24-x 23=1具有相同的渐近线,且过点M (3,-2);(2)过点(2,0),与双曲线y 264-x 216=1离心率相等;(3)与椭圆x 225+y 216=1有公共焦点,离心率为32.解:(1)设所求双曲线方程为y 24-x 23=λ(λ≠0).由点M (3,-2)在双曲线上得44-93=λ,得λ=-2.故所求双曲线的标准方程为x 26-y 28=1.(2)当所求双曲线的焦点在x 轴上时, 可设其方程为x 264-y 216=λ(λ>0),将点(2,0)的坐标代入方程得λ=116,故所求双曲线的标准方程为x 24-y 2=1;当所求双曲线的焦点在y 轴上时, 可设其方程为y 264-x 216=λ(λ>0),将点(2,0)的坐标代入方程得λ=-14<0(舍去).综上可知,所求双曲线的标准方程为x 24-y 2=1.(3)法一:由椭圆方程可得焦点坐标为(-3,0),(3,0),即c =3且焦点在x 轴上.设双曲线的标准方程为x 2a 2-y 2b 2=1(a >0,b >0).因为e =c a =32,所以a =2,则b 2=c 2-a 2=5,故所求双曲线的标准方程为x 24-y 25=1.法二:因为椭圆焦点在x 轴上,所以可设双曲线的标准方程为x 225-λ-y 2λ-16=1(16<λ<25).因为e =32,所以λ-1625-λ=94-1,解得λ=21.故所求双曲线的标准方程为x 24-y 25=1.10.设双曲线x 2a 2-y 2b2=1(0<a <b )的半焦距为c ,直线l 过(a,0),(0,b )两点,已知原点到直线l 的距离为34c ,求双曲线的离心率. 解:直线l 的方程为x a +yb=1,即bx +ay -ab =0. 于是有|b ·0+a ·0-ab |a 2+b 2=34c ,所以ab =34c 2,两边平方,得a 2b 2=316c 4. 又b 2=c 2-a 2,所以16a 2(c 2-a 2)=3c 4, 两边同时除以a 4,得3e 4-16e 2+16=0, 解得e 2=4或e 2=43.又b >a ,所以e 2=a 2+b 2a 2=1+b 2a2>2,则e =2.于是双曲线的离心率为2.层级二 应试能力达标1.若双曲线与椭圆x 216+y 264=1有相同的焦点,它的一条渐近线方程为y =-x ,则双曲线的方程为( )A .y 2-x 2=96 B .y 2-x 2=160 C .y 2-x 2=80D .y 2-x 2=24解析:选D 设双曲线方程为x 2-y 2=λ(λ≠0),因为双曲线与椭圆有相同的焦点,且焦点为(0,±43),所以λ<0,且-2λ=(43)2,得λ=-24.故选D.2.若中心在原点,焦点在x 轴上的双曲线的一条渐近线经过点(4,-2),则它的离心率为( )A. 6B. 5C.62D.52解析:选D 设双曲线的标准方程为x 2a 2-y 2b2=1(a >0,b >0).由题意,知过点(4,-2)的渐近线方程为y =-b a x ,所以-2=-b a×4,即a =2b .设b =k (k >0),则a =2k ,c =5k ,所以e =c a =5k 2k =52.故选D. 3.已知双曲线E 的中心为原点,F (3,0)是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为N (-12,-15),则E 的方程为( )A.x 23-y 26=1B.x 24-y 25=1C.x 26-y 23=1 D.x 25-y 24=1解析:选B 设双曲线的标准方程为x 2a 2-y 2b2=1(a >0,b >0),由题意知c =3,a 2+b 2=9,设A (x 1,y 1),B (x 2,y 2)则有⎩⎪⎨⎪⎧x 21a 2-y 21b2=1,x 22a 2-y22b 2=1,两式作差得y 1-y 2x 1-x 2=b 2x 1+x 2a 2y 1+y 2=-12b 2-15a 2=4b25a2,又AB 的斜率是-15-0-12-3=1,所以4b 2=5a 2,代入a 2+b 2=9得a 2=4,b 2=5, 所以双曲线标准方程是x 24-y 25=1.4.已知A ,B 为双曲线E 的左,右顶点,点M 在E 上,△ABM 为等腰三角形,且顶角为120°,则E 的离心率为( )A. 5 B .2 C. 3D. 2解析:选D 不妨取点M 在第一象限,如图所示,设双曲线方程为x 2a 2-y 2b2=1(a >0,b >0),则|BM |=|AB |=2a ,∠MBx =180°-120°=60°,∴M 点的坐标为()2a ,3a .∵M 点在双曲线上,∴4a 2a 2-3a2b2=1,a =b ,∴c =2a ,e =c a= 2.故选D.5.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点为F ,若过点F 且倾斜角为60°的直线l与双曲线的右支有且只有一个交点,则此双曲线的离心率e 的取值范围是________________________________________________________________________.解析:由题意,知b a ≥3,则b 2a 2≥3,所以c 2-a 2≥3a 2,即c 2≥4a 2,所以e 2=c 2a2≥4,所以e ≥2.答案:[2,+∞)6.双曲线x 29-y 216=1的右顶点为A ,右焦点为F ,过点F 平行于双曲线的一条渐近线的直线与双曲线交于点B ,则△AFB 的面积为________.解析:双曲线x 29-y 216=1的右顶点A (3,0),右焦点F (5,0),渐近线方程为y =±43x .不妨设直线FB 的方程为y =43(x -5),代入双曲线方程整理,得x 2-(x -5)2=9,解得x =175,y =-3215,所以B ⎝ ⎛⎭⎪⎫175,-3215.所以S △AFB =12|AF ||y B |=12(c -a )·|y B |=12×(5-3)×3215=3215. 答案:32157.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的一个焦点是F 2(2,0),离心率e =2.(1)求双曲线C 的方程;(2)若斜率为1的直线l 与双曲线C 交于两个不同的点M ,N ,线段MN 的垂直平分线与两坐标轴围成的三角形的面积为4,求直线l 的方程.解:(1)由已知得c =2,e =2,所以a =1,b = 3.所以所求的双曲线方程为x 2-y 23=1.(2)设直线l 的方程为y =x +m ,点M (x 1,y 1),N (x 2,y 2).联立⎩⎪⎨⎪⎧y =x +m ,x 2-y 23=1,整理得2x 2-2mx -m 2-3=0.(*)设MN 的中点为(x 0,y 0),则x 0=x 1+x 22=m2,y 0=x 0+m =3m2,所以线段MN 垂直平分线的方程为y -3m 2=-⎝ ⎛⎭⎪⎫x -m 2,即x +y -2m =0,与坐标轴的交点分别为(0,2m ),(2m,0),可得12|2m |·|2m |=4,得m 2=2,m =±2,此时(*)的判别式Δ>0,故直线l 的方程为y =x ± 2.8.已知双曲线C :x 2-y 2=1及直线l :y =kx -1.(1)若直线l 与双曲线C 有两个不同的交点,求实数k 的取值范围;(2)若直线l 与双曲线C 交于A ,B 两点,O 为坐标原点,且△AOB 的面积是2,求实数k 的值.解:(1)由⎩⎪⎨⎪⎧y =kx -1,x 2-y 2=1消去y ,得(1-k 2)x 2+2kx -2=0.①由直线l 与双曲线C 有两个不同的交点,得⎩⎪⎨⎪⎧1-k 2≠0,Δ=4k 2+81-k2>0,解得-2<k <2且k ≠±1.即k 的取值范围为(-2,-1)∪(-1,1)∪(1,2).(2)设A (x 1,y 1),B (x 2,y 2),由方程①,得x 1+x 2=-2k 1-k 2,x 1x 2=-21-k 2.因为直线l :y =kx -1恒过定点D (0,-1),则当x 1x 2<0时,S △AOB =S △OAD +S △OBD =12|x 1-x 2|=2;当x 1x 2>0时,S △AOB =|S △OAD -S △OBD |=12|x 1-x 2|= 2.综上可知,|x 1-x 2|=22,所以(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=(22)2,即⎝⎛⎭⎪⎫-2k 1-k 22+81-k 2=8,解得k =0或k =±62.由(1),可知-2<k <2且k ≠±1,故k =0或k =±62都符合题意.。

双曲线的简单几何性质(基础知识+基本题型)(含解析)2021-2022学年高二数学上学期

3.2.2双曲线的简单几何性质(基础知识+基本题型)知识点一 双曲线的性质根据双曲线的标准方程22221(0,0)x y a b a b-=>>研究它的几何性质.1.范围,x a y R ≥∈,即,x a x a y R ≥≤-∈或.双曲线位于两条直线x a =±的外侧.讨论双曲线的范围就是确定方程中变量,x y 的范围,由不等式222211x y a b =+≥,得||x a ≥,由222211y x b a--≥-,得y R ∈. 提示双曲线在直线x a =与x a =-之间没有图象,当x 无限增大时,y 也无限增大,所以双曲线是无限伸展的,不像椭圆那样是封闭的.2.对称性双曲线的图象关于x 轴、y 轴成轴对称,关于原点成中心对称,我们把x 轴、y 轴叫做双曲线的对称轴,原点(0,0)O 叫做双曲线的对称中心,简称中心. 提示(1)把双曲线标准方程中的x 换成x -,方程并没有发生变化,说明当点(,)P x y 在双曲线上时,它关于y 轴的对称点1(,)P x y -也在双曲线上,所以双曲线的图象关于y 轴成轴对称.(2)同理,把双曲线标准方程中的y 换成y -,可以说明双曲线的图象关于关于x 轴成轴对称;把双曲线标准方程中的x 换成x -,y 换成y -,可以说明双曲线的图象关于原点成中心对称. (3)如果曲线具有三种对称性的其中两种,那么它就具有另一种对称性.(4)对于任意一个双曲线而言,对称轴是两个焦点的连线所在直线及其垂直平分线,且双曲线的中心是双曲线的对称中心.3.顶点与实轴、虚轴如图所示.(1)双曲线和其对称轴的交点叫做双曲线的顶点,双曲线的顶点为1(,0)A a -,2(,0)A a . (2)线段12A A 叫做双曲线的实轴,线段12B B 叫做双曲线的虚轴.(3)实轴长122A A a =,虚轴长122B B b =,,a b 分别为双曲线的半实轴长和半虚轴长.拓展双曲线中,,a b c 的几何意义及特征三角形:(1)当双曲线焦点在x 轴上时,a 是半实轴长,b 是半虚轴长,且222c a b =+,所以以,,a b c 为三边长可构成直角三角形,如图2.3-10所示,其中22Rt OA B ∆称为双曲线的特征三角形,双曲线的焦点永远在实轴上.(2)当双曲线的焦点在y 轴上时,可得类似的结论.4.渐近线(1)渐近线画法:经过点1(,0)A a -,2(,0)A a 作y 轴的平行线x a =±,经过点1(0,)B b -,2(0,)B b 作x轴的平行线y b =±,四条直线围成一个矩形,矩形 两条对角线,这两条对角线所在的直线即为双曲线的渐近线.双曲线22221x y a b-=的各支向外延伸时,与这两条直线逐渐接近.(2)渐近线方程:by x a =±.拓展(1)双曲线22221x y a b -=的渐近线方程为b y x a =±,双曲线22221y x a b -=的渐近线方程为ay x b=±,两者容易混淆,可先将双曲线方程中的“1”换成“0”,再因式分解即可得渐近线方程,这样就不容易记错了.(2)双曲线与它的渐近线无限接近,但永远不相交.(3)与双曲线22221x y a b -=共渐近线的双曲线方程可设为2222(0)x y a b λλ-=≠;与双曲线22221x y a b-=共焦点的双曲线方程可设为2222221()x y b a a b λλλ-=-<<-+.5.离心率(1)定义:双曲线的焦距与实轴长的比叫做双曲线的离心率,定义式c e e a =⇒(2)范围:1e >.由等式222c a b =+,得b a ==e 越大,b a 也越大,即渐近线b y xa=±的斜率的绝对值越大,这时双曲线的形状就越陡,由此可知,双曲线的离心率越大,它的开口就越开阔. 提示因为c e a =,c ,所以e =,b a222(1)b a e =-,在,,,a b c e 四个参数中,只要知道其中两个,就可以求出另两个,关键要熟悉它们之间的关系. 知识点二 等轴双曲线与共轭双曲线1.实轴和虚轴等长的双曲线叫等轴双曲线,等轴双曲线有如下性质:(1)方程形式为22(0)x y λλ-=≠;(2)渐近线方程为y x =±,它们互相垂直,并平分双曲线实轴和虚轴所成的角;(3.2. 以双曲线的虚轴为实轴,实轴为虚轴的双曲线,与原双曲线是一对共轭双曲线.例如,双曲线22221(0,0)x y a b a b -=>>与22221(0,0)y x a b b a -=>>是一对共轭双曲线,其性质如下: (1)双曲线与它的共轭双曲线有相同的渐近线; (2)双曲线与它的共轭双曲线有相同的焦距. 知识点三 直线与双曲线的位置关系 1. 直线与双曲线有三种位置关系:(1)无公共点,此时直线有可能为双曲线的渐近线.(2)有一个公共点,分两种情况:①直线是双曲线的切线,特别地,直线过双曲线一个顶点,且垂直于实轴;②直线与双曲线的一条渐近线平行,与双曲线的一支有一个公共点. (3)有两个公共点,可能都在双曲线一支上,也可能两支上各有一个点.2. 当直线与双曲线相交时,先联立直线方程与双曲线方程可求得两个交点的坐标,从而根据距离公式求出弦长,再结合双曲线的定义,还可以求解焦点三角形的周长等.3. 当直线与双曲线相交时,涉及中点问题,可首先设出直线与双曲线两交点的坐标,然后分别代入双曲线方程,最后作差,即得中点坐标与该直线的斜率的关系式.考点一由方程求双曲线的几何性质例 1 求双曲线22494y x-=-的半实轴长、半虚轴长、焦点坐标、离心率、渐近线方程,并画出该双曲线的草图.解:将双曲线化为221 419x y-=,可知半实轴长4293a=,半虚轴长1b=,于是有2241319c a b=+=+=,所以焦点坐标为13(,离心率为13cea==渐近线方程为by xa=±,即32y x=±.为画出双曲线的草图,首先在平面直角坐标系中画出渐近线32y x =±,且顶点坐标为2(,0)3±,然后算出双曲线在第一象限内一点的坐标,如取1y=,算出230.94x=≈.由题意,知点(0.94,1)±在双曲线上,将三点(0.94,1)-,2(,0)3,(0.94,1)依次连成光滑曲线并让它逐步接近渐近线,画出第一、第四象限内双曲线的一支,最后由对称性可画出双曲线位于第二、三象限内的另一支,得双曲线的草图如图所示.已知双曲线的方程讨论其几何性质时,需先看所给方程是否为标准方程,若不是,需先把方程化为标准方程,这样便于直观写出,a b的值,进而求出c的值及双曲线的焦点坐标、顶点坐标、离心率与渐近线方程.考点二由双曲线的几何性质求标准方程例2求满足下列条件的双曲线的标准方程:(1)一个焦点为(0,13),且离心率为135;(2)渐近线方程为12y x=±,且经过点(2,3)A- .解:(1)由题意,知双曲线的焦点在y 轴上,且13c =,由于135c a =,所以5a =,12b =. 故所求双曲线的标准方程为22125144y x -=.(2)因为双曲线的渐近线方程为12y x =±,若焦点在x 轴上,设所求双曲线标准方程为22221(0,0)x y a b a b -=>>,则12b a =.(Ⅰ)因为点(2,3)A -在双曲线上,所以22491a b -=. (Ⅱ) 联立(Ⅰ)(Ⅱ),无解.若焦点在y 轴上,设所求双曲线标准方程为22221(0,0)y x a b a b -=>>,则12a b =.(Ⅲ)因为点(2,3)A -在双曲线上,所以22941a b -=. (Ⅳ) 联立(Ⅲ)(Ⅳ),解得228,32a b ==. 故所求双曲线的标准方程为221832y x -=.当双曲线的焦点不明确时,方程可能有两种形式,此时应分类讨论.为了避免讨论,也可设双曲线方程为221(0)mx ny mn -=>,从而直接求得.若已知双曲线的渐近线方程为by x a =±,则可设方程为2222(0)x y a b λλ-=≠,避免讨论焦点的位置. 考点三 双曲线的离心率1.求离心率的值例3 已知12,F F 是双曲线22221(0,0)x y a b a b-=>>的两个焦点,PQ 是经过1F 且垂直与x 轴的双曲线的弦,如果0290PF Q ∠=,求双曲线的离心率.解:设1(,0)F c ,将x c =代入双曲线方程,得22221c y a b -=,所以2b y a =±.由22PF QF =,0290PF Q ∠=,知112PF F F =,所以22b c a =,22b ac =,所以2220c ac a --=.即2210e e --=,解得1e =+1e =.故所求双曲线的离心率为1求双曲线离心率的常用方法(1)依据条件求出,a c ,计算c e a=; (2)依据条件建立关于,,a b c 的关系式,一种方法是消去b 转化为关于e 的方程求解;另一种方法是消去c 转化为含b a 的方程,求出ba后利用221b e a =+求解.例4 设双曲线22221(0,0)x y a b a b-=>>的焦距长为2c ,直线l 过点(,0)A a ,(0,)B b 两点,已知原点到直线l的距离为34c ,则双曲线的离心率为 . 解析:如图所示,在△OAB 中,OA a =,OB b =,34OE c =,22AB a b c =+=.因为AB OE OA OB ⋅=⋅, 所以3c ab =223)a b ab +=,两边同除以2a 233()0b b a a -=, 解得3ba=3b a =所以212c b e a a ⎛⎫==+ ⎪⎝⎭.答案:2223)a b ab +=,此方程可称为关于,a b 的齐次方程,转化为以ba为变量的一元二次方程是求解的关键.2.求离心率的范围例5 双曲线22221(1,0)x y a b a b-=>>的焦距为2c ,直线l 过点(,0)a ,(0,)b 两点,且点(1,0)到直线l 的距离与点(1,0)-到直线l 的距离之和45s c ≥,求双曲线的离心率e 的取值范围.解:由题意,知直线l 的方程为1x ya b +=,即0bx ay ab +-=. 因为点(1,0)到直线l 的距离122d a b =+,点(1,0)-到直线l 的距离222d a b =+,所以122abs d d c=+=. 由45s c ≥,得2ab c 45c ≥,即252c .于是得22e ,即22425250e e -+≤.解得2554e ≤≤.因为1e >,所以e的取值范围是. 求双曲线离心率的范围时,要根据题意挖掘题中隐含的不等关系,构造不等式,从而求出双曲线的离心率的取值范围.例6 双曲线222:1(0)x C y a a-=>与直线:1l x y +=相交于两个不同的点,A B ,则双曲线的离心率e 的取值范围是 .解:由22211x y a x y ⎧-=⎪⎨⎪+=⎩,消去y ,得到2222(1)220a x a x a -+-=,由题意知,24221048(1)0a a a a ⎧-≠⎪⎨+->⎪⎩,解得(0,1)(1,2)a ∈.所以c e a ===,所以(2,)e ∈+∞.答案:(2,)+∞ .利用一元二次方程根的判别式构建不等关系是一种常用的方法,另外也可利用基本不等式构建不等关系,线性规划中的区域符号也可构建不等关系. 考点四 直线与双曲线的位置关系例7 已知双曲线22:1C x y -=及直线:1l y kx =-.若直线l 与双曲线C 有两个不同的交点,求实数则k 的取值范围.解:由2211x y y kx ⎧-=⎪⎨=-⎪⎩,消去y ,得到22(1)220k x kx -+-=,由题意,知2221048(1)0k k k ⎧-≠⎪⎨+->⎪⎩,解得k <,且1k ≠±. 故实数k 的取值范围是(1)(1,1)(1,2)--.直线与双曲线交点问题,常利用直线方程与双曲线方程构成的方程组求解.。

双曲线的简单几何性质 (一) - 浙江省桐乡

双曲线的简单几何性质 (一)高二数学 方蕾教学目标:1.使学生掌握双曲线的范围、对称性、顶点、渐近线、离心率等几何性质.2.用双曲线的方程去研究其几何性质,进一步反应了解析几何的特点,并用图像帮助理解双曲线的几何性质,解决一些相关问题.2.通过类比椭圆的简单几何性质的方法来研究双曲线的简单几何性质,在老师引导下让学生积极讨论、归纳,培养学生的观察、研究能力,增强他们的自信心. 教学重点:双曲线的简单几何性质 教学难点:渐近线的求法及理解 授课类型:新授课 课时安排:1课时教 具:多媒体、三角板 内容分析:本节知识是讲完了双曲线及其标准方程之后,反过来利用双曲线的方程研究双曲线的几何性质. 它是教学大纲中要求学生必须掌握的内容,也是高考的一个考点 用坐标法研究几何问题,是数学中一个很大的课题,这里主要是对双曲线的几何性质的讨论以及利用性质解决相关数学问题.本节内容类似于“椭圆的简单的几何性质”,教学中也可以与其类比讲解,主要应指出它们的联系与区别.教学流程: (一)复习引入1. 双曲线的定义及其标准方程平面内到两定点21,F F 的距离的差的绝对值为常数(大于0且小于21F F )的动点的轨迹叫双曲线。

即a MF MF 221=-(0<2a <21F F )焦点在x 轴上时:()0,012222>>=-b a b y a x 焦点在y 轴上时:()0,012222>>=-b a b x a y(注:双曲线是根据项的正负来判断焦点所在的位置)c b a ,,的关系:222b a c +=0>>a c ,c 最大,b a ,可以a =2.椭圆的简单几何性质以()012222>>=+b a bya x为例⑴范围: b y b a x a ≤≤-≤≤- ,⑵对称性:以坐标轴为对称轴,原点为对称中心⑶顶点坐标:()()()(),b ,B ,-b , B a,,A a,A 00002121-长轴:线段21A A 长为2a ,a 短轴:线段21B B 长为2b ,b ⑷离心率:()1,0 ,∈=e ac e探究:类比椭圆几何性质的研究,你认为应研究双曲线的哪些性质?应如何研究这些性质? (二)新课讲解利用双曲线的方程研究双曲线的几何性质以焦点坐标在x 轴上的标准方程为例,()0,012222>>=-b a by ax1.范围由标准方程12222=-b y a x 可得112222≥+=b y a x ,即22a x ≥,当a x ≥时,y 才有实数值,这说明双曲线在不等式a x -≤与a x ≥所表示的区域内;对于y 的任何值,x 都有实数值 这说明从横的方向来看,直线a x a x =-=和之间没有图象,从纵的方向来看,随着x的增大,y 的绝对值也无限增大,所以曲线在纵方向上可无限伸展,不像椭圆那样是封闭曲线2.对称性:类比研究椭圆对称性的研究方法,容易得到,双曲线关于x 轴、y 轴和原点都是对称的,这时,坐标轴是双曲线的对称轴,原点是双曲线的对称中心.双曲线的对称中心叫做双曲线的中心. 2.顶点在双曲线方程12222=-b y a x 中,令讲解:结合图形,讲解顶点和轴的概念,0=y 得a x ±=,故它与x 轴有两个交点),0,(1a A()0,2a A -,且x 轴为双曲线12222=-b y a x 的对称轴,所以()0,),0,(21a A a A -为其对称轴的交点,称为双曲线的顶点(一般而言,曲线的顶点均指与其对称轴的交做双曲线12222=-by ax 的实轴,它点),而对称轴上位于两顶点间的线段21A A 叫的长是2a .在方程12222=-by a x 中令0=x 得22b y -=,这个方程没有实数根,说明双曲线和y 轴没有交点。

人教版-高中数学选修1-1-第二章 2.2.2 双曲线的简单几何性质


5 y x 7
例2 双曲线型自然通风塔的外形,是双曲线的一部 分绕其虚轴旋转所成的曲面,它的最小半径为12m, 上口半径为13m,下口半径为25m,高55m,选择适当 的坐标系,求出双曲线方程. y 13 建立如图直角坐标系,使小圆直径AA' C C 解: 12
/
在x 轴上,圆心与原点重合,这时上、下 口的直径CC',BB'平行于x轴。
(c a ) x a y a (c a ) 2 2 x y 2 2 2 令c a b 得 2 2 1(a 0, b 0) a b
2 2 2 2 2 2 2 2
| MF | c P {M | } d a 2 2 ( x c) y c 2 a a | x | c
双曲线第二定义
定义:
准线方程:
离心率
8 2
6 18
|x|≥3
4 4
4
| x | 4 2
10 14
|y|≥5
4
2 ,0

|y|≥2
(±3,0) (0,±2) (0,±5)
10 ,0
6,0 3
3 2 e 4
0,2 2 0,
e 2
e
74
74 5

e 10
y=±3x
2 y x 4
y x
c e (e 1) a
y a, y a
B1 (0, a ), B2 (0, a )
c e (e 1) a
对称性 关于x轴,y轴,原点对称 关于x轴,y轴,原点对称
顶点 离心率
例3 点M ( x, y)与定点F (c,0)的距离和它到定直线
a2 c l : x 的距离的比是常数 (c a 0), 求点M的轨迹方程. c a 如图,设d是点M到直线l的距离, 解: 依题意得点M的集合为

高二数学——选修21圆锥曲线课件双曲线的性质1


实轴 A1A2 虚轴 B1B2
e= c
a
y=±
b a
x
Y B2
0
A2 F2 X
B1
➢ 双曲线图像(2)
标准方程
范围
对称性
顶点
焦点
A1
对称轴
离心率 渐近线
Y F2 B2
y2 x2 1 a2 b2
O
A2 X
B1
F1
➢双曲线图像与性质(2)
标准方程 范围
y2 a2
x2 b2
1
y≥a 或y≤-a
对称性
直线方程: y=
b a
x
F1 A1
0
设M(x,y) 是c上一点,
B1
Q .N.. M
A2 F2 X
N (x,Y)是直线 y=
b a
x
上一点。
b a
=√ e2- 1
Y
▪ e越小(接近1)
B2
b a
越接近0
F1 A1
0
双曲线开口越小(褊狭)
B1

e越大
b 越大
a
双曲线开口越大(开阔)
A2 F2 X
双曲线的简单几何性质
双曲线的定义
点p到两定点
Y
F1 F2的距离之差
p
的绝对值为常数 (小于F1 F2的距离)
F1
0
F2 X
点p 的轨迹
双曲线的简单几何性质
➢双曲线图像(1)
标准方程 范围 对称性 顶点 焦点
对称轴 离心率 渐近线
F1 A1
Y
x2 a2
y2 b2
1
B2
0
B1
A2 F2 X
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.2 双曲线
第3课时 双曲线的简单几何性质(一)
一、知识与方法:

1、
双曲线12222byax实轴长为2a,虚轴长为2b,离心率ace221ba离心率e

越大,开口越大.
2、双曲线12222byax的渐近线方程为xaby或表示为02222byax.若已知双曲

线的渐近线方程是xnmy,即0nymx,那么双曲线的方程具有以下形式:
kynxm
2222
,其中k是一个不为零的常数.

3、双曲线的方程与渐近线方程的关系

①若双曲线方程为12222byax渐近线方程:22220xyabxaby;

②若渐近线方程为xaby0byax双曲线可设为2222byax;
③若双曲线与12222byax有公共渐近线,可设为2222byax(0,焦点在x轴上,
0
,焦点在y轴上).

基础练习:

1、双曲线22154xy的( )

A、实轴长为25,虚轴长为4,渐近线方程为255yx
B、23实轴长为25,虚轴长为8,渐近线方程为55yx
C、实轴长为25,虚轴长为4,渐近线方程为25yx
D、实轴长为25,虚轴长为8,渐近线方程为52yx
2、双曲线的实轴长与虚轴长之和等于其焦距的2倍,且一个顶点的坐标为(0,2),则双
曲线的标准方程为( )
A、22144xy B、22144yx C、22148yx D、22184xy

3、椭圆222134xyn和双曲线222116xyn有共同的焦点,则实数n的值是( )
A、5 B、3 C、25 D、9
4、双曲线与椭圆2211664xy有相同的焦点,它的一条渐近线为yx,则双曲线的方程
为 ;
5、双曲线22194xy的渐近线方程为 。
巩固练习:
6、P是双曲线22219xya上一点,双曲线的一条渐近线方程为320xy, 1F、2F分
别为双曲线左、右焦点,若1||3PF,则2||PF( )
A、1或5 B、6 C、7 D、9
7、双曲线的渐近线方程为34yx,则双曲线的离心率为( )

A、53 B、52 C、52或153 D、53或54
8、双曲线的离心率为2,则双曲线的两渐近线的夹角为( )
A、045 B、030 C、060 D、090
9、已知1(2,0)F,2(2,0)F,动点P满足21||||2PFPF,当点P的纵坐标是12时,
点P到原点的距离是 ;
10、已知平面内有一条长度为4的定线段AB,动点P满足||||3PAPB,O为AB的中
点,则||OP的最小值为 ;

11、过双曲线22221(0,0)xyabab的左焦点且垂直于x轴的直线与以曲线相交于M、N
两点,以MN为直径的圆恰好过双曲线的右顶点,则双线的离心率等于 ;
12、已知等轴双曲线222xya,
(1)求证:2e;(2)求双曲线的渐近线方程,并证明两条渐近线相互垂直。

13、已知双曲线的中心在原点,焦点1F、2F在坐标轴上,2e,且过点(4,10)P。
(1)求此双曲线的方程;
(2)若(3,)Mm在双曲线上,求证12MFMF
(3)求12FMF的面积。

能力提高:
14、设双曲线22221(0)xyabab的半焦距为c,直线l过(,0)a、(0,)b两点,且原点到

直线l的距离为34c,求双曲线的离心率。
15、已知1F、2F是双曲线22221(0,0)xyabab的两焦点,以线段12FF为边作正三角
形12MFF,若边1MF的中点在双曲线上,求此双曲线的离心率。

相关文档
最新文档