2红蓝球统计信息
2020年中招数学复习考前训练:统计与概率

2020 中考2020年中招数学复习考前考点模拟导航练统计与概率(解析版)1.某“中学生暑期环保小组”的同学,随机调查了“幸福小区”10户家庭一周内使用环保方便袋的数量,数据如下(单位:只):6,5,7,8,7,5,8,10,5,9.利用上述数据估计该小区2000户家庭一周内需要环保方便袋约()A.2000只B.14000只C.21000只D.98000只2.一个不透明口袋中装有2个白球,3个红球,4个黄球,每个球除颜色不同外其它都相同,搅拌均匀后,小张从口袋中任意摸出一个球是红球的概率为()A.B.C.D.3.某区为了解15000名初中生的身高情况,抽取了500名学生进行身高测量,在这个问题中,样本是()A.500 B.500名学生C.500名学生的身高情况D.15000名学生的身高情况4.下列事件中,属于随机事件的是()A.通常水加热到100℃时沸腾B.测量孝感某天的最低气温,结果为﹣150℃C.一个袋中装有5个黑球,从中摸出一个是黑球D.篮球队员在罚球线上投篮一次,未投中5.在一次数学答题比赛中,五位同学答对题目的个数分别为7,5,3,5,10,则关于这组数据的说法不正确的是()A.众数是5 B.中位数是5 C.平均数是6 D.方差是3.6 6.不透明的袋子中装有10个红球、7个黄球、2个白球,这些球除了颜色外无其他差别.从袋子中随机摸出一个球,然后放回去继续摸,如果前三次摸出的都是红球,那么第四次摸出()球的可能性最大.A.红B.黄C.白D.每种球的可能性一样大7.为了了解某校学生的课外阅读情况,随机抽查了10名学生周阅读用时数,结果如下表:周阅读用时数(小时) 4 5 8 12学生人数(人) 3 4 2 1则关于这10名学生周阅读所用时间,下列说法正确的是( )A .中位数是6.5B .众数是1C .平均数是3.9D .方差是6 8.某射击小组有20人,教练根据他们某次射击的数据绘制成如图所示的统计图,这20人中射击成绩为8环的人数是( )A .8B .7C .6D .109.随机闭合开关123S S S 、、中的两个,能让灯泡发光的概率是( )A .34B .23C .12D .1310.某班派9名同学参加拔河比赛,他们的体重分别是(单位:千克):67、59、61、59、63、57、70、59、65,这组数据的众数和中位数分别是( )A .59,63B .59,61C .59,59D .57,6111.“魅力凉都六盘水”某周连续7天的最高气温(单位°C )是26,24,23,18,22,22,25,则这组数据的中位数是( )A .18B .22C .23D .2412.郑州某中学在备考2018河南中考体育的过程中抽取该校九年级20名男生进行立定跳远测试,以便知道下一阶段的体育训练,成绩如下所示: 成绩(单位:米)2.10 2.20 2.25 2.30 2.35 2.40 2.45 2.50 人数 2 3 2 4 5 2 1 1 则下列叙述正确的是( )A .这些运动员成绩的众数是 5B .这些运动员成绩的中位数是 2.302020 中考C.这些运动员的平均成绩是2.25D.这些运动员成绩的方差是0.072513.有m个数的平均数是x,n个数的平均数为y,则这(m+n)个数的平均数为()A.x ym n++B.mx nym n++C.mx nyx y++D.2mx ny+14.如图,电路图上有四个开关A、B、C、D和一个小灯泡,闭合开关D或同时闭合开关A、B、C都可使小灯泡发光,则任意闭合其中两个开关,小灯泡发光的概率是()A.12B.13C.14D.1615.小黄在自家种的西瓜地里随意称了10个西瓜,重量(单位:斤)分别是:5,8,6,8,10,9,9,9,7,9.按市场价西瓜每斤2元的价格计算,你估算一下,小黄今天卖了350个西瓜约收入()A.160元B.700元C.5600 D.700016.2018年6月6日是第二十三个全国爱眼日.某校为了做好学生的眼睛保护工作,对全体学生的裸眼视力进行了一次抽样调查,调查结果如图所示.根据学生视力合格标准,裸眼视力大于或等于5.0的为正常视力,那么该校正常视力的学生占全体学生的比值是_____.17.数据1,-3,1,0,1的平均数是____,中位数是____,众数是____,方差是___. 18.一个口袋有3个黑球和若干个白球,在不允许将球倒出来的前提下,小明为估计其中的白球数,采用了如下的方法:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一球,记下颜色,再放回口袋中,…,不断重复上述过程,小明共摸了100次,其中20次摸到黑球.根据上述数据,小明正估计口袋中的白球的个数是________.19.一只不透明的袋子中装有若干个蓝球和2个红球,这些球除颜色外都相同,搅匀后从中任意摸出1个球,若摸到蓝球的概率是0.8,则袋子中有________个蓝球.20.陕西影视作为陕西文化中的重要部分,不仅重数量,更重质量,重经济效益,更重社会效益,其借助《钱学森》、《脚尖上的信天游》、《百鸟朝凤》、《大漠雄心》等一批富有鲜明艺术与文化特色的优秀影视作品在全国乃至国际上都大放异彩,不仅形成了陕西影视创作百花齐放的繁荣景象,也大大提升了陕西影视的影响力,彰显了陕西文化自信,叫响了文化陕西品牌.某校组织全校学生在一周内观看了这四部陕西特色电影以后,随机抽取了部分学生进行主题为“你想跟别人推荐的电影”的问卷调查,要求学生必须从“A.《钱学森》,B.《脚尖上的信天游》,C.《百鸟朝凤》,D.《大漠雄心》”四部电影中选择一部,并根据调査结果,绘制了如下两幅不完整的统计图.请根据所给信息,解答下列问题:(1)本次调查的学生人数为________,请将条形统计图补充完整;(2)本次调查中,被学生选择最多的电影是____________;(3)若该校共有2000名学生,请你估计该校选择电影《百鸟朝凤》的有多少人?21.某校5月组织了学生参加“学习强国”知识竞赛,从中抽取了部分学生成绩(满分为100分)进行统计,绘制如下不完整的频数直方图,若将频数直方图划分的五组从左至右依次记为A、B、C、D、E,绘制如下扇形统计图,请你根据图形提供的信息,解答下列问题:(1)频数分布直方图中,A组的频数a= ,并补全频数直方图;(2)扇形统计图中,D部分所占的圆心角n= 度;(3)若成绩在80分以上为优秀,全校共有2000名学生,估计成绩优秀的学生有多少名?2020 中考22.阅读对人成长的影响是巨大的,一本好书往往能改变人的一生.如图是某校三个年级学生人数分布扇形统计图,其中八年级人数为408人,表是该校学生阅读课外书籍情况统计表.请你根据图表中的信息,解答下列问题:图书种类频数频率科普常识840 B名人传记816 0.34漫画丛书A0.25其它144 0.06(1)求该校八年级的人数占全校总人数的百分率.(2)求表中A,B的值.(3)该校学生平均每人读多少本课外书?23.某中学初三年级积极推进走班制教学.为了了解一段时间以来,“至善班”的学习效果,年级组织了多次定时测试,现随机选取甲、乙两个“至善班”,从中各抽取20名同学在某一次定时测试中的数学成绩,其结果记录如下:收集数据:“至善班”甲班20的名同学的数学成绩统计(满分为100 分)(单位:分)86,90,60,76,92,83,56,76,85,7096,96,90,68,78,80,68,96,85,81“至善班”乙班的20名同学的数学成绩统计(满分为100 分)(单位:分)78,96,75,76,82,87,60,54,87,72 100,82,78,86,70,92,76,80,98,78整理数据:(成绩得分用x表示)分数数量班级060x≤≤6070x≤<7080x≤<8090x≤<90100x≤≤甲班(人数) 1 3 4 6 6乙班(人数) 1 1 8 6 4分析数据,并回答下列问题:()1完成下表:平均数中位数众数甲班80.683a=乙班80.35b=78()2在“至善班”甲班的扇形图中,成绩在7080x≤<的扇形中,所对的圆心角α的度数为.估计全部“至善班”的1600人中优秀人数为人.(80分及以上为优秀).()3根据以上数据,你认为“至善班” 班(填“甲”或“乙”)所选取做样本的同学的学习效果更好一些,你所做判断的理由是:2020 中考②24.某校开展“我最喜爱的一项体育活动”调查,要求每名学生必选且只能选一项.现随机抽查了部分学生,并将其结果绘制成如下不完整的条形图和扇形图.抽取的学生最喜欢体育活动的条形统计图抽取的学生最喜欢体育活动的扇形统计图请结合以上信息解答下列问题:(1)在这次调查中一共抽查了_____学生,扇形统计图中“乒乓球”所对应的圆心角为_____度,并请补全条形统计图;(2)己知该校共有1200名学生,请你估计该校最喜爱跑步的学生人数;(3)若在“排球、足球、跑步、乒乓球”四个活动项目任选两项设立课外兴趣小组,请用列表法或画树状图的方法求恰好选中“排球、乒乓球”这两项活动的概率.25.小军和小刚两位同学在学习”概率“时,做投掷骰子(质地均匀的正方体)实验,他们共做了60次试验,实验的结果如下:向上点数 1 2 3 4 5 6 出现次数7 9 6 8 20 10 (1)计算“2点朝上”的频率和“5点朝上”的频率.(2)小军说:“根据实验,一次实验中出现3点朝上的概率是110”;小军的这一说法正确吗?为什么?(3)小刚说:“如果掷600次,那么出现6点朝上的次数正好是100次.”小刚的这一说法正确吗?为什么?参考答案1.B【解析】110(6+5+7+8+7+5+8+10+5+9)×2000=14000只.故选B.2.C.【解析】试题分析:根据概率公式用红球的个数除以球的总个数即可.小张从口袋中任意摸出一个球是红球的概率=31 2343=++.故选C.考点: 概率公式.3.C【解析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】解:某区为了解15000名初中生的身高情况,抽取了500名学生进行身高测量.在这个问题中,样本是500名学生的身高情况,故选C.【点睛】本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.4.D【解析】A一定会发生,是必然事件;B一定不会发生,是不可能事件;C一定会发生,是必然事件;D在罚球线上投篮一次未投中是随机事件.故选D.5.D【解析】根据平均数、中位数、众数以及方差的定义判断各选项正误即可.【详解】A、数据中5出现2次,所以众数为5,此选项正确;B、数据重新排列为3、5、5、7、10,则中位数为5,此选项正确;C、平均数为(7+5+3+5+10)÷5=6,此选项正确;D、方差为15×[(7﹣6)2+(5﹣6)2×2+(3﹣6)2+(10﹣6)2]=5.6,此选项错误;故选:D.【点睛】本题主要考查了方差、平均数、中位数以及众数的知识,解答本题的关键是熟练掌握各个知识点的定义以及计算公式,此题难度不大.6.A【解析】先判断出那种颜色的球最多,然后根据颜色多的球摸出的可能性最大即可得出结论.【详解】解:∵10>7>2∴红球最多∴第四次摸出红球的可能性最大故选A.【点睛】此题考查的是比较可能性的大小,掌握颜色多的球摸出的可能性最大是解决此题的关键.7.D【解析】A:根据中位数、众数、平均数以及方差的概念以及求解方法逐一求出进而进行判断即可. 【详解】这10名学生周阅读所用时间从大到小排列,可得4、4、4、5、5、5、5、8、8、12,∴这10名学生周阅读所用时间的中位数是:(5+5)÷2=10÷2=5,∴选项A不正确;∵这10名学生周阅读所用时间出现次数最多的是5小时,∴这10名学生周阅读所用时间的众数是5,∴选项B不正确;∵(4×3+5×4+8×2+12)÷10=60÷10=6∴这10名学生周阅读所用时间的平均数是6,∴选项C不正确;∵110×[3×(4-6)2+4×(5-6)2+2×(8-6)2+(12-6)2]=6,∴这10名学生周阅读所用时间的方差是6,∴选项D正确,故选D.【点睛】本题考查了加权平均数、中位数和众数、方差等,熟练掌握相关概念以及求解方法是解题的关键.8.C【解析】根据条形统计图的数据即可得到答案.【详解】由条形统计图可知射击成绩为8环的人数为6人,故选择C.【点睛】本题考查条形统计图,解题的关键是读懂条形统计图的信息.9.B【解析】分析题意,回想一下利用列表法求概率的一般步骤;首先根据题意列出表格,再由表格求得所有可能的结果与小灯泡发光的情况,即可解答.【详解】根据题意列出所有可能的情况,如下:共有6种情况,必须闭合开关3S灯炮才发光,即能让灯泡发光的概率是42 =63.故选B.【点睛】此题考查列表法与树状图法,解题关键在于列出所有结果的表格.10.B【解析】试题分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.从小到大排列此数据为:57、59、59、59、61、63、65、67、70,数据59出现了三次最多为众数,61处在第5位为中位数.所以本题这组数据的中位数是61,众数是59.故选B.考点:中位数和众数11.C【解析】试题分析:把数据按从小到大的顺序排列为:18、22、22、23、24、25、26,最中间的数就是这组数据的中位数,所以这组数据的中位数是23.故答案选C.考点:中位数.12.B【解析】根据方差、平均数、中位数和众数的计算公式和定义分别对每一项进行分析,即可得出答案.【详解】由表格中数据可得:A、这些运动员成绩的众数是2.35,错误;B、这些运动员成绩的中位数是2.30,正确;C、这些运动员的平均成绩是2.30,错误;D、这些运动员成绩的方差不是0.0725,错误;故选B.【点睛】考查了方差、平均数、中位数和众数,熟练掌握定义和计算公式是本题的关键,平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.13.B【解析】根据m个数的平均数是x,n个数的平均数是y,得出这两组数据的和,把两个和相加,得到m+n个数字的和,用这个和除以两组数据的个数,即可得到平均数.【详解】∵m个数的平均数是x,n个数的平均数是y,∴m个数的和是mx,n个数的和是ny,∴这m+n个数字的和是mx+ny,∴这n+m个数字的平均数是mx ny m n++,故选B.【点睛】本题考查平均数,不管是怎样的数字要求平均数,我们考虑到方法是得到所有数字的和,用它去除以数字的个数.14.A【解析】试题分析:让小灯泡发光的情况数除以总情况数即为发光的概率.试题解析:共有4个开关,闭合其中两个开关,有AB,AC,AD,BC,BD,CD,共六种情况,只有闭合D才能使灯泡发光,即AD,BD,CD∴小灯泡发光的概率3162==.故选A.考点:概率公式.15.C【解析】先计算出样本数据的平均数,再用这个平均数×2×350计算即可. 【详解】解:10个西瓜的平均数是:(5+8+6+8+10+9+9+9+7+9)÷10=8(斤), 则这350个西瓜约收入是:8×2×350=5600元. 故选:C . 【点睛】本题考查了平均数的计算和利用样本估计总体的思想,属于基本题型,熟练掌握平均数的计算方法和利用样本估计总体的思想是解题的关键. 16.20% 【解析】用裸眼视力大于或等于5.0的人数除以总人数可得答案. 【详解】解:该校正常视力的学生占全体学生的比值是402030506040++++=0.2=20%,故答案为20%. 【点睛】本题考查了频数分布直方图的知识,解题的关键是仔细的读图并从中找到进一步解题的有关信息.17.0、 1、 1、 2.4. 【解析】根据平均数、中位数、众数、方差的定义求解即可. 【详解】平均数是:(1-3+1+0+1) ÷5=0; 中位数是:1; 众数是:1; 方差是:()()()222110330005⎡⎤-⨯+--+-⎣⎦=2.4. 故答案为: 0; 1;1; 2.4 【点睛】此题主要考查了平均数、众数、中位数、方差的统计意义.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;平均数是指在一组数据中所有数据之和再除以数据的个数. 18.12 【解析】小明共摸了100次,其中20次摸到黑球,则有80次摸到白球;摸到黑球与摸到白球的次数之比为1:4,由此可估计口袋中黑球和白球个数之比为1:4;即可计算出白球数. 【详解】∵小明共摸了100次,其中20次摸到黑球,则有80次摸到白球, ∴摸到黑球与摸到白球的次数之比为1:4, ∵这个口袋中有3个黑球, ∴共有白球3×4=12个, 故答案为:12. 【点睛】本题考查的是通过样本去估计总体,只需将样本“成比例地放大”为总体即可. 19.8 【解析】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比. 【详解】解:设袋子里有x 个蓝球, 则2xx =0.8, 解得x =8. 即有8个蓝球. 【点睛】本题考查概率,能够根据公式列出式子是解答本题的关键.20.(1)120,图详见解析;(2)B 或《脚尖上的信天游》;(3)500. 【解析】(1)根据选项B 的条形统计图和扇形统计图求出总人数,再根据选项C 的扇形统计图即可得出答案;(2)根据扇形统计图即可得出答案;(3)根据扇形统计图得出选择电影《百鸟朝凤》的学生所占比例,再用2000乘以该比例即可得出答案.【详解】÷=(人),则选择C的人数为(1)由题意得,本次调查的学生人数为6655%120⨯=(人)12025%30故答案为:120,补充条形统计图如下图所示:(2)∵《脚尖上的信天游》被选择的占比为55%,超过一半人∴被学生选择最多的电影是《脚尖上的信天游》故答案为:B或《脚尖上的信天游》;⨯=(人)(3)由扇形统计图得:200025%500答:该校选择电影《百鸟朝风》的约有500人.【点睛】本题考查了条形统计图和扇形统计图、样本估计总体,掌握读懂统计图是解题关键.错因分析:容易题.失分原因可能是没有掌握用“样本估计总体”的思想求解.21.(1)16,图见解析;(2)126°;(3)约940名【解析】(1)先根据B组的频数和频率求出抽查的总人数,再用总人数乘以A组人数占总人数的百分比即可求出a的值,再求出C组人数,从而可补全条形统计图;(2)用360°乘以D组人数占总体的百分比即可;(3)先求出样本中优秀的百分比,再用总人数相乘即可得解.【详解】(1)总人数40÷20%=200(人);A组人数:200×8%=16(人);C组人数:200×25%=50(人);E组人数:200-16-40-50-70=24(人)直方图如图所示:(2)360°×(70÷200)=126°(3)2000×[(70+24)÷200]=940(名)【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.22.(1)34%;(2)A的值为600,B的值为0.35;(3)2本.【分析】(1)八年级的人数占全校总人数的百分率=1-28%-38%;(2)由频率的意义可知B=1-(0.34+0.25+0.06),在求出频数,利用2400-(840+816+144)即可求出A的值,(3)先求出全校总人数,再求出该校学生平均每人读的本数即可.【详解】解:(1)八年级的百分率是:1﹣28%﹣38%=34%;(2)B=1﹣0.34﹣0.25﹣0.06=0.35,由816÷0.34=2400得图书总数是2400本,所以A=2400×0.25=600(本).故A的值为600,B的值为0.35;(3)因为八年级的人数是408人,占34%,所以求得全校人数有:408÷34%=1200(人),所以全校学生平均每人阅读:2400÷1200=2(本).【点睛】本题考查了频数分布表和扇形统计图的综合运用,其中分析频数分布表和频率的关系是解题关键.23.(2)96, 79 a b ==;(2)72;880︒;(3)甲,理由详见解析【解析】(1)根据众数,中位数的定义即可解决问题.(2)根据圆心角=360°×百分比,计算即可,利用样本估计总体的思想解决问题. (3)根据优秀率,中位数,平均数的大小即可判断.答案不唯一,合理即可. 【详解】(1)将甲班成绩重新整理如下:56 60 68 68 70 76 76 78 80 81 83 85 85 86 90 90 92 96 96 96, 其中96出现次数做多, ∴众数a =96(分), 将乙班成绩重新整理如下:54 60 70 72 75 76 76 78 78 78 80 82 82 86 87 87 92 96 98 100, 其中中位数b =78802+=79(分), 故答案为:96,79;(2)成绩在70≤x <80的扇形中,所对的圆心角α的度数为360°×420=72°, 估计全部“至善班”的1600人中优秀人数为1600×2240=880(人). 故答案为:72°;880(3)甲所选取做样本的同学的学习效果更好一些,你所做判断的理由是:甲的优秀率高,甲的中位数比乙的中位数大,故答案为:甲,甲的优秀率高,甲的中位数比乙的中位数大. 【点睛】本题考查扇形统计图,样本估计总体的思想,中位数,众数等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.24.(1)150,36.补全如图见解析;(2)估计该校最喜爱跑步的学生为312人;(3)恰好选中“排球、乒乓球”这两项活动的概率为16. 【解析】(1) 由排球人数及其斯占百分比可得总人数,用360°乘以乒乓球人数所占比例可得其对应圆心角度数,总人数乘以足球对应的百分比可得其人数,从而补全图形;(2)用总人数乘以样本中跑步人数所占比例即可得;(3)先画树状图展示所有12种等可能的结果数,再找出恰好选中“①排球、④乒乓球”两项活动的结果数,然后根据概率公式计算.【详解】(1)调查中抽查的学生总数为:2114%=150÷扇形统计图中“乒乓球”所对应的圆心角为:15360=36150︒⨯︒故答案为:150,36.补全条形统计图如图.(2)估计该校最喜爱跑步的学生人数有:391200312150⨯=(人)(3)(如图)∴21126 P==【点睛】本题考查了列表法或树状图法:通过列表法或树状图法列出所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.也考查了扇形统计图和条形统计图.25.解:(1)2点朝上出现的频率为320;5点朝上的概率为13;(2)小军的说法不正确,(3)小刚的说法是不正确的.【解析】(1)直接利用概率公式计算即可;(2)利用大量重复试验下事件发生的频率可以估计该事件发生的概率直接回答即可;(3)利用随机事件发生的概率的意义直接回答即可确定答案.【详解】(1)2点朝上出现的频率=960=320;5点朝上的概率=2060=13;(2)小军的说法不正确,因为3点朝上的概率为110,不能说明3点朝上这一事件发生的概率就是110,只有当实验的次数足够多时,该事件发生的频率才稳定在事件发生的概率附近,才可以将这个频率的稳定值作为该事件发生的概率.(3)小刚的说法是不正确的,因为不确定事件发生具有随机性,所以6点朝上出现的次数不一定是100次.【点睛】本题考查了利用频率估计概率的知识,解题的关键是了解“大量重复试验下事件发生的频率可以估计该事件发生的概率”,难度一般.。
先验概率后验概率及贝叶斯公式

先验概率后验概率及贝叶斯公式先验概率、后验概率和贝叶斯公式是概率论中非常重要的概念和原理。
在统计学和机器学习等领域中,它们被广泛应用于数据分析、模式识别、推断和预测等问题。
本文将详细介绍先验概率、后验概率和贝叶斯公式的定义、原理和应用。
首先,我们从先验概率开始。
先验概率是指在没有任何额外信息的情况下,对一个事件发生概率的主观或客观估计。
它是在考虑任何观测结果之前对事件发生概率的预先估计。
先验概率通常表示为P(A),其中A表示一些事件。
例如,在掷一枚公平硬币时,正面朝上的概率P(正面)和反面朝上的概率P(反面)都是先验概率。
接下来是后验概率。
后验概率是在考虑到相关观测数据之后,对事件发生概率的重新估计。
它是根据先验概率和观测数据之间的关系而计算得到的。
后验概率通常表示为P(A,B),表示在给定B发生的情况下,事件A发生的概率。
例如,在上述掷硬币的例子中,若已知硬币正面朝上了3次,那么后验概率P(正面,3次正面)将会有所变化。
贝叶斯公式是用于计算后验概率的重要公式。
它是由英国数学家Thomas Bayes提出的,因此得名。
贝叶斯公式的数学表示如下:P(A,B)=P(B,A)*P(A)/P(B)其中,P(A,B)表示在观测数据B的情况下事件A的后验概率;P(B,A)表示在事件A发生的情况下观测数据B的概率;P(A)和P(B)分别表示事件A和观测数据B的先验概率。
贝叶斯公式的理解可以通过一个简单的例子来说明。
假设有一个罐子,里面有红球和蓝球。
已知在罐子中有70%的红球和30%的蓝球。
现在我们从罐子中随机抽取一个球,并观测到这个球是红色的。
那么问题来了,这个球是红球的后验概率是多少?根据贝叶斯公式,我们可以计算后验概率:P(红球,红色)=P(红色,红球)*P(红球)/P(红色)已知P(红色,红球)=1(因为红球一定是红色的),P(红球)=0.7(根据已知信息),P(红色)可以通过全概率公式计算得到:P(红色)=P(红球)*P(红色,红球)+P(蓝球)*P(红色,蓝球)=0.7*1+0.3*0=0.7将上述结果代入贝叶斯公式,可以计算得到:P(红球,红色)=1*0.7/0.7=1所以,根据观测到的信息,这个球是红球的概率为100%。
六年级下学期数学总复习专项训练:统计和概率(一)(人教版,含答案)

六年级下学期数学总复习专项训练统计和概率(一)一、填空题(共24分)1.(本题1分)甲、乙、丙三种糖果每千克的价格分别是9元,7.5元,7元。
现把甲种糖果5千克,乙种糖果4千克,丙种糖果3千克混合在一起,那么用10元可买( )千克这种混合糖果。
2.(本题2分)任意从装有10枚白棋子和12枚黑棋子的箱子里摸出1枚棋子,那么摸到( )的可能性大,摸到( )的可能性小.3.(本题1分)箱子里有10个球,要使箱子里摸出蓝色球的可能性是710,箱子里应该有________ 个蓝色球.4.(本题1分)甲数是120,乙数是甲数的54,甲、乙两数的平均数是________。
5.(本题2分)盒子里有3个红球,2个黄球。
至少摸出______个球,才能确保摸出的球中有2种不同颜色的球;任意摸一个球,摸出_______球的可能性最大。
6.(本题2分)支付宝在月度账单中想要呈现消费者餐饮、服装、通信等项目费用各占当月总消费比重,应选用( )统计图最合适。
张晓这个月在餐饮方面的花费是800元,占了本月总消费的32%,这个月她一共消费了( )元。
7.(本题1分)如图,任摸一个球,要使摸到黄球的可能性比白球大,盒子中至少应增加( )个黄球。
8.(本题10分)看统计图,回答问题。
(1)________年果园收入最低,是________万元。
(2)________年果园收入最高,是________万元。
(3)5年间,果园的平均收入是________万元。
(4)5年中,低于平均收入的年份有________年、________年。
高于平均收入的年份有________年、________年、________年。
(按年份的先后顺序来填写)9.(本题4分)下图是一个家禽养殖场情况统计图。
(1)鹅的只数占家禽总数的( )%。
(2)表示鹅只数的扇形的圆心角是( )度。
(3)若鸡有450只,则鸭有( )只,鹅有( )只。
二、判断题(共10分)10.(本题2分)折线统计图不但能清楚地看出各种数量的多少,而且还能够看出数量的增减变化情况。
(必考题)初中数学七年级数学下册第六单元《概率初步》测试卷(含答案解析)(4)

同),其中 12 张纸条上字母为 A,8 张纸条上的字母为 B,将纸条摇匀后任意摸出一张,
如果摸到纸条上的字母为 A,则小明胜;如果摸到纸条上的字母为 B,则妹妹胜。
(1)这个游戏公平吗?请说明理由;
(2)若妹妹在箱子中再放入 3 张与前面相同的纸条,所标字母为 B,此时这个游戏对谁有
利?
【参考答案】***试卷处理标记,请不要删除
事件的可能性相同,其中事件 A 出现 m 种结果,那么事件 A 的概率 P(A)
= m = 1 .m= 1 n,n=抛掷一枚质地均匀的硬币 100 次,m= 1 ×100=50.
n2
2
2
故选:B.
【点睛】
本题考查了等可能事件的概率的求解,概率是随机事件的概率,反应是一种可能性,掌握
概率意义,会用公式解决问题.
则从中随机抽取一张,则抽到正确算式的概率是: 1 . 4
故选:A. 【点睛】 此题主要考查了概率公式以及整式的混合运算,正确掌握整式的混合运算法则是解题关 键.
6.C
解析:C 【分析】 直接利用频率的定义分析得出答案. 【详解】 ∵ “学习强国”的英语“Learningpower”中,一共有 13 个字母,n 有 2 个,
5.A
解析:A 【解析】 【分析】 直接利用整式的乘除运算法则分别计算,再利用概率公式求出答案. 【详解】 解:(x+2)(x-3)=x2-x-6,故原式计算错误; (x-1)2=x2-2x+1,故原式计算错误; (x+2)(x-2)=x2-4,故原式计算正确; (6ab+2b)÷2b=3a+1,故原式计算错误;
2
5
10
25.将分别标有数字 2,3,5 的三张颜色、质地、大小完全一样的卡片背面朝上放在桌面上.
小升初押题卷:统计与概率综合题-六年级下册数学培优卷(通用版)

小升初押题卷:统计与概率综合题六年级下册数学培优卷(通用版)亲爱的同学,本套小升初易错题培优卷,会助你合理规划学习内容,高效扎实冲刺小升初,定会帮你学业更上一层楼,交出自己满意的答卷!一、选择题1.要反映250克牛奶中锌、镁、铁、钙等微量元素的含量,用()统计图比较合适。
A.条形B.折线C.扇形2.军军期中考试语文、数学、英语三门学科的平均成绩是90分,已知语文得了88分,那么他的数学和英语两门学科的平均成绩是()分。
A.89B.92C.90D.913.下面说法错误的是()。
A.一个三角形中至少有两个锐角B.王悦5次跳远的平均成绩是2米,她可能每次的成绩都是2米C.图形平移前后,大小和形状都发生改变4.小数乘小数时,积()是整数。
A.可能B.不可能C.一定D.以上答案都不对5.如图,盒子里放着标有序号的5个球,小刚和小林准备进行摸球游戏(每次摸出1个球再放回盒子里),你认为游戏规则()是不公平的?A.小刚摸到1、2号球加1分,小林摸到4、5号球加1分,谁摸到3号球都加2分。
B.小刚摸到1、2、3号球加1分,小林摸到4、5号球加1分。
C.小刚摸到1、2、3号球加1分,小林摸到3、4、5号球加1分。
6.奇思要统计深圳和北京今年1~6月份的气温变化,用()统计图合适。
A.复式条形B.条形C.复式折线D.折线7.折线统计图的特点是()。
A.表示数量的多少B.表示数量的增减变化C.既表示数量的多少又表示数量的增减变化8.下面的游戏中,()是不公平的。
A.掷骰子,点数大于3甲赢,点数小于3乙赢B.抛硬币选比赛场地C.猜拳决定谁先开球D.抽签分组二、填空题9.盒子里有红球2个、黄球3个、蓝球7个,蒙眼摸出( )球的可能性最大,摸出( )球的可能性最小。
10.下表记录了轩轩四次练习跳绳(1分钟)的成绩,记录单不小心被弄脏了。
他第三次跳了( )下,第四次跳了( )下。
次数第一次第二次第三次第四次平均次数成绩/下87939111.实验小学三年级喜欢各种活动的情况统计如下:(1)各项活动中,男生喜欢( )的人数最多,女生喜欢( )的人数最多。
第19讲《统计与概率》案例讲义 练习专项—人教版小升初数学总复习

人数版小升初第一轮精选案例+学生练习专题复习(讲义)第19讲:统计与概率姓名:班级:得分:考点1:统计表▒考点归纳1.统计表的意义。
把收集到的资料进行数据整理后制成表格,用来分析情况,反映问题,这种表格叫作统计表。
2.统计表的分类。
(1)单式统计表:只有一组统计项目的统计表。
(2)复式统计表:有两组或两组以上统计项目的统计表。
▒例题精选例1:下面是新风小学六(1)班学生1分钟跳绳的情况,请你将统计结果制成一一个复式统计表。
男生:104 75 67 38 97 156 109 99 85 113 76 110 115 121 85 30 79 96 108女生:99 125 114 98 74 123 138 84 108 116 110 129 135 159 163 128 100 53 64 42(1)比较一下六(1)班男生和女生跳绳的成绩情况。
(2)你对六(1)班哪些学生有什么建议?解析:当数据较多时,可以用画“正”字的方法收集数据。
先明确优、良、及格和不及格的范围,再依次对比数据,看哪个数据分别属于哪个范围,即成绩是优、良、及格还是不及格,然后画“正”字,全部画完后把结果填入统计表中即可。
解答:成绩如下表(1)女生的跳绳成绩比男生好。
(2)示例:我建议六(1)班男生应该加强体育锻炼。
▒举一反三1某服装厂要为希望小学捐赠服装50件,服装尺码与身高对照情况如下表。
捐赠前,服装厂从该小学随意抽取100名学生调查身高(取整厘米数),统计结果如下表。
你认为这四种码数的服装各应捐赠多少件?考点2:统计图▒考点归纳1.统计图的分类。
(1)条形统计图:单式条形统计图、复式条形统计图。
(2)折线统计图:单式折线统计图、复式折线统计图。
(3)扇形统计图。
2.统计图的意义、特点及作用。
3.统计图的选择。
一般来说,如果几个数量是并列的,只要求表示数量的多少时,就画条形统计图;如果要表示一个量或几个量增减变化情况和发展变化趋势的,就画折线统计图;如果要表示各部分数量与总数量之间的关系,就画扇形统计图。
苏教版六年级数学下册小升初复习冲刺卷 模块过关卷(四) 统计思想与方法 附答案
苏教版六年级数学下册小升初复习冲刺卷模块过关卷(四) 统计思想与方法一、我会填。
(每空1分,共23分)1. 扇形统计图可以清楚地表示出( )和( )之间的关系;( )统计图不但可以表示出数量的多少,而且可以清楚地表示出数量增减变化的情况。
2. 一个盒子里有8个红球,4个蓝球,2个白球,它们的大小、形状一样,从中任意摸出一个球,摸到( )球的可能性最大,摸到( )球的可能性最小。
3. 右图是六(1)班图书角图书情况统计图。
(1)童话书占图书总数的( )%。
(2)如果科技书有150本,那么作文书有( )本。
4. 在一个条形统计图里,若用1. 5厘米高的直条表示10吨,则用( )厘米高的直条表示40吨,用9厘米高的直条表示( )吨。
5. 口袋里有9张写有数的卡片,从中任意摸出1张。
116139258724(1)( )摸到自然数,( )摸到小数。
(填“一定”“可能”或“不可能”)(2)摸到( )的可能性大,摸到( )的可能性小。
(填“奇数”或“偶数”)(3)摸到( )、( )和( )的可能性相等。
(填“奇数”“偶数”“质数”或“合数”)6. 亮亮前几次英语测试的平均成绩为84分,这次测试要得100分,才能把这几次英语测试的平均成绩提到86分,这是第( )次测试。
7. 在学校组织的校园舞比赛中,七位评委老师给六(2)班的评分(单位:分)分别是9. 45、9. 47、9. 38、9. 55、9. 24、9. 35、9. 40。
去掉一个最高分和一个最低分,六(2)班最终平均得分是( )分。
8. 有三张数字卡片4,5,6,任意选两张摆成两位数,两位数是奇数时小芳赢,两位数是偶数时小玲赢,她们两人中( )赢的可能性大。
9. 要统计学校各社团人数,应绘制( )统计图;要统计午餐各种营养成分所占的百分比,应绘制( )统计图;要统计文文6~12岁体重变化情况,应绘制( )统计图。
10. 跳绳比赛前,采用“石头”“剪刀”“布”的游戏方法确定谁先跳,这种游戏规则是( )的。
【数学】五年级上册数学试题-可能性(含答案)人教新课标
一定不可能可能 五年级上册数学试题-可能性(含答案)人教新课标专项测评三 统计与概率考点一 判断随机事件发生的可能性的大小 1.填空。
(1)上面每个袋中都有 5 个红球。
如果从袋中任意摸出一个球,那么从( )号袋中摸出红球的可能性最小。
(2)一个正方体的一个面涂红色,2 个面涂黄色,3 个面涂绿色。
掷一次,朝上的面是()色的可能性最大。
2.判断下面各题,选择相应的符号写在括号里。
(1)太阳从东边升起。
()(2)两位数乘一位数,积是三位数。
( )(3)用左手拿笔写字。
()(4)人类离开水也能生活。
()(5)今天是星期五,明天是星期六。
( )考点二 根据可能性的大小进行推测3.下面是五(1)班同学统计的校门口 30 分钟内的车流量情况。
判断下面 4 名同学的说法是否正确,正确的画“○”,不正确的画“●”。
(1)小琪说:“下一辆车一定是小汽车。
”( ) (2)小宇说:“下一辆车可能是面包车。
”()(3)小月说:“下一辆车是公共汽车的可能性最大。
”()○×√(4)小畅说:“下一辆车是摩托车的可能性最小。
”( )4.按要求写卡片。
纸袋里有 5 张卡片,随意摸出一张。
(1)如果使摸出的卡片一定是“A”,那么这5 张卡片分别是:(2)如果使摸出的卡片可能是“A”,那么这5 张卡片分别是:(3)如果使摸出的卡片不可能是“A”,那么这5 张卡片分别是:(4)如果使摸出卡片“A”的可能性最大,那么这5 张卡片分别是:参考答案1.(1)3 (2)绿2.(1)√(2)○(3)○(4)×(5)√3.(1)●(2)○(3)●(4)○人教版小学数学五年级上册《第四章可能性》单元测试卷(解析版)一.选择题(共10小题)1.根据题意选择恰当的词语填空.今天是星期五,明天()是星期六.A.不一定B.不可能C.可能D.一定2.小丁丁今年11岁,明年()12岁.A.一定B.不可能C.可能3.火车在天上飞.()A.可能B.不可能C.一定能4.口袋里装有红球和黄球各若干个,摸了96次球,72次摸到了红球,14次摸到了黄球,红球比黄球的可能()A.多B.少C.无法确定5.口袋里放有5个红球,1个白球,任意摸一个球,摸到白球的可能性比摸到红球的可能性()A.大B.小C.无法判断6.盒子中装有红、黄、绿三种颜色的球,小明每次摸出一个球后再放回去摇匀,这样摸了100次,其中摸到红球65次,黄球20次,绿球15次.如果小明再摸一次,摸到()球的可能性最大.A.红B.黄C.绿7.在口袋里放入9个球,任意摸一个球,要使摸到红球的可能性是,要放入()个红球.A.2B.4C.6D.88.从箱子中任意摸一个球,摸到黑球的可能性为的是()A.B.C.D.9.给一个正方体的表面涂上红、黄、蓝三种颜色,任意抛一次,红色朝上的次数最多,蓝色和黄色朝上的次数差不多,有()个面涂了红色.A.1B.2C.3D.410.宝宝拿两个硬币往下扔,两个都是正面朝上的概率是()A.B.C.D.二.填空题(共5小题)11.抛一枚硬币,连续抛了6次,6次都是正面朝上.如果再抛1次,(填“一定”“可能”或“不可能”)是背面朝上.12.今天太阳从东方升起(可能、一定、不可能),口袋里有6个红球、2个蓝球,摸到的可能性小.13.一个盒子里有7个苹果、4个桃子、8个梨,如果任意拿出一个水果,拿到的可能性最大.14.箱子里装着5个黄球和5个红球,随便摸一个球,一定是红球..15.口袋里有红、黄两种颜色的10个球,要求任意摸一次,使摸到红球的可能性比摸到黄球的可能性大,口袋里至少要放红球个.三.应用题(共2小题)16.在一个正方体的6个面上分别标上数字1、2、3.要使3朝上的可能性最大,6个面上的数字应怎样标?17.盒子里有5颗红珠子4颗蓝珠子、1颗绿珠子(这些珠子除颜色外其他,都相同).摇匀后,随意摸出1颗珠子.(1)摸到哪种颜色珠子的可能性最小?(2)小白摸出了1颗蓝珠子,放回后摇匀;小米接着摸,摸出的也是一颗蓝珠子,又放回摇匀.如果小西来摸,摸到哪种颜色珠子的可能性最大?(3)小白摸出了1颗红珠子,小米又摸出了1颗红珠子,都没有放回.这时小西来摸,摸到哪种颜色珠子的可能性最大?四.操作题(共2小题)18.下面是某组摸球游戏结果的记录表,请根据记录回答问题.正正正正正正(1)如果盒子中一共有4个球,红球和绿球可能各有几个?(2)如果再摸5次,你认为这5次中摸到绿球的次数有可能比红球的次数多吗?请在正确答案的〇内涂色.19.按要求涂一涂.(1)一定摸到黑球.(2)摸到黑球和白球的可能性一样大.五.解答题(共2小题)20.盒子里装有红、黄、蓝三种颜色的球,丽丽从中摸出一个球后再放回去摇匀,这样重复摸了100次,结果如表.(1)根据表中的数据推测,盒子里的球最多,球最少.(2)如果再摸一次,丽丽可能摸到什么颜色的球?21.有4张背面相同的卡片,正面分别写着1、2、3、4,把它们洗匀后反扣,每次抽出一张,记录结果,再放回去和其他卡片混合.(1)任意抽出一张卡片可能是.(2)抽出比4小的卡片的可能性.(填“大”或“小”)(3)抽出比2大的卡片有种可能,分别是.(4)可能抽到比4大的卡片吗?答:.2019年人教版小学数学五年级上册《第四章可能性》单元测试卷参考答案与试题解析一.选择题(共10小题)1.根据题意选择恰当的词语填空.今天是星期五,明天()是星期六.A.不一定B.不可能C.可能D.一定【分析】“一定”表示确定事件,“可能”表示不确定事件,“不可能”属于确定事件中的必然事件;由此进行解答即可.【解答】解:今天是星期五,明天一定是星期六;故选:D.【点评】此题考查的是事件的确定性和不确定性,应结合实际进行解答.2.小丁丁今年11岁,明年()12岁.A.一定B.不可能C.可能【分析】“一定”表示确定事件,“可能”表示不确定事件,“不可能”属于确定事件中的必然事件;由此进行分析解答即可.【解答】解:小丁丁今年11岁,明年一定12岁;故选:A.【点评】此题考查的是事件的确定性和不确定性,应结合实际进行解答.3.火车在天上飞.()A.可能B.不可能C.一定能【分析】根据事件的确定性和不确定性进行分析:因为火车在天上飞是不可能不发生的事件;进而判断即可.【解答】解:火车不可能在天上飞;属于确定性事件中的不可能性事件;故选:B.【点评】解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.口袋里装有红球和黄球各若干个,摸了96次球,72次摸到了红球,14次摸到了黄球,红球比黄球的可能()A.多B.少C.无法确定【分析】根据题意,摸了96次球,72次摸到了红球,14次摸到了黄球,72>14,红球出现的次数多,黄球出现的次数少,所以红球可能比黄球的数量多;据此判断即可.【解答】解:摸了96次球,72次摸到了红球,14次摸到了黄球72>14;红球出现的次数多,黄球出现的次数少所以红球可能比黄球的数量多;故选:A.【点评】解决本题根据可能性的大小,结合给出的数据的多少进行求解即可.5.口袋里放有5个红球,1个白球,任意摸一个球,摸到白球的可能性比摸到红球的可能性()A.大B.小C.无法判断【分析】因为口袋里红球和白球两种颜色的球,要比较可能性的大小,可以直接比较红球、白球的个数,因为红球比白球的个数多,所以摸到白球的可能性比摸到红球的可能性小,据此解答.【解答】解::因为口袋里红球和白球两种颜色的球,因为1<5,即白球比红球的个数少,所以摸到白球的可能性摸到红球的可能性小.故选:B.【点评】本题在比较可能性的大小时,没必要算出摸红球和白球的可能性,可以根据两种球颜色个数的多少直接判断.6.盒子中装有红、黄、绿三种颜色的球,小明每次摸出一个球后再放回去摇匀,这样摸了100次,其中摸到红球65次,黄球20次,绿球15次.如果小明再摸一次,摸到()球的可能性最大.A.红B.黄C.绿【分析】摸了100次,其中摸到红球65次,黄球20次,绿球15次;如果小明再摸一次,但由于是随机试验,不能确定下一次摸到的是红球、黄球还是绿球,但摸到红球的可能性比较大;据此解答即可.【解答】解:如果小明再摸一次,不一定摸到的是红球、黄球还是绿球,但摸到红球的可能性比较大;故选:A.【点评】此题考查了可能性大小的求解,要注意每一次摸球都是独立的随机试验,不能根据概率确定下一次一定摸到什么颜色的球.7.在口袋里放入9个球,任意摸一个球,要使摸到红球的可能性是,要放入()个红球.A.2B.4C.6D.8【分析】要使摸到红球的可能性是,那么红球的个数就是总数的,根据分数乘法的意义,用乘法解答即可.【解答】解:9×=6(个);答:要使摸到红球的可能性是,要放入6个红球.故选:C.【点评】此题先理解可能性的含义,再根据求一个数的几分之几是多少,用乘法计算.8.从箱子中任意摸一个球,摸到黑球的可能性为的是()A.B.C.D.【分析】首先求出各个箱子中球的总量,然后根据求可能性的方法:求一个数是另一个数的几分之几,用除法列式解答,用黑球的数量除以球的总量,判断出哪个箱子中摸到黑球的可能性为即可.【解答】解:A中摸到黑球的可能性为:3÷(3+3)=B中摸到黑球的可能性为:3÷(3+1+2)=C中摸到黑球的可能性为:2÷(2+1+3)=D中摸到黑球的可能性为:4÷(4+3+2)=故选:C.【点评】解决此类问题的关键是分两种情况:(1)需要计算可能性的大小的准确值时,根据求可能性的方法:求一个数是另一个数的几分之几,用除法列式解答即可;(2)不需要计算可能性的大小的准确值时,可以根据各种球数量的多少,直接判断可能性的大小.9.给一个正方体的表面涂上红、黄、蓝三种颜色,任意抛一次,红色朝上的次数最多,蓝色和黄色朝上的次数差不多,有()个面涂了红色.A.1B.2C.3D.4【分析】因为正方体共有6个面,任意抛一次,红色朝上的次数最多,蓝色和黄色朝上的次数差不多,所以当红色有3面时,还剩3个面,就不能满足蓝色和黄色朝上的次数差不多,所以这个正方体可能有4面涂红色;据此解答.【解答】解:因为正方体共有6个面,任意抛一次,要使红色朝上的次数最多,蓝色和黄色朝上的次数差不多,这个正方体可能有4个涂红色.故选:D.【点评】此题考查了可能性的大小,应明确:正方体共有6个面,然后结合题意,进行分析即可得出解论.10.宝宝拿两个硬币往下扔,两个都是正面朝上的概率是()A.B.C.D.【分析】列举出所有情况,看两个正面向上的情况数占总情况数的多少即可.【解答】解:会出现的情况有:两正;两反;一正一反;一反一正;一共有4种情况,两个正面向上的有1种情况,这两个正面朝上的概率是:1÷4=.答:两个都是正面朝上的概率是.故选:A.【点评】本题还可利用列表法或树状图法求概率(可能性),用到的知识点为:概率=所求情况数与总情况数之比.二.填空题(共5小题)11.抛一枚硬币,连续抛了6次,6次都是正面朝上.如果再抛1次,可能(填“一定”“可能”或“不可能”)是背面朝上.【分析】根据随机事件发生的独立性,可得再抛一次这枚硬币的结果与前6次无关;然后根据硬币有正、反两面,可得这次抛这枚硬币,可能是正面朝上,也可能是反面朝上,据此解答即可.【解答】解:根据随机事件发生的独立性,所以再抛1次这枚硬币,可能是正面朝上,也可能是反面朝上;故答案为:可能.【点评】此题主要考查了随机事件发生的独立性,要熟练掌握,解答此题的关键是要明确:再抛1次这枚硬币的结果与前6次无关.12.今天太阳一定从东方升起(可能、一定、不可能),口袋里有6个红球、2个蓝球,蓝球摸到的可能性小.【分析】根据事件发生的确定性和不确定性进行分析:太阳从东方升起,是客观规律,属于确定事件中的必然事件;要比较可能性的大小,可以直接比较红球和蓝球的个数,因为红球比蓝球的个数多,所以摸到红球的可能性较大,摸到蓝球的可能性较小;据此解答.【解答】解:太阳从东方升起,是客观规律,属于确定事件中的必然事件,是一定的;因为口袋里有6个红球、2个蓝球,6>2,所以任意摸出一个球,摸到蓝球的可能性小.故答案为:一定,蓝球.【点评】解答此题应根据事件的确定性和不确定性进行解答即可;解决此题关键是如果不需要准确地计算可能性的大小时,可以根据各种球个数的多少,直接判断可能性的大小.13.一个盒子里有7个苹果、4个桃子、8个梨,如果任意拿出一个水果,拿到梨的可能性最大.【分析】因为一个盒子里有7个苹果、4个桃子、8个梨,8>7>4,所以从盘子里任意摸出一个水果,摸到梨的可能性最大;据此解答即可.【解答】解:8>7>4,梨的个数最多,所以摸到梨的可能性最大;故答案为:梨.【点评】解决此题关键是根据不需要准确地计算可能性的大小时,可以根据各种水果个数的多少,直接判断可能性的大小.14.箱子里装着5个黄球和5个红球,随便摸一个球,一定是红球.×.【分析】盒子里放有5个黄球和5个红球,有红、黄两种颜色的球,所以摸出球的结果有两种情况:可能是红球,也可能是黄球;由此判断即可.【解答】解:因为有红、黄两种颜色的球,所以摸出球的结果有两种情况:可能是红球,也可能是黄球;所以上面的说法是错误的.故答案为:×.【点评】根据生活经验:有几种颜色的球,摸时哪一种颜色的球都可能摸到.15.口袋里有红、黄两种颜色的10个球,要求任意摸一次,使摸到红球的可能性比摸到黄球的可能性大,口袋里至少要放红球6个.【分析】要使摸到红球的可能性比摸到黄球的可能性大,应使口袋中红球的个数至少比黄球个数多1个.【解答】解:10÷2+1=5+1=6(个);答:口袋里至少要放红球6个.故答案为:6.【点评】解答此题的关键:应明确可能性的计算方法,并能根据实际情况进行灵活运用.三.应用题(共2小题)16.在一个正方体的6个面上分别标上数字1、2、3.要使3朝上的可能性最大,6个面上的数字应怎样标?【分析】一个正方体有6个面,可标上数字1、2、3,要想掷一次后出现3的可能性大,只要尽可能多标3即可.【解答】解:一个正方体有6个面,一个面标1,一个面标2,剩下的4个面标3,这样掷一次后出现3的可能性最大;答:要使3朝上的可能性最大,一个面标1,一个面标2,剩下的4个面标3.【点评】此题根据可能性的大小进行解答即可.17.盒子里有5颗红珠子4颗蓝珠子、1颗绿珠子(这些珠子除颜色外其他,都相同).摇匀后,随意摸出1颗珠子.(1)摸到哪种颜色珠子的可能性最小?(2)小白摸出了1颗蓝珠子,放回后摇匀;小米接着摸,摸出的也是一颗蓝珠子,又放回摇匀.如果小西来摸,摸到哪种颜色珠子的可能性最大?(3)小白摸出了1颗红珠子,小米又摸出了1颗红珠子,都没有放回.这时小西来摸,摸到哪种颜色珠子的可能性最大?【分析】(1)首先比较出三种颜色的珠子数量的多少,然后根据:哪种颜色的珠子的数量越多,摸到的可能性就越大,判断出摸到哪种颜色珠子的可能性最小即可.(2)根据:哪种颜色的珠子的数量越多,摸到的可能性就越大,判断出摸到哪种颜色珠子的可能性最大即可.(3)首先比较出小白、小米摸后剩下的三种颜色的珠子数量的多少,然后根据:哪种颜色的珠子的数量越多,摸到的可能性就越大,判断出摸到哪种颜色珠子的可能性最大即可.【解答】解:(1)因为5>4>1,所以绿珠子最少,所以摸到绿珠子的可能性最小.答:摸到绿珠子的可能性最小.(2)因为5>4>1,所以红珠子最多,所以摸到红珠子的可能性最大.答:摸到红珠子的可能性最大.(3)5﹣1﹣1=3(个)因为4>3>1,所以小白、小米摸后剩下的珠子中,蓝珠子最多,所以摸到蓝珠子的可能性最大.答:摸到蓝珠子的可能性最大.【点评】解答此类问题的关键是分两种情况:(1)需要计算可能性的大小的准确值时,根据求可能性的方法:求一个数是另一个数的几分之几,用除法列式解答即可;(2)不需要计算可能性的大小的准确值时,可以根据各种珠子数量的多少,直接判断可能性的大小.四.操作题(共2小题)18.下面是某组摸球游戏结果的记录表,请根据记录回答问题.(1)如果盒子中一共有4个球,红球和绿球可能各有几个?(2)如果再摸5次,你认为这5次中摸到绿球的次数有可能比红球的次数多吗?请在正确答案的〇内涂色.【分析】(1)由统计表可知,一共摸了43次,摸到红球33次,绿球10次,33÷10≈3,所以可能红球是绿球的3倍,即红球有3个,绿球有1个;(2)根据事件的确定性与不确定性进行分析:因为口袋里有红球,也有绿球,所以随意摸出一个球.可能摸到红球,可能摸到绿球,如果再摸5次,这5次中摸到绿球的次数有可能比红球的次数多;据此解答.【解答】解:(1)33÷10≈3,所以可能红球是绿球的3倍,即红球有3个,绿球有1个;(2)如果再摸5次,这5次中摸到绿球的次数有可能比红球的次数多;【点评】此题考查简单的统计图,以及事件的确定性和不确定性.19.按要求涂一涂.(1)一定摸到黑球.(2)摸到黑球和白球的可能性一样大.【分析】(1)一定摸到黑球,所以都必须是黑球;(2)摸到黑球小学数学五年级上册第五单元简易方程测试卷一、仔细想,认真填。
五年级数学统计和概率试题答案及解析
五年级数学统计和概率试题答案及解析1.有1分、2分、5分的硬币各两个,从中取出一个或几个,可以组成种不同的币值.【答案】16【解析】如果全取出,那么可以组成1+1+2+2+5+5=16分;所以最小币值为1分,最大币值为16分,采用枚举法找出所有符合题意的取法即可.解:根据题干分析可得:可以分别组成1分、2分、3分、4分、5分、6分、7分、8分、9分、10分、11分、12分、13分、14分、15分、16分的币值共有16种.故答案为:16.【点评】此题是考查了灵活应用枚举法解决实际问题.2.你认识下面的折线统计图吗?下图表示六年级同学骑车到10千米远的公园去春游的情况,请根据折线图填空。
(1)同学们去公园用了()小时,实际骑了()小时。
(2)同学们在公园游玩了()小时。
(3)同学们回来时平均每小时行()千米。
【答案】(1)3;2.5;(2)3;(3)5。
【解析】观察折线统计图可以知道8时出发,11时到达,路上休息了半小时;在公园游玩了3小时;14时开始返回,16时到家。
3.抛一枚硬币,落地后朝上的可能性有种,分别是.【答案】两,正面朝上、反面朝上.【解析】抛一枚质地均匀的硬币,有两种结果,正面朝上,每种结果等可能出现,从而可得出答案.解:抛一枚质地均匀的硬币,有正面朝上、反面朝上两种结果,故答案为:两,正面朝上、反面朝上.【点评】本题主要考查了古典概率中的等可能事件的概率的求解,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.4.在一个不透明的口袋中摸出红球的可能性为,已知口袋中的红球是3个,则袋中一共有()个球.A.12 B.15 C.20【答案】B【解析】摸出红球的可能性是,红球的个数正好是3个,也就是说正好是3的对应分率,据此,可以求出总球数.解:3÷,=3×5,=15;答:袋中一共有15个球.故选:B.【点评】对于这类题目,红球的数量是已知的,红球占总球数的分率也是已知的,可以直接根据部分量÷对应分率=总量计算即可.5.操作题。
初识python之爬虫:爬取双色球中奖号码信息
初识python之爬⾍:爬取双⾊球中奖号码信息⼈⽣还是要有梦想的,毕竟还有python。
⽐如,通过python来搞⼀搞彩票(双⾊球)。
注:此⽂仅⽤于python学习,结果仅作参考。
⽤到知识点:1、爬取⽹页基础数据2、将数据写⼊excel⽂件3、将数据统计结果可视化输出主要步骤: 1、获取双⾊球⽹页中,中奖号码信息数据 2、将数据放⼊excle(学习使⽤python将数据写⼊excel) 3、分别将红球中奖号码、蓝球中奖号码放⼊两个列表中,⽤于后续分别统计红球、蓝球出现的中奖次数 4、获取球出现的次数 5、使⽤可视化⼯具以柱状图、折线图形式展⽰数据处理结果详细代码如下:#!/user/bin env python# author:Simple-Sir# time:2019/7/29 16:32# 爬取双⾊球中奖号码数据# 1、获取双⾊球⽹页中,中奖号码信息数据# 2、将数据放⼊excle(学习使⽤python将数据写⼊excel)# 3、分别将红球中奖号码、蓝球中奖号码放⼊两个列表中,⽤于后续分别统计红球、蓝球出现的中奖次数# 4、获取球出现的次数# 5、使⽤可视化⼯具以柱状图、折线图形式展⽰数据处理结果import requestsfrom bs4 import BeautifulSoupimport openpyxlfrom pyecharts.charts import Bar,Line # 官⽅已取消 pyecharts.Bar ⽅式导⼊from pyecharts import optionsfrom pyecharts.globals import ThemeTypefrom datetime import datetimefrom pyecharts.datasets import register_files# 获取双⾊球中奖号码信息def get_data(n):headers = {'User-Agent':'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/63.0.3239.132 Safari/537.36 QIHU 360SE' }url = 'https:///kaijiang/ssq?lotId=220051&chartType=undefined&spanType=0&span={}'.format(n) # 爬取期数respons = requests.get(url,headers=headers)text = respons.textsoup = BeautifulSoup(text,'lxml')tbody = soup.find_all('thead',class_="kaijiang")[0]tbody_th = tbody.find_all('th')# 创建⼀个excel⽂件wb = openpyxl.Workbook() # 新建excel⽂件ws = wb.active # 激活sheet,⽤于后续将数据写⼊ws.title = '双⾊球中奖信息'# 指定sheet的名称# 将“表头”写⼊excel中ws.cell(row=1,column=1,value=list(tbody_th[0].stripped_strings)[0]) # cell ⽅法给excel写⼊数据,row= ⾏,column=列,value=要写⼊的值ws.cell(row=1,column=2,value=list(tbody_th[1].stripped_strings)[0])ws.cell(row=1,column=3,value=list(tbody_th[-6].stripped_strings)[0])ws.cell(row=1,column=4,value=list(tbody_th[-5].stripped_strings)[0])tbody = soup.find_all('tbody',id="data-tab")[0]trs = tbody.find_all('tr')data_list=[] # 要写⼊excel的数据red_list = [] # 红球blue_list = [] # 蓝球for tr in trs:tds = tr.find_all('td')[:4]blue_list.append(list(tds[3].stripped_strings)[0]) # 获取蓝球号码tds_text = [] # 中奖号码信息redBall = ''for index,td in enumerate(tds):if index == 2: # 红球for i in list(td.stripped_strings):redBall = redBall+''+ ired_list.append(i)tds_text.append(redBall.lstrip())else:tds_text.append(list(td.stripped_strings)[0])data_list.append(tds_text)for i,dl in enumerate(data_list):for j,dt in enumerate(dl):ws.cell(row=i+2,column=j+1,value=dt) # 将中奖号码信息写⼊excel中wb.save('双⾊球中奖信息.xlsx') # 将数据保存到本地excel中return red_list,blue_list# 获取球出现的次数def count_ball(ball_list,color_list):''':param ball_list: 所有中奖号码,红球+蓝球剔重数据:param color_list: 红球号码或蓝球号码:return: 中奖号码出现的次数'''ball_dict={}for d in ball_list:ball_dict[d]=0for ball in ball_list:ball_dict[ball]=color_list.count(ball) # 获取球出现的次数count_y = list(ball_dict.values())return count_y# 柱状图def mkCharts(x,y1,y2,n):bar = Bar(init_opts = options.InitOpts(theme=ThemeType.DARK)) # 对表格添加主题bar.add_xaxis(x) # x轴:所有中奖号码,红球+蓝球bar.add_yaxis('红球',y1)bar.add_yaxis('蓝球', y2)tim = datetime.now().strftime('%Y-%m-%d')bar.set_global_opts(title_opts=options.TitleOpts(title="最近{}期双⾊球红蓝球中奖次数".format(n), subtitle=tim))bar.render('双⾊球(柱状图).html')# 折线图,使⽤官⽅主题 https:///#/zh-cn/themes?id=%e4%b8%bb%e9%a2%98%e9%a3%8e%e6%a0%bc def mkLine1(x,y1,y2,n):tim = datetime.now().strftime('%Y-%m-%d')line=(Line(init_opts=options.InitOpts(theme=ThemeType.CHALK)).add_xaxis(x).add_yaxis('红球', y1).add_yaxis('蓝球', y2).set_global_opts(title_opts=options.TitleOpts(title="最近{}期双⾊球红蓝球中奖次数".format(n),subtitle=tim)))line.render('双⾊球(折线图官⽅).html')# 使⽤主题⼯具创建主题 https:///theme-builder/def mkLine2(x,y1,y2,n):register_files({'myTheme':['/js/customed.project','json']})tim = datetime.now().strftime('%Y-%m-%d')line=(# Line(init_opts=options.InitOpts(theme=ThemeType.WESTEROS))Line(init_opts=options.InitOpts(theme="myTheme")).add_xaxis(x).add_yaxis('红球', y1).add_yaxis('蓝球', y2).set_global_opts(title_opts=options.TitleOpts(title="最近{}期双⾊球红蓝球中奖次数".format(n),subtitle=tim)))line.render('双⾊球(折线图⾃定义).html')def main(n):red_list = get_data(n)[0]blue_list = get_data(n)[1]x = sorted(set(red_list + blue_list))y_red = count_ball(x, red_list)y_blue = count_ball(x, blue_list)mkCharts(x, y_red, y_blue,n) # 柱状图mkLine1(x,y_red,y_blue,n) # 系统主题mkLine2(x,y_red,y_blue,n) # ⾃定义主题if__name__ == '__main__':n = input('您想获取最近多少期的数据?\n')main(n)print('统计信息已爬取完成。