人教版七年级数学上册1.3.1有理数的加法法则学案

合集下载

新人教版七年级数学上册 1.3.1《有理数的加法》教学设计

新人教版七年级数学上册 1.3.1《有理数的加法》教学设计

新人教版七年级数学上册 1.3.1《有理数的加法》教学设计一. 教材分析新人教版七年级数学上册1.3.1《有理数的加法》是学生在学习了有理数的概念之后,进一步学习有理数的运算。

本节内容主要介绍了有理数的加法法则,以及加法运算的应用。

通过本节课的学习,学生能够理解有理数加法的本质,掌握有理数加法的基本运算方法,并为后续学习其他有理数运算打下基础。

二. 学情分析七年级的学生已经具备了一定的数学基础,对数学概念和运算有一定的认识。

但是,对于有理数的加法,学生可能还存在一些模糊的认识,需要通过实例和练习来进一步理解和掌握。

此外,学生可能对有理数的加法法则理解不深,不能灵活运用到实际问题中。

三. 教学目标1.理解有理数加法的概念,掌握有理数加法的基本法则。

2.能够运用有理数加法法则,解决实际问题。

3.培养学生的运算能力,提高学生的数学思维能力。

四. 教学重难点1.有理数加法的概念和法则。

2.有理数加法在实际问题中的应用。

五. 教学方法采用启发式教学法,通过实例和练习,引导学生主动探究有理数加法的法则,培养学生的运算能力和数学思维能力。

同时,采用分组合作学习,让学生在交流和讨论中,进一步理解和掌握有理数加法。

六. 教学准备1.PPT课件。

2.实例和练习题。

3.分组合作学习的安排。

七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生思考有理数加法的意义,激发学生的学习兴趣。

例如:小明从家出发,先向正北方向走了5千米,然后又向正南方向走了3千米,他现在在哪里?2.呈现(10分钟)通过PPT课件,呈现有理数加法的定义和法则,引导学生直观地理解有理数加法。

同时,通过实例,讲解有理数加法的运算过程,让学生掌握有理数加法的基本方法。

3.操练(10分钟)让学生进行有理数加法的练习,巩固所学内容。

可以设置一些选择题和填空题,让学生在练习中,进一步理解和掌握有理数加法。

4.巩固(10分钟)通过一些实际问题,让学生运用有理数加法法则,解决问题。

人教版七年级上册第一章有理数的加法教学设计

人教版七年级上册第一章有理数的加法教学设计

人教版七年级上册第一章有理数的加法教学设计1.3.1有理数的加法一、教学目标(一)知识与技能:通过实例,了解有理数加法的意义,会根据有理数加法法则进行运算;(二)过程与方法:经历有理数加法法则的探究过程,深刻感受分类讨论、数形结合的思想,由具体到抽象、由特殊到一般的规律;(三)情感态度与价值观:通过师生活动,学会自我探究,让学生充分参与到数学学习的过程中来。

二、教学重、难点重点:了解有理数加法的意义,会根据有理数加法法则进行运算;难点:有理数的加法中异号两数如何进行加法运算。

三、教学过程(一)创设情境,导入问题活动1学校的运动会刚结束不久,我们知道在足球循环赛中,通常把进球数记为正数,失球数记为负数,它们的和叫做净胜球数。

那么,在本次运动会中,我们学校红队进4个球,失两个球。

蓝队进一个球,失一个球。

请问两队的净胜球数分别是多少?如何表示?红队:4+(-2)蓝队:1+(-1)师:请同学们观察这两个式子,和我们小学所学的加法运算有什么不同呢?生:有了负数的参加师:像这种有了负数的参加的加法运算我们称为什么?想知道有理数是如何进行相加的呢?那么我们今天就来共同研究——有理数的加法(引出课题)。

设计意图:采用与生活实际相关的足球比赛引入,通过净胜球数说明实际问题中要用到正数与负数的加法,从而提出问题,让学生思考,可以激发学生探究的热情。

(二)启发探索,获取新知活动2看下面的问题1、一个物体作左右方向的运动,我们规定向左为负,向右为正。

向右运动5m记作5m,向左运动5m记作-5m.如果物体先向右运动5m,再向右运动3m,那么两次运动后总的结果是什么?两次运动后物体从起点向右运动8m.写成算式就是:5+3=8①2、如果物体先向左运动5m,再向左运动3m,那么两次运动后总的结果是什么?两次运动后物体从起点向左运动8m.写成算式就是:(-5)+(-3)=-8②这个运算也可以用数轴表示,其中假设原点O为运动起点:-3–9–8–7–6–5-8–4-5–3–2–1O设计意图:在一条直线上的两次运动的实例中,要说明一下几点:1、原点是第一次运动的起点;2、第二次运动的起点是第一次运动的终点;3、由第二次运动的终点与原点的相对位置得出两次运动的结果;4、如果用正数表示向右运动,用负数表示向左运动,就可以用算式描述相应的问题。

人教版七年级数学RJ上册精品教案 第1章 有理数 1.3 有理数的加减法 1.3.1 有理数的加法

人教版七年级数学RJ上册精品教案 第1章 有理数 1.3 有理数的加减法 1.3.1 有理数的加法

1.3 有理数的加减法1.3.1 有理数的加法第1课时有理数的加法法则教师备课素材示例●置疑导入展示世界杯图片:问题1:在足球比赛中,通常把进球数记为正数,失球数记为负数,它们的和叫做净胜球数.某届世界杯中,德国队在第一场上半场赢了2个球,下半场输了1个球,德国队在本场比赛的净胜球数是多少?问题2:若我们把进一个球记为+1,失一个球记为-1,则德国队本场的净胜球数如何用算式表示呢?【教学与建议】教学:从学生熟悉的情景出发,找准新知识的起点,提出疑问,激发学生的学习兴趣和求知欲.建议:学生单独完成,完成后教师引导学生观察此算式的特征,进而引入新课.●情景导入(多媒体展示)回答下列问题:“飞天英雄”翟志刚在太空行走时穿着厚厚的太空服,一个重要的原因就是飞船舱外温度太低,达到-100 ℃,而舱内的最低温度比舱外温度约高118 ℃,要想知道舱内的最低温度,该怎样计算呢?●悬念激趣动物王国开运动会,小蚂蚁充当火炬手.小蚂蚁从某点出发在一条直线上来回爬,假设向右为正,向左为负,小蚂蚁爬行的过程记录如下(单位:cm):+6,+11,-7,-4,-6.问:小蚂蚁最后能回到出发点吗?【教学与建议】教学:创造一种轻松的学习氛围,导入有理数的加法法则.建议:让学生说明思考过程、讨论算法.两个有理数相加,既要考虑符号,又要考虑绝对值.【例1】下列各式中,计算结果为正的是(C)A.4.1+(-5.5) B.(-6)+2C.-3+5 D.0+(-1)【例2】计算:(-3)+(-4)=__-7__.步骤:(1)根据数轴确定两个加数的正负;(2)根据数轴确定是用绝对值相加还是相减;(3)根据法则计算结果.【例3】有理数a,b在数轴上的对应点的位置如图所示,则下列对a +b的值的判断错误的是(A)A.大于0 B.小于0 C.小于aD.大于b【例4】若有理数a,b对应的点在数轴上的位置如图所示,则a+b__<__0(选填“=”“>”或“<”).利用有理数的加法解答实际问题时,(1)找出具有相反意义的量,分别用正、负数表示;(2)将实际问题转化为有理数的加法运算;(3)根据计算结果,结合实际问题确定答案.【例5】“规定向左为负,向右为正,现把笔尖放在数轴的原点处,先向左移动3个单位长度,再向右移动1个单位长度,这时笔尖的位置表示什么数?”写成算式是(B)A.(-3)-(+1)=-4 B.(-3)+(+1)=-2C.(+3)+(-1)=+2 D.(+3)+(+1)=+4【例6】一艘潜艇所在高度为-80 m,一条鲨鱼在潜艇上方30 m处,则鲨鱼所在高度为__-50__m__.高效课堂教学设计1.掌握有理数加法法则,会正确进行有理数的加法运算.2.利用有理数的加法运算解决简单的实际问题.▲重点掌握有理数加法法则,会正确进行有理数的加法运算.▲难点能运用加法运算律简化加法运算.◆活动1 新课导入有理数的绝对值的定义是什么?答:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.在小学我们学过正数与0的加法运算,引入负数后,怎样进行加法运算呢?本节课我们共同来研究这个问题.◆活动2 探究新知教材P 16~18 内容.提出问题:(1)一个物体先向右移动5 m ,再向右移动3 m ,两次运动的最后结果是多少?请列算式表示;(2)一个物体先向左移动5 m ,再向左移动3 m ,两次运动的最后结果是多少?请列算式表示;(3)一个物体先向左移动3 m ,再向右移动5 m ,两次运动的最后结果是多少?请列算式表示;(4)一个物体先向右移动3 m ,再向左移动5 m ,两次运动的最后结果是多少?请列算式表示;(5)一个物体先向右移动5 m ,再向左移动5 m ,两次运动的最后结果是多少?请列算式表示;(6)一个数同0相加,结果是多少?(7)你能归纳一下有理数加法法则吗?学生完成并交流展示.◆活动3 知识归纳1.同号两数相加,取__相同__的符号,并把绝对值__相加__.2.绝对值不相等的异号两数相加,取绝对值较__大__的加数的符号,并用__较大__的绝对值减去__较小__的绝对值.互为相反数的两个数相加得__0__.3.一个数同0相加,仍得__这个数__.4.(1)若a >0,b >0,则a +b__>__0;(2)若a <0,b <0,则a +b__<__0;(3)若a >0,b <0,且|a|>|b|,则a +b__>__0;(4)若a >0,b <0,且|a|<|b|,则a +b__<__0.◆活动4 例题与练习例1 教材P 18 例1.例2 计算:(1)(+3)+(+8); (2)⎝ ⎛⎭⎪⎫+14+⎝ ⎛⎭⎪⎫-12;(3)⎝⎛⎭⎪⎫-312+(-3.5); (4)-3.4+4; (5)(-2.8)+2.8; (6)|(-19)+8.3|.解:(1)原式=+(3+8)=11;(2)原式=-⎝ ⎛⎭⎪⎫12-14=-14; (3)原式=-(3.5+3.5)=-7;(4)原式=+(4-3.4)=0.6;(5)原式=0;(6)原式=|-(19-8.3)|=|-10.7|=10.7.例3 一只蜗牛爬树,白天向上爬了1.5 m ,夜间向下爬了0.3 m ,白天和夜间一共向上爬了多少米?解:规定向上为正,向下为负,1.5+(-0.3)=+(1.5-0.3)=1.2(m).答:蜗牛一共向上爬了1.2 m .练习1.教材P 18~19 练习第1,2,3,4题.2.下列运算正确的是(D)A .(-2)+(-2)=0B .(-6)+(+4)=-10C .(+12)+(+3)=-15D .(+21)+(-2)=193.有下列说法:①若两个加数都是正数,其和一定为正数;②若两个数的和是正数,则这两个加数一定都为正数;③若两个加数都是负数,其和一定为负数;④若两个数的和是负数,则这两个加数一定都为负数.其中正确的有(C)A .0个B .1个C .2个D .3个4.A 地的海拔为-21 m ,B 地的海拔比A 地高68 m ,则B 地的海拔为__47__m.5.已知m ,n ,,n 互为相反数,+n +,n 互为相反数,∴m +n =0.又∵x 的绝对值等于6,∴x =-6或+n ++n ++n +x 的值为-6或6.◆活动5 课堂小结1.有理数的加法法则.2.运用有理数的加法法则解决问题.1.作业布置(1)教材P 24 习题1.3第1题;(2)对应课时练习.2.教学反思。

七年级数学上册 1.3.1 有理数的加法教案 (新版)新人教版

七年级数学上册 1.3.1 有理数的加法教案 (新版)新人教版
5+0=5 或(—5)+0= —5。
这两个式子有什么特点呢?按照前面的方法让学生回答
总结:有理数加法法则:
1.同号两数相加,取相同的符号,并把绝对值相加.
2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0.
3.一个数同0相加,仍得这个数.
两个有理数相加,有多少种不同的情形?
我们这节课一起与大家探讨的问题.
感受到有理数相加的几种不同情形,并能将它分类,渗透分类讨论思想.
分析问题
探究新知
借助数轴来讨论有理数的加法.
一个物体向左右方向运动,我们规定向左运动为负,向右为正,向右运动5m,记作5m,向左运动5m,记作-5 m.
利用数轴,求以下情况时这个物体两次运动的结果:
结论:符号相反的两数相加,结果的符号与绝对值较大的加数的符号相同,并用较大的绝对值减去较小的绝对值
(五)先向右走5米,再向左走5米,物体从起点向( )运动了( )米;
运动结果的算式如下:
(+5)+(—5)= —2;
(六)如果这个人第一秒向东(或向西)走5米,第二秒原地不动,两秒后这个人从起点向东(或向西)运动了5米。写成算式就是
让学生能较为熟练地运用法则进行计算.
课堂练习
教科书第18页练习
小结与作业
课堂小结
通过这节课的学习,你有哪些收获,学生自己总结。
本课作业
必做题:
选做题:
分析时假设原点0为第一次运动起点,第二次运动的起点是第一次运动的终点.
把已经得出的几种有理数相加的情况在数轴上用运动的方向表示出来,并求出结果,解释它的意义.让学生感受“数学模型”的思想,学会与同伴交流,并在交流中获益.

最新人教版七年级数学上册 1.3.1 有理数的加法(第2课时)教学设计 新人教版

最新人教版七年级数学上册 1.3.1 有理数的加法(第2课时)教学设计 新人教版

有理数的加法教学设计意图综述本节主要内容是有理数的加减法运算,从复习小学学过的加法运算出发,从而提出引入负数的加法问题,再通过实例明确有理数的加法意义,进而引入有理数加法的法则。

培养学生主动探索的良好学习习惯.活动目标及重难点知识与技能:(1)能运用加法运算律简化加法运算.(2)理解加法运算律在加法运算中的作用,培养学生的观察能力和思维能力.二、过程与方法:经历探索有理数的加法运算律的过程,培养学生的观察能力和思维能力.三、情感态度与价值观:体会有理数加法运算律的应用价值.重点:有理数加法运算律.难点:灵活运用加法运算律.教具准备投影仪.多媒体课件.用电脑制作动画体现有理数的分类过程.一、复习提问,引入新课1.叙述有理数的加法法则.2.在小学里,数的加法有哪些运算律?二、新课讲授在小学里,数的加法满足交换律、结合律.如:5+3.5=3.5+5,(5+3.5)+2.5=5+(3.5+2.5).引进负数后,这些运算律还适用吗?探索:例1.计算:30+(-20),(-20)+30.两次所得的和相同吗?换几个加数试一试,让学生自己得出:有理数的加法中,两个数相加,交换加数的位置和不变,即加法交换律:a+b=b+a.例2.计算:[8+(-5)]+(-4),8+[(-5)+(-4)].两次所得的和相同吗?换几个加数再试一试.从而得到:有理数的加法中,三个数相加,先把前两个数相加,或者先把后两个数相加,和不变,即加法结合律:(a+b)+c=a+(b+c).上述a、b、c表示任意有理数,可以是正数,也可以是负数.这样,多个有理数相加可以任意交换加数位置,也可以先把其中的几个数相加,使计算简化.例3.计算:16+(-25)+24+(-35).分析:先观察题目中数据特点,根据运算律,选择合理途径.本题采用正、负数分开相加的方法.解:原式=(16+24)+[(-25)+(-35)]=40+(-60)=-20例4.每袋小麦的标准重量为90千克,10袋小麦称重记录如课本图1.3-3所示(•课本第19页),与标准重量比较,10袋小麦总计超过多少千克或不足多少千克?10袋小麦的总重量是多少?分析:怎样求这10袋小麦的总重量呢?这是有理数加法在实际中的应用,•本题有两种解法,教学时可先让学生相互交流,提出自己的想法,对不同的解法进行比较.解法1:先计算10袋小麦的总重量.91+91+91.5+89+91.2+91.3+88.7+88.8+91.8+91.1=905.4,再计算标准重量:90×10=900.所以这10袋小麦总计超过905.4-900=5.4(千克)解法2:先计算总误差,然后再求10袋小麦的总重量.将每袋小麦超过标准重量的千克数记作正数,不足的千克数记作负数,10袋小麦的对应的数为+1,+1,+1.5,-1,+1.2,+1.3,-1.3,-1.2,+1.8,+1.1.+1+1+1.5+(-1)+1.2+1.3+(1.3)+(-1.2)+1.8+1.1=[1+(-1)]+[1.2+(-1.2)]+[1.3+(-1.3)]+(1+1.5+1.8+1.1)=5.490×10+5.4=905.4所以10袋小麦总计超过标准5.4千克,总重量为905.4千克.三、巩固练习1.课本第20页,练习1、2.四、课堂小结本节课我们探索了有理数加法的运算律,灵活运用加法的运算律使运算简便.一般情况下,将互为相反数的数结合相加;同分母的分数能凑整的数结合;正数、负数分别相加,以使计算简便.五、作业布置1.课本第25页习题1.3第2题,第26页第9、10、12题.六、板书设计:1.3.1 有理数的加法(2)第二课时1、有理数的加法中,三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

人教版数学七年级上册1.3.1有理数的加法(教案)

人教版数学七年级上册1.3.1有理数的加法(教案)
-组织学生进行小组讨论,共同解决有理数加法问题,培养合作交流和数学表达素养。
-强化对有理数加法法则的理解,使学生具备良好的数感和符号意识,为后续数学学习打下坚实基础。
三、教学难点与重点
1.教学重点
(1)有理数加法法则:本节课的核心是使学生掌握有理数的加法法则,包括同号相加、异号相加、绝对值相加等。重点强调以下细节:
2.发展学生的逻辑思维能力和推理能力,提高数学抽象和建模素养。
3.培养学生合作交流、共同探讨的学习习惯,提升数学表达和交流素养。
4.培养学生具备良好的数感和符号意识,加深对有理数加法法则的理解和运用。
具体体现在:
-通过实际问题引入,使学生感受数学与生活的紧密联系,培养数学应用意识。
-在讲解和练习有理数加法过程中,引导学生运用逻辑推理和抽象思维,提高数学建模能力。
其次,实践活动环节,学生们在分组讨论和实验操作过程中表现得积极主动,但我也注意到有些小组在讨论时偏离了主题。为了使实践活动更加有效,我应该在活动前给出更明确的讨论要求和指导,让学生们在讨论时能更聚焦于有理数加法的实际应用。
此外,在学生小组讨论环节,我发现有些学生发言不够积极,可能是因为他们对这个话题不够感兴趣,或者是对自己的观点不够自信。针对这个问题,我打算在以后的课堂中多鼓励学生,创造一个轻松愉快的课堂氛围,让他们敢于表达自己的观点。同时,我也会设计更多有趣的讨论主题,激发学生的兴趣。
-举例说明:+3和+2相加,-3和-2相加,+3和-2相加等。
-计算练习:布置一些典型例题,让学生练习有理数的加法运算。
-互为相反数的概念及运算:+1和-1相加等于零。
-实际问题引入:通过购物找零、温度变化等实例,让学生理解有理数加法的实际意义。

人教版七年级上册数学1.3.1 第1课时 有理数的加法法则导学案

第一章有理数1.3 有理数的加减法1.3.1 有理数的加法第1课时有理数的加法法则学习目标:1、探索有理数加法法则,理解有理数的加法法则;2、能运用有理数加法法则,正确进行有理数加法运算;3、经历探索有理数加法法则的过程,体验数学来源于实践并为实践服务的思想,同时培养学生探究性学习的能力.学习难点:师生共同合作探索有理数加法法则的过程及和的符号的确定.课堂活动:一、有理数加法的探索1.汽车在公路上行驶,规定向东为正,向西为负,据下列情况,分别列算式,并回答:汽车两次运动后方向怎样?离出发点多远?(1)向东行驶5千米后,又向东行驶2千米,(2)向西行驶5千米后,又向西行驶2千米,(3)向东行驶5千米后,又向西行驶2千米,(4)向西行驶5千米后,又向东行驶2千米,(5)向东行驶5千米后,又向西行驶5千米,(6)向西行驶5千米后,静止不动,2. 足球队甲、乙两队比赛,主场甲队4:1胜乙队,赢了3球,客场甲队1:3负乙队,输了2球,甲队两场比赛累计净胜球1个,你能把这个结果用算式表示出来吗?议一议:比赛中胜负难料,两场比赛的结果还可能哪些情况呢?动动手填表:你还能举出一些应用有理数加法的实际例子吗?请同学们积极思考.二、有理数加法的归纳探索:两个有理数相加,和的符号及绝对值怎样确定?你能找到有理数相加的一般方法吗?说一说:两个有理数相加有多少种不同的情形?议一议:在各种情形下,如何进行有理数的加法运算?归纳:有理数加法法则:①同号两数相加,取相同的符号,并把绝对值相加.②异号两数相加,绝对值相等时,和为0;绝对值不等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.③一个数与0相加,仍得这个数.三、实践应用问题1.计算(1)(+8)+(+5) (2)(-8)+(-5) (3)(+8)+(-5)(4)(-8)+(+5) (5)(-8)+(+8) (6)(+8)+0;问题2.(单位:万元)(1) 该公司前两年盈利了多少万元?(2)该公司三年共盈利多少万元?问题3.判断(1)两个有理数相加,和一定比加数大. ( )(2)绝对值相等的两个数的和为0.( )(3)若两个有理数的和为负数,则这两个数中至少有一个是负数.( )四、课堂反馈:1.一个正数与一个负数的和是( )A 、正数B 、负数C 、零D 、以上三种情况都有可能2.两个有理数的和( )A 、一定大于其中的一个加数B 、一定小于其中的一个加数C 、大小由两个加数符号决定D 、大小由两个加数的符号及绝对值而决定3.计算 (1)(+10)+(-4) (2)(-15)+(-32) (3)(-9)+ 0(4)43+(-34) (5)(-10.5)+(+1.3) (6)(-21)+31知识巩固一、选择题 1.若两数的和为负数,则这两个数一定( )A .两数同负B .两数一正一负C .两数中一个为0D .以上情况都有可能2.两个有理数相加,若它们的和小于每一个加数,则这两个数( )A.都是正数B.都是负数C.互为相反数D.符号不同3.如果两个有理数的和是正数,那么这两个数( )A.都是正数B.都是负数C.都是非负数D.至少有一个正数4.使等式x x +=+66成立的有理数x 是 ( )A.任意一个整数B.任意一个非负数C.任意一个非正数D.任意一个有理数5.对于任意的两个有理数,下列结论中成立的是 ( )A.若,0=+b a 则b a -=B.若,0>+b a 则0,0>>b aC.若,0<+b a 则0<<b aD.若,0<+b a 则0<a6.下列说法正确的是 ( )A.两数之和大于每一个加数B.两数之和一定大于两数绝对值的和C.两数之和一定小于两数绝对值的和D.两数之和一定不大于两数绝对值的和二、判断1.若某数比-5大3,则这个数的绝对值为3.( )2.若a>0,b<0,则a+b>0.( )3.若a+b<0,则a ,b 两数可能有一个正数.( )4.若x+y=0,则︱x ︱=︱y ︱.( )5.有理数中所有的奇数之和大于0.( )三、填空1.(+5)+(+7)=_______; (-3)+(-8)=________;(+3)+(-8)=________; (-3)+(-15)=________;0+(-5)=________; (-7)+(+7)=________.2.一个数为-5,另一个数比它的相反数大4,这两数的和为________.3.(-5)+______=-8; ______+(+4)=-9._______+(+2)=+11; ______+(+2)=-11;5. 如果,5,2-=-=b a 则=+b a ,=+b a四、计算(1)(+21)+(-31) (2)(-3.125)+(+318) (3)(-13)+(+12)(4)(-313)+0.3 (5)(-22 914)+0 (6)│-7│+│-9715│五、土星表面夜间的平均气温为-150℃,白天的平均气温比夜间高27℃,那么白天的平均气温是多少?六、一位同学在一条由东向西的跑道上,先向东走了20米,又向西走了30米,能否确定他现在位于原来的哪个方向,与原来位置相距多少米?七、潜水员原来在水下15米处,后来上浮了8米,又下潜了20米,这时他在什么位置?要求用加法解答。

人教版数学七年级上册教案-1.3.1有理数的加法(第一课时)

3程序化思想:计算时,先仔细观察式子的特点,参考法则,采取合理的程序化的运算步骤,然后计算出正确答案.
教学环节
教学过程
导入
回忆之前学过的知识,有理数,数轴,相反数,绝对值.在这些基础上学习有理数的运算,今天来学习有理数的加法法则.
知识讲解
(难点突破)
一、观察探究1
一个物体向左右方向运动,我们规定向右为正,向左为负.比如:向右运动5 m记作5 m,向左运动5 m记作-5 m.
有理数加法法则:
(1)同号两数相加,取相同的符号,并把绝对值相加.
(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0.
(3)一个数同0相加,仍得这个数.
课堂练习
(难点巩固)
七、巩固新知
例计算:
(1)(-3)+(-9);(2)(-4.7)+3.9;
注意关注加数的符号和绝对值.
结论:同号两数相加,取相同的符号,并把绝对值相加.
知识讲解
(难点突破)
三、观察探究2
利用数轴,求以下物体两次运动的结果,并用算式表示:
(1)先向左运动3 m,再向右运动5 m,
物体从起点向右运动了2m,(-3)+5= 2;
(2)先向右运动了3 m,再向左运动了5 m,
物体从起点向左运动了2m,3+(-5)= 2;
(3)先向左运动了5 m,再向右运动了5 m,
物体从起点运动了0m,(-5)+5=0.
四、归纳法则2
(-3)+5= 2;
3+(-5)= 2;
(-5)+5=0.
根据以上三个算式能否尝试总结异号两数相加的法则?
注意关注加数的符号和绝对值.
结论:绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0.

人教版七年级上数学:1.3.1《有理数的加法(2)》学案(附模拟试卷含答案)

数学:1.3.1《有理数的加法(2)》学案(人教版七年级上)【学习目标】:掌握加法运算律并能运用加法运算律简化运算;【重点难点】:灵活运用加法运算律简化运算;【导学指导】一、温故知新1、想一想,小学里我们学过的加法运算定律有哪些?先说说,再用字母表示写在下面:、2、计算⑴ 30 +(-20)= (-20)+30=⑵ +(-4)= 8 + +(-4)]=思考:观察上面的式子与计算结果,你有什么发现?二、自主探究1、请说说你发现的规律2、自己换几个数字验证一下,还有上面的规律吗3、由上可以知道,小学学习的加法交换律、结合律在有理数范围内同样适应,即:两个数相加,交换加数的位置,和 .式子表示为三个数相加,先把前两个数相加,或者先把后两个数相加,和用式子表示为想想看,式子中的字母可以是哪些数?例1 计算: 1)16 +(-25)+ 24 +(-35)2)(—2.48)+(+4.33)+(—7.52)+(—4.33)例2 每袋小麦的标准重量为90千克,10袋小麦称重记录如下: 91 91 91.5 89 91.2 91.3 88.7 88.8 91.8 91.110袋小麦总计超过多少千克或不足多少千克?10袋小麦的总重量是多少千克? 想一想,你会怎样计算,再把自己的想法与同伴交流一下。

【课堂练习】课本P20页练习 1、2【要点归纳】:你会用加法交换律、结合律简化运算了吗?【拓展训练】 1.计算:(1)(-7)+ 11 + 3 +(-2); (2)).31()41(65)32(41-+-++-+2.绝对值不大于10的整数有 个,它们的和是 .3、填空:(1)若a >0,b >0,那么a +b 0. (2)若a <0,b <0,那么a +b 0.(3)若a >0,b <0,且│a │>│b │那么a +b 0. (4)若a <0,b >0,且│a │>│b │那么a +b 0.3.某储蓄所在某日内做了7件工作,取出950元,存入5000元,取出800元,存入12000元,取出10000元,取出2000元.问这个储蓄所这一天,共增加多少元?4、课本P20实验与探究【总结反思】:2019-2020学年七年级数学上学期期末模拟试卷一、选择题1.如果∠A 的补角与∠A 的余角互补,那么2∠A 是 A .锐角 B .直角 C .钝角 D .以上三种都可能2.在直线l 上有A 、B 、C 三点,AB=5cm,BC=2cm,则线段AC 的长度为( ) A .7cmB .3cmC .7cm 或3cmD .以上答案都不对3.下列各图形是正方体展开图的是( )A.B.C. D.4.如图是某年的日历表,在此日历表上可以用一个矩形圈出3×3个位置的9个数(如3,4,5,10,11,12,17,18,19).若用这样的矩形圈圈这张日历表的9个数,则圈出的9个数的和不可能为下列数中的( )A .81B .90C .108D .2165.若方程()3213x x -=的解与关于x 的方程()6223a x -=+的解相同,则a 的值为( ) A.2B.2-C.1D.1-6.下列说法正确的是( )A.3xy5-的系数是3- B.22m n 的次数是2次 C.x 2y 3-是多项式D.2x x 1--的常数项是17.若一个代数式与代数式2ab 2+3ab 的和为ab 2+4ab-2,那么,这个代数式是( ) A .3ab 2+7ab-2 B .-ab 2+ab-2 C .ab 2-ab+2 D .ab 2+ab-28.定义一种正整数n “F ”的运算:①当n 是奇数时,()31F n n =+;②当n 是偶数时,()2k n F n =(其中k 是使得2kn为奇数的正整数......,)两种运算交替重复运行.例如,取24n =,则: 243105F F F −−−→−−−→−−−→⋅⋅⋅⋅⋅⋅第一次第二次第三次②①②,若13n =,则第2019次“F ”运算的结果是( ) A.1B.4C.2019D.201949.下列计算结果中等于3的数是( ) A.74-++B.()()74-++C.74++-D.()()73---10.数轴上点A ,B 表示的数分别是5,-3,它们之间的距离可以表示为( ) A.-3+5B.-3-5C.|-3+5|D.|-3-5|11.有理数a 、b 在数轴上的位置如图所示,则下列各式中错误的是( )A.b <aB.|b|>|a|C.a+b >0D.a-b >012.某项工程,甲单独做30天完成,乙单独做40天完成,若乙先单独做15天,剩下的由甲完成,问甲、乙一共用几天完成工程?若设甲、乙共用x 天完成,则符合题意的是( )A.151513040x -+= B.151513040x ++= C.1513040x x++= D.1513040x x-+= 二、填空题13.若90,90αββγ∠+∠=︒∠+∠=︒,则α∠与γ∠的关系是_______ ,理由是_____ 14.一个角的余角是它的23,则这个角的补角等于____. 15.方程320x -+=的解为________.16.已知a ,b ,c 在数轴上的位置如图所示,化简:|a ﹣b|+|b+c|+|c ﹣a|=_____.17.若1314a =-,2111a a =-,3211a a =-,......,则2019a =________18.如果一个零件的实际长度为a ,测量结果是b ,则称|b ﹣a|为绝对误差,b a a-为相对误差.现有一零件实际长度为5.0cm ,测量结果是4.8cm ,则本次测量的相对误差是_____. 19_____.20.关于x 的一元一次方程ax+3=4x+1的解为正整数,则整数a 的值为__________. 三、解答题21.已知:如图,直线AB 、CD 相交于点O ,OE ⊥OC ,OF 平分∠AOE. (1)若,则∠AOF 的度数为______; (2)若,求∠BOC 的度数。

数学《有理数的加法》学案

数学:1.3.1《有理数的加法(1)》学案(人教版七年级上)【学习目标】:1、理解有理数加法意义,掌握有理数加法法则,会正确进行有理数加法运算;2、会利用有理数加法运算解决简单的实际问题;【学习重点】:有理数加法法则【学习难点】:异号两数相加【导学指导】一、知识链接1、正有理数及0的加法运算,小学已经学过,然而实际问题中做加法运算的数有可能超出正数范围。

例如,足球循环赛中,可以把进球数记为正数,失球数记为负数,它们的和叫做净胜球数。

如果,红队进4个球,失2个球;蓝队进1个球,失1个球。

于是红队的净胜球数为 4+(-2),蓝队的净胜球数为 1+(-1)。

这里用到正数和负数的加法。

那么,怎样计算4+(-2)下面我们一起借助数轴来讨论有理数的加法。

二、自主探究1、借助数轴来讨论有理数的加法1)如果规定向东为正,向西为负,那么一个人向东走4米,再向东走2米,两次共向东走了米,这个问题用算式表示就是:2)如果规定向东为正,向西为负,那么一个人向西走2米,再向西走4米,两次共向西走多少米?很明显,两次共向西走了米。

这个问题用算式表示就是:如图所示:3)如果向西走2米,再向东走4米,那么两次运动后,这个人从起点向东走了米,写成算式就是这个问题用数轴表示如下图所示:4)利用数轴,求以下情况时这个人两次运动的结果:①先向东走3米,再向西走5米,这个人从起点向()走了()米;②先向东走5米,再向西走5米,这个人从起点向()走了()米;③先向西走5米,再向东走5米,这个人从起点向()走了()米。

写出这三种情况运动结果的算式5)如果这个人第一秒向东(或向西)走5米,第二秒原地不动,两秒后这个人从起点向东(或向西)运动了米。

写成算式就是2、师生归纳两个有理数相加的几种情况。

3.你能从以上几个算式中发现有理数加法的运算法则吗?有理数加法法则(1)同号的两数相加,取的符号,并把相加。

(2)绝对值不相等的异号两数相加,取的加数的符号,并用较大的绝对值较小的绝对值. 互为相反数的两个数相加得;(3)一个数同0相加,仍得。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

精品基础教育教学资料,请参考使用,祝你取得好成绩!
第一章有理数
1.3 有理数的加减法
1.3.1 有理数的加法
第1课时有理数的加法法则
学习目标:1、探索有理数加法法则,理解有理数的加法法则;
2、能运用有理数加法法则,正确进行有理数加法运算;
3、经历探索有理数加法法则的过程,体验数学来源于实践并为实践服务的思想,同时培养学生探究性学习的能力.
学习难点:师生共同合作探索有理数加法法则的过程及和的符号的确定.
课堂活动:
一、有理数加法的探索
1.汽车在公路上行驶,规定向东为正,向西为负,据下列情况,分别列算式,并回答:汽车两次运动后方向怎样?离出发点多远?
(1)向东行驶5千米后,又向东行驶2千米,
(2)向西行驶5千米后,又向西行驶2千米,
(3)向东行驶5千米后,又向西行驶2千米,
(4)向西行驶5千米后,又向东行驶2千米,
(5)向东行驶5千米后,又向西行驶5千米,
(6)向西行驶5千米后,静止不动,
2. 足球队甲、乙两队比赛,主场甲队4:1胜乙队,赢了3球,客场甲队1:3负乙队,
输了2球,甲队两场比赛累计净胜球1个,你能把这个结果用算式表示出来吗?
议一议:比赛中胜负难料,两场比赛的结果还可能哪些情况呢?动动手填表:
你还能举出一些应用有理数加法的实际例子吗?请同学们积极思考.
二、有理数加法的归纳
探索:两个有理数相加,和的符号及绝对值怎样确定?你能找到有理数相加的一般方法吗?
说一说:两个有理数相加有多少种不同的情形?
议一议:在各种情形下,如何进行有理数的加法运算?
归纳:有理数加法法则:
①同号两数相加,取相同的符号,并把绝对值相加.
②异号两数相加,绝对值相等时,和为0;绝对值不等时,取绝对值较大的加数的符
号,并用较大的绝对值减去较小的绝对值.
③一个数与0相加,仍得这个数.
三、实践应用
问题1.计算
(1)(+8)+(+5) (2)(-8)+(-5) (3)(+8)+(-5)
(4)(-8)+(+5) (5)(-8)+(+8) (6)(+8)+0;
问题2.某公司三年的盈利情况如下表所示,规定盈利为“+”(单位:万元)
(1)
问题3.判断(1)两个有理数相加,和一定比加数大. ( )
(2)绝对值相等的两个数的和为0.( )
(3)若两个有理数的和为负数,则这两个数中至少有一个是负数.( )
四、课堂反馈:
1.一个正数与一个负数的和是( )
A 、正数
B 、负数
C 、零
D 、以上三种情况都有可能
2.两个有理数的和( )
A 、一定大于其中的一个加数
B 、一定小于其中的一个加数
C 、大小由两个加数符号决定
D 、大小由两个加数的符号及绝对值而决定
3.计算 (1)(+10)+(-4) (2)(-15)+(-32) (3)(-9)+ 0
(4)43+(-34) (5)(-10.5)+(+1.3) (6)(-
21)+3
1
知识巩固
一、选择题
1.若两数的和为负数,则这两个数一定( ) A .两数同负 B .两数一正一负 C .两数中一个为0 D .以上情况都有可

2.两个有理数相加,若它们的和小于每一个加数,则这两个数( )
A.都是正数
B.都是负数
C.互为相反数
D.符号不同
3.如果两个有理数的和是正数,那么这两个数( )
A.都是正数
B.都是负数
C.都是非负数
D.至少有一个正数
4.使等式x x +=+66成立的有理数x 是 ( )
A.任意一个整数
B.任意一个非负数
C.任意一个非正数
D.任意一个有理数
5.对于任意的两个有理数,下列结论中成立的是 ( )
A.若,0=+b a 则b a -=
B.若,0>+b a 则0,0>>b a
C.若,0<+b a 则0<<b a
D.若,0<+b a 则0<a
6.下列说法正确的是 ( )
A.两数之和大于每一个加数
B.两数之和一定大于两数绝对值的和
C.两数之和一定小于两数绝对值的和
D.两数之和一定不大于两数绝对值的和
二、判断
1.若某数比-5大3,则这个数的绝对值为3.( )
2.若a>0,b<0,则a+b>0.( )
3.若a+b<0,则a ,b 两数可能有一个正数.( )
4.若x+y=0,则︱x ︱=︱y ︱.( )
5.有理数中所有的奇数之和大于0.( )
三、填空
1.(+5)+(+7)=_______; (-3)+(-8)=________;
(+3)+(-8)=________; (-3)+(-15)=________;
0+(-5)=________; (-7)+(+7)=________.
2.一个数为-5,另一个数比它的相反数大4,这两数的和为________.
3.(-5)+______=-8; ______+(+4)=-9.
_______+(+2)=+11; ______+(+2)=-11;
5. 如果,5,2-=-=b a 则=+b a ,=+b a
四、计算
(1)(+21)+(-31) (2)(-3.125)+(+3
18) (3)(-13)+(+12)
(4)(-313)+0.3 (5)(-22 914)+0 (6)│-7│+│-9715│
五、土星表面夜间的平均气温为-150℃,白天的平均气温比夜间高27℃,那么白天的平均气温是多少?
六、一位同学在一条由东向西的跑道上,先向东走了20米,又向西走了30米,能否确定他现在位于原来的哪个方向,与原来位置相距多少米?
七、潜水员原来在水下15米处,后来上浮了8米,又下潜了20米,这时他在什么位置?要求用加法解答。

八、 已知.5,2==b a
(1)求b a + (2)若又有b a >,求b a +.。

相关文档
最新文档