信号与系统实验报告

合集下载

北航信号与系统上机实验报告

北航信号与系统上机实验报告

信号与系统上机实验报告我是 buaa 快乐的小2B目录实验一、连续时间系统卷积的数值计算 (3)一、实验目的 (3)二、实验原理 (3)三、实验程序源代码、流图实验程序源代码 (4)4.1源代码与程序框图: (4)4.2数据与结果 (5)4.3数据图形 (6)实验二、信号的矩形脉冲抽样与恢复 (7)一、实验目的: (7)二、实验原理: (7)三、实验内容 (9)四、实验程序流程图和相关图像 (9)4.1、画出f(t)的频谱图即F(W)的图像 (9)4.2、对此频域信号进行傅里叶逆变换,得到相应的时域信号,画出此信号的时域波形f(t) (11)4.3、三种不同频率的抽样 (14)4.4、将恢复信号的频谱图与原信号的频谱图进行比较 (17)实验五、离散时间系统特性分析 (21)一、实验目的: (21)二、实验原理: (21)三、实验内容 (21)四、程序流程图和代码 (22)五、实验数据: (23)5.1单位样值响应 (23)5.2幅频特性 (24)六、幅频特性和相频特性曲线并对系统进行分析。

(25)6.1幅频特性曲线 (25)6.2相频特性曲线 (26)实验一、连续时间系统卷积的数值计算一、实验目的1 加深对卷积概念及原理的理解;2 掌握借助计算机计算任意信号卷积的方法。

二、实验原理1 卷积的定义卷积积分可以表示为2 卷积计算的几何算法卷积积分的计算从几何上可以分为四个步骤:翻转→平移→相乘→叠加。

3 卷积积分的应用卷积积分是信号与系统时域分析的基本手段,主要用于求系统零状态响应,它避开了经典分析方法中求解微分方程时需要求系统初始值的问题。

设一个线性零状态系统,已知系统的单位冲激响应为h(t),当系统的激励信号为e(t)时,系统的零状态响应为由于计算机技术的发展,通过编程的方法来计算卷积积分已经不再是冗繁的工作,并可以获得足够的精度。

因此,信号的时域卷积分析法在系统分析中得到了广泛的应用。

卷积积分的数值运算实际上可以用信号的分段求和来实现,即:如果我们只求当t )时r(t)的值,则由上式可以得到:1 1 2t = nΔt (n为正整数, nΔt 记为当 1 Δt 足够小时,( ) 2 r t 就是e(t)和h(t)卷积积分的数值近似,由上面的公式可以得到卷积数值计算的方法如下:1、将信号取值离散化,即以Ts 为周期,对信号取值,得到一系列宽度间隔为Ts 的矩形脉冲原信号的离散取值点,用所得离散取值点矩形脉冲来表示原来的连续时间信号;2、将进行卷积的两个信号序列之一反转,与另一信号相乘,并求积分,所得为t=0 时的卷积积分的值。

信号与系统实验报告总结

信号与系统实验报告总结

信号与系统实验实验一常用信号的观察方波:正弦波:三角波:在观测中,虚拟示波器完全充当实际示波器的作用,在工作台上连接AD1为示波器的输入,输入方波、正弦波、三角波信号时,可在电脑上利用软件观测到相应的波形,其纵轴为幅值可通过设置实现幅值自动调节以观测到最佳大小的波形,其横轴为时间,宜可通过设置实现时间自动调节以观测到最佳宽度的波形。

实验四非正弦周期信号的分解与合成方波DC信号:DC信号几乎没有,与理论相符合,原信号没有添加偏移。

方波基波信号:基波信号为与原方波50Hz信号相对应的频率为50Hz的正弦波信号,是方波分解的一次谐波信号。

方波二次谐波信号:二次谐波信号频率为100Hz为原方波信号频率的两倍,幅值较一次谐波较为减少。

方波三次谐波信号:三次谐波信号频率为150Hz为原方波信号的三倍。

幅值较一二次谐波大为减少。

方波四次谐波信号:四次谐波信号的频率为200Hz为原方波信号的四倍。

幅值较三次谐波再次减小。

方波五次谐波信号:五次谐波频率为250Hz为原方波信号的五倍。

幅值减少到0.3以内,几乎可以忽略。

综上可知:50Hz方波可以分解为DC信号、基波信号、二次、三次、四次、五次谐波信号…,无偏移时即无DC信号,DC信号幅值为0。

分解出来的基波信号即一次谐波信号频率与原方波信号频率相同,幅值接近方波信号的幅值。

二次谐波、三次谐波、四次谐波、五次谐波依次频率分别为原方波信号的二、三、四、五倍,且幅值依次衰减,直至五次谐波信号时几乎可以忽略。

可知,方波信号可分解为多个谐波。

方波基波加三次谐波信号:基波叠加上三次谐波信号时,幅值与方波信号接近,形状还有一定差异,但已基本可以看出叠加后逼近了方波信号。

方波基波加三次谐波信号加五次谐波信号:基波信号、三次谐波信号、五次谐波信号叠加以后,比基波信号、三次谐波信号叠加后的波形更加接近方波信号。

综上所述:方波分解出来的各次谐波以及DC信号,叠加起来以后会逼近方波信号,且叠加的信号越多,越是接近方波信号。

MATLAB信号与系统实验报告19472[五篇范文]

MATLAB信号与系统实验报告19472[五篇范文]

MATLAB信号与系统实验报告19472[五篇范文]第一篇:MATLAB信号与系统实验报告19472信号与系统实验陈诉(5)MATLAB 综合实验项目二连续系统的频域阐发目的:周期信号输入连续系统的响应可用傅里叶级数阐发。

由于盘算历程啰嗦,最适适用MATLAB 盘算。

通过编程实现对输入信号、输出信号的频谱和时域响应的盘算,认识盘算机在系统阐发中的作用。

任务:线性连续系统的系统函数为11)(+=ωωjj H,输入信号为周期矩形波如图 1 所示,用MATLAB 阐发系统的输入频谱、输出频谱以及系统的时域响应。

-3-2-1 0 1 2 300.511.52Time(sec)图 1要领:1、确定周期信号 f(t)的频谱nF&。

基波频率Ω。

2、确定系统函数 )(Ω jn H。

3、盘算输出信号的频谱n nF jn H Y&&)(Ω=4、系统的时域响应∑∞-∞=Ω=nt jnn eY t y&)(MATLAB 盘算为y=Y_n*exp(j*w0*n“*t);要求(画出 3 幅图):1、在一幅图中画输入信号f(t)和输入信号幅度频谱|F(jω)|。

用两个子图画出。

2、画出系统函数的幅度频谱|H(jω)|。

3、在一幅图中画输出信号y(t)和输出信号幅度频谱|Y(jω)|。

用两个子图画出。

解:(1)阐发盘算:输入信号的频谱为(n)输入信号最小周期为=2,脉冲宽度,基波频率Ω=2π/ =π,所以(n)系统函数为因此输出信号的频谱为系统响应为(2)步伐:t=linspace(-3,3,300);tau_T=1/4;%n0=-20;n1=20;n=n0:n1;%盘算谐波次数20F_n=tau_T*Sa(tau_T*pi*n);f=2*(rectpuls(t+1.75,0.5)+rectpuls(t-0.25,0.5)+rectpuls(t-2.25,0.5));figure(1),subplot(2,1,1),line(t,f,”linewidth“,2);%输入信号的波形 axis([-3,3,-0.1,2.1]);grid onxlabel(”Time(sec)“,”fontsize“,8),title(”输入信号“,”fontweight“,”bold“)%设定字体巨细,文本字符的粗细text(-0.4,0.8,”f(t)“)subplot(2,1,2),stem(n,abs(F_n),”.“);%输入信号的幅度频谱xlabel(”n“,”fontsize“,8),title(”输入信号的幅度频谱“,”fontweight“,”bold“)text(-4.0,0.2,”|Fn|“)H_n=1./(i*n*pi+1);figure(2),stem(n,abs(H_n),”.“);%系统函数的幅度频谱xlabel(”n“,”fontsize“,8),title(”系统函数的幅度频谱“,”fontweight“,”bold“)text(-2.5,0.5,”|Hn|“)Y_n=H_n.*F_n;y=Y_n*exp(i*pi*n”*t);figure(3),subplot(2,1,1),line(t,y,“linewidth”,2);%输出信号的波形 axis([-3,3,0,0.5]);grid onxlabel(“Time(sec)”,“fontsize”,8),title(“输出信号”,“fontweight”,“bold”)text(-0.4,0.3,“y(t)”)subplot(2,1,2),stem(n,abs(Y_n),“.”);%输出信号的幅度频谱xlabel(“n”,“fontsize”,8),title(“输出信号的幅度频谱”,“fontweight”,“bold”)text(-4.0,0.2,“|Yn|”)(3)波形:-3-2-1 0 1 2 300.511.52Time(sec)输入信号f(t)-20-15-10-5 0 5 10 15 2000.10.20.30.4n输入信号的幅度频谱|Fn|-20-15-10-5 0 5 10 15 2000.10.20.30.40.50.60.70.80.91n系统函数的幅度频谱|Hn|-3-2-1 0 1 2 300.10.20.30.4Time(sec)输出信号y(t)-20-15-10-5 0 5 10 15 2000.10.20.30.4n输出信号的幅度频谱|Yn| 项目三连续系统的复频域阐发目的:周期信号输入连续系统的响应也可用拉氏变更阐发。

信号与系统实验报告1抽样定理

信号与系统实验报告1抽样定理

本科实验报告课程名称:信号与系统实验项目:抽样定理实验地点:北区博学楼机房专业班级:电信1201 学号: ******** 学生姓名:指导教师:***一、实验目的:1、了解电信号的采样方法与过程以及信号恢复的方法。

2、验证抽样定理,加深对抽样定理的认识和理解。

二、原理说明:离散时间信号可以从离散信号源获得,也可以从连续时间信号经抽样而获得。

抽样信号fs(t)可以看成是连续信号f(t)和一组开关函数s(t)的乘积。

即:fs(t)=f(t)×s(t)对抽样信号进行傅里叶分析可知,抽样信号的频谱包含了原连续信号以及无限个经过平移的原信号频谱。

平移后的频率等于抽样频率fs及其各次谐波频率2fs、3fs、4fs、5fs......。

正如测得了足够的实验数据以后,我们可以在坐标纸上把一系列数据点连接起来,得到一条光滑的曲线一样,抽样信号在一定条件下也可以恢复为原信号。

只要用一个截止频率等于原信号频谱中最高频率fmax的低通滤波器,滤除高频分量,经滤波后得到的信号包含了原信号频谱的全部内容,故在低通滤波器的输出可以得到恢复后的原信号。

但原信号得以恢复的条件是fs>2B,其中fs为抽样频率,B为原信号占有的频带宽度。

而fmin=2B为最低的抽样频率,又称为“奈奎斯特抽样率”。

当fs<2B 时,抽样信号的频谱会发生混叠,从发生混叠后的频谱中,我们无法用低通滤波器获得原信号频谱的全部内容。

在实际使用中,仅包含有限频谱的信号是极少的,因此即使fs=2B,恢复后的信号失真还是难免的。

为了实现对连续信号的抽样和抽样信号的复原,可用以下实验原理方案:图1-3 抽样定理实验方框图三、实验内容及步骤:1、方波信号的抽样与恢复。

1)观察方波信号的抽样。

调节函数信号发生器,使其输出频率分别为1KHZ、3KHZ,s(t)的频率分别置3.9KHz、15.6KHz、62.5KHz,观察抽样后的波形,并记录之。

方波原始图62.5KHz的抽样图2)观察恢复后的波形。

信号与系统实验报告

信号与系统实验报告

信号与系统实验报告一、实验目的(1) 理解周期信号的傅里叶分解,掌握傅里叶系数的计算方法;(2)深刻理解和掌握非周期信号的傅里叶变换及其计算方法;(3) 熟悉傅里叶变换的性质,并能应用其性质实现信号的幅度调制;(4) 理解连续时间系统的频域分析原理和方法,掌握连续系统的频率响应求解方法,并画出相应的幅频、相频响应曲线。

二、实验原理、原理图及电路图(1) 周期信号的傅里叶分解设有连续时间周期信号()f t ,它的周期为T ,角频率22fT,且满足狄里赫利条件,则该周期信号可以展开成傅里叶级数,即可表示为一系列不同频率的正弦或复指数信号之和。

傅里叶级数有三角形式和指数形式两种。

1)三角形式的傅里叶级数:01212011()cos()cos(2)sin()sin(2)2cos()sin()2n n n n a f t a t a t b t b t a a n t b n t 式中系数n a ,n b 称为傅里叶系数,可由下式求得:222222()cos(),()sin()T T T T nna f t n t dtb f t n t dtTT2)指数形式的傅里叶级数:()jn tn nf t F e式中系数n F 称为傅里叶复系数,可由下式求得:221()T jn tT nF f t edtT周期信号的傅里叶分解用Matlab进行计算时,本质上是对信号进行数值积分运算。

Matlab中进行数值积分运算的函数有quad函数和int函数。

其中int函数主要用于符号运算,而quad函数(包括quad8,quadl)可以直接对信号进行积分运算。

因此利用Matlab进行周期信号的傅里叶分解可以直接对信号进行运算,也可以采用符号运算方法。

quadl函数(quad系)的调用形式为:y=quadl(‘func’,a,b)或y=quadl(@myfun,a,b)。

其中func是一个字符串,表示被积函数的.m文件名(函数名);a、b分别表示定积分的下限和上限。

《信号与系统》专题研究性学习实验报告

《信号与系统》专题研究性学习实验报告

信号与系统MATLAB专题研究性学习专题一信号时域分析1.基本信号的产生,语音的读取与播放【研讨内容】1)生成一个正弦信号,改变正弦信号的角频率和初始相位,观察波形变化;2)生成一个幅度为1、基频为2Hz、占空比为50%的周期方波,3)观察一定时期内的股票上证指数变化,生成模拟其变化的指数信号,4)录制一段音频信号,进行音频信号的读取与播放【题目分析】(1) 正弦信号的形式为Acos(ω0t+ψ)或Asin(ω0t+ψ),分别用MATLAB的内部函数cos和sin表示,其调用形式为*phitsin(w=。

生成正弦信号为y+A**phi=、)*)cos(tAy+wy=5sin(t),再依次改变其角频率和初相,用matlab进行仿真。

(2) 幅度为1,则方波振幅为0.5,基频w0=2Hz,则周期T=pi,占空比为50%,因此正负脉冲宽度比为1。

(3) 将波形相似的某一段构造成一个指数函数,在一连续时间内构造不同的2~3个不同指数函数即可大致模拟出其变化。

(4) 录制后将文件格式转化为wav ,再用wavread 函数读取并播放,用plot 函数绘制其时域波形。

【仿真】 (1) 正弦信号 正弦信号1:A=1;w0=1/4*pi;phi=pi/16; t=-8:0.001:8; xt1=A*sin(w0*t+phi); plot(t,xt1)title('xt1=sin(0.25*pi*t+pi/16)')-8-6-4-22468-1-0.8-0.6-0.4-0.200.20.40.60.81xt1=sin(0.25*pi*t+pi/16)正弦信号2(改变1中频率) A=1;w1=1/4*pi;w2=1*pi;phi=pi/16; t=-8:0.001:8; xt1=A*sin(w1*t+phi); xt2=A*sin(w2*t+phi); plot(t,xt1,t,xt2)-8-6-4-22468-1-0.8-0.6-0.4-0.200.20.40.60.81正弦信号3(改变1中相位)A=1;w=1/4*pi;phi1=pi/16;phi2=pi/4; t=-8:0.001:8; xt1=A*sin(w*t+phi1); xt3=A*sin(w*t+phi2)plot(t,xt1,t,xt3)-8-6-4-22468-1-0.8-0.6-0.4-0.200.20.40.60.81(2) 方波信号 t=-100:0.01:100; T=0.5; f=1/T;y=square(2*pi*f*t,50); plot(t,y); axis([-2 2 -3 3]);-2-1.5-1-0.500.51 1.52-3-2-1123(3) 模拟股票上证指数变化的指数信号 x1=0:0.001:5; y1=2500+1.8*exp(x1); x2=5:0.001:10;y2=2847-1.5*exp(0.8*x2); x3=10:0.001:15;y3=2734+150*exp(-0.08*x3); x4=15:0.001:20;y4=2560-156*exp(-0.08*x4); x=[x1,x2,x3,x4]; y=[y1,y2,y3,y4]; plot(x,y);2468101214161820-2000-1500-1000-500050010001500200025003000(4) 音频信号的读取与播放[x,Fs,Bits]=wavread('C:\Users\Ghb\Desktop\nanshen g.wav')sound(x,Fs,Bits) plot(x)00.51 1.52 2.53 3.54 4.55x 105-0.8-0.6-0.4-0.200.20.40.60.8[x,Fs,Bits]=wavread('C:\Users\Ghb\Desktop\nvsheng .wav')sound(x,Fs,Bits) plot(x)123456x 105-1-0.8-0.6-0.4-0.200.20.40.60.812.信号的基本运算(语音信号的翻转、展缩) 【研讨内容】 1) 将原始音频信号在时域上进行延展、压缩, 2) 将原始音频信号在频域上进行幅度放大与缩小, 3)将原始音频信号在时域上进行翻转,【题目分析】用matlab 的wavread 函数读取录制的音频,用length 函数计算出音频文件的长度,最后计算出时间t ,然后用plot 函数输出录制的音频信号(1) 延展与压缩分析把时间t 变为原来的一半,信号就被延展为原来的2倍,把时间他变为原来的2倍,信号就被压缩为原来的一半。

成都理工大学信号与系统实验报告材料

信号与系统实验报告姓名:学号:学院:班级:指导老师:时间:实验一MATLAB一、实验性质验证性实验二、实验目的1、掌握MATLAB编程及绘图的基本知识;2、能表示在信号与系统中常用的连续及离散时间信号。

三、实验内容与步骤1、画出x(t)=cos(2*t)的波形,并判断x(t)是否为周期信号,若是周期信号,确定其周期。

同时画出cos(2*t)*u(t)的波形。

解、x(t)=cos(2*t)图形为:所以,是周期信号,周期是pi.x(t)=cos(2*t)*u(t)的波形为:2、画出X(n)=cos(2*n)的波形,并判断X(n)是否为周期信号,确定其周期若是周期信号,确定其周期。

解、X(n)=cos(2*n)的波形为:所以,是周期信号,周期是pi.3、画出(t-1)*u(t)的波形解、y=(t-1)*u(t)的波形为:4、产生单位脉冲序列,写出相应的程序并画出波形。

解、单位脉冲序列的程序δ(n-5)及u(n)的波形为;实验二线性非时变系统的时域分析一、实验性质验证性实验二、实验目的掌握在时域中对连续和离散时间线性时变系统响应进行分析的方法。

三、实验内容与步骤1、已知系统的微分方程如下,用MATLAB画出该系统的冲激响应及该系统在输入信号e(t)=e^-2u(t)时的零状态响应。

(改变取样的时间间隔P观察仿真的效果)解、①冲激响应:②零状态响应:时间间隔p=0.05时,波形图如下:时间间隔p=0.5时,波形图如下:2、已知离散系统的差分方程为:y(n)+y(n-1)+0.25y(n-2)=x(n)用MATLAB画出该系统的单位函数响应及单位阶跃响应的波形。

解、差分方程的程序单位函数响应:四、实验总结(1)在用matlab时,有些变量不用定义就能用,比较随意,感觉不太严谨。

(2)第二题的有个“单位函数响应”,是错误的。

(3)书上有些知识介绍的不全面,必须上网查资料才行。

实验四系统的零极点分析一、实验性质验证性实验二、实验目的1、掌握系统函数及零极点的概念;2、掌握对连续和离散系统的稳定性进行分析的方法。

抽样定理实验报告(信号与系统)

实验五抽样定理实验内容及步骤1、阅读范例程序Program5_2,在这个程序中,选择的信号的最高频率是多少?这个频率选择得是否恰当?为什么?答:选择信号的最高频率为100Hz。

这个频率选择恰当,因为f>2f max。

2、在1—8 之间选择抽样频率与信号最高频率之比,即程序Program5_2 中的a 值,反复执行范例程序Program5_2,观察重建信号与原信号之间的误差,通过对误差的分析,说明对于带限信号而言,抽样频率越高,则频谱混叠是否越小?解:a=1时图1a=3时图2a=8时图3第四幅图error代表着原信号与重建信号之间的误差。

由此得到结论,凡是带限信号,抽样频率越高,误差越小。

3、画出连续时间信号的时域波形及其幅频特性曲线,信号为:x=cos(5*pi*t)+1.5*sin(8*pi*t)+0.5*cos(25*pi*t)(1)、对信号进行采样,得到采样序列,画出采样频率分别为15Hz,30 Hz,60 Hz 时的采样序列波形;解:代码如下:tmax= 4;dt = 0.01;t = 0:dt:tmax;Ts = 1/15;ws= 2*pi/Ts;w0 = 25*pi;dw= 0.1;w = -w0:dw:w0;n = 0:1:tmax/Ts;x = cos(5*pi*t)+1.5*sin(8*pi*t)+0.5*cos(w0*t);xn =cos(5*pi*n*Ts)+1.5*sin(8*pi*n*Ts)+0.5*cos(w0*n*Ts);subplot(221)plot(t,x);title('A continuous-time signal x(t)');xlabel('Time t');grid onsubplot(223)stem(n,xn,'.');title('The sampled version x[n] of x(t)'),xlabel('Time index n');axis([0,tmax/Ts,0,1]),grid onxa= x*exp(-j*t'*w)*dt;X = 0;for k = -8:8;X = X + x*exp(-j*t'*(w-k*ws))*dt;endsubplot(222)plot(w,abs(xa))title('Magnitude spectrum of x(t)'),grid onaxis([-60,60,0,1.8*max(abs(xa))])subplot(224)plot(w,abs(X))title('Magnitude spectrum of x[n]');xlabel('Frequency in radians/s'),grid onaxis([-60,60,0,1.8*max(abs(xa))])图像如下:Ts=1/15时:图4 Ts=1/30时:图5Ts=1/60时:图6(2)、对不同采样频率下的采样序列进行频谱分析,绘制其幅频曲线,对比各频率下采样序列和的幅频曲线有无差别。

信号与系统实验报告资料

《信号与系统》实验报告湖南工业大学电气与信息工程学院实验一用同时分析法观测50Hz非正弦周期信号的分解与合成一、实验目的1、用同时分析法观测50Hz非正弦周期信号的频谱,并与傅立叶级数各项的频率与系数作比较。

2、观测基波和其谐波的合成。

二、实验设备1、信号与系统实验箱:TKSS -A型或TKSS -B 型TKSS -C 型;2、双踪示波器三、实验原理1、 一个非正弦周期函数可以用一系列频率成整数倍的正弦函数来表示,其中与非正弦具有相同频率的成分称为基波或一次谐波,其他成分则根据其频率为基波频率的2、3、4、…、n 等倍数分别称为二次、三次、四次、…、n 次谐波,其幅度将随着谐波次数的增加而减小,直至无穷小。

2、 不同频率的谐波可以合成一个非正弦周期波,反过来,一个非正弦周期波也可以分解为无限个不同频率的谐波成分,3、 一个非正弦周期函数可以用傅立叶级数来表示,级数各项系数之间的关系可用一个频谱来表示,不同的非正弦周期函数具有不同的频谱图,各种不同波形及其傅氏级数表达式见表2-1,方波频谱图如图2-1表示Um1351/91/51/71/3790ωωωωωω图1-1 方波频谱图表2-1 各种不同波形的傅立叶级数表达式UmtTU 2τ方波Um0TU 2τ正弦整流全波UmTU 2τ三角波Um0T2τ正弦整流半波t tUm0tT U 2τ矩形波U1、方波 ())7s i n 715s i n 513s i n 31(s i n 4 ++++=t t t t u t u mωωωωπ 2、三角波())5s i n 2513sin 91(sin 82++-=t t t u t u mωωωπ3、半波())4c o s 1512cos 31sin 421(2 +--+=t t t u t u m ωωωππ 4、全波 ())6c o s 3514cos 1512cos 3121(4 +---=t t t u t u m ωωωπ5、 矩形波())3cos 3sin 312cos 2sin 21cos (sin 2 ++++=t T t T t T U T U t u m m ωτπωτπωτππτ实验装置的结构如图1-2所示DC20f f f f f f 3456图1-2信号分解于合成实验装置结构框图图中LPF 为低通滤波器,可分解出非正弦周期函数的直流分量。

信号系统MATLAB实验报告

信号与系统实验报告桂林理工大学信息科学与工程学院 电子信息工程实验二 信号及其表示【实验目的】了解各种常用信号的表达方式掌握部分绘图函数【实验内容】一、绘出连续时间信号x(t)=t e 707.0 sin 32t 关于t 的曲线,t 的范围为 0~30s ,并以递增。

MATLAB 源程序为:t=0::30; %对时间变量赋值x=exp*t).*sin(2/3.*t); %计算变量所对应得函数值 plot(t,x);grid; %绘制函数曲线ylabel('x(t)');xlabel('Time(sec)')二、产生周期为的方波。

MATLAB源程序为:Fs=100000;t=0:1/Fs:1;x1=square(2*pi*50*t,20);x2=square(2*pi*50*t,80);subplot(2,1,1),plot(t,x1),axis([0,,,]); subplot(2,1,2),plot(t,x2),axis([0,,,]);三、产生sinc(x)函数波形。

MATLAB源程序为:x=linspace(-4,4);y=sinc(x);plot(x,y)四、绘制离散时间信号的棒状图。

其中x(-1)=-1,x(0)=1,x(1)=2,x(2)=1,x(3)=0,x(4)=-1,其他时间x(n)=0。

MATLAB源程序为:n=-3:5; %定位时间变量x=[0,0,-1,1,2,1,-1,0,0];stem(n,x);grid; %绘制棒状图line([-3,5],[0,0]); %画X轴线xlabel('n');ylabel('x[n]')五、单位脉冲序列δ(n-0n )={00...1...0n n n n =≠直接实现:x=zeros(1,N);x(1,n0)=1;函数实现:利用单位脉冲序列)(0n n -δ的生成函数impseq,即 function[x,n]=impseq(n0,ns,nf)n=[ns:nf];x=[(n-n0)==0];plot(n,x);stem(n,x);输入参数:impseq(0,0,9)——连续图形012345678900.10.20.30.40.50.60.70.80.91输入参数:impseq(0,0,9)——离散图形六、单位阶跃序列ε(n-0n )={00...1...0n n n n ≥<直接实现:n=[ns:nf];x=[(n-n0)>=0];函数实现:利用单位阶跃序列)(0n n -ε的生成函数stepseq ,即 Function[x,n]=stepseq(n0,ns,nf)n=[ns:nf];x=[(n-n0)>=0];plot(n,x);七、实指数序列=,∀)(x n∈,Ranna直接实现:n=[ns:nf]:x=a.^n;函数实现:利用实指数序列n a(的生成函数rexpseq,即n)x=Function[x,n]=rexpseq(a,ns,nf)n=[ns:nf];x=a,^n:八、复指数序列n e n x n j ∀=+,)()(ωδ直接实现:n=[ns:nf];x=exp((sigema+jw)*n);函数实现:利用复指数序列n j e n x )()(ωδ+=的生成函数cexpseq,即 Function[x,n]=cexpseq(sigema,w,ns,nf)n=[ns:nf];x=exp((sigema+j*w)*n);0123456789-3000-2000-1000100020003000400050006000九、正(余)弦序列n wn n x ∀+=),cos()(θ直接实现:n=[ns:nf];x=cos(w*n+sita);函数实现:利用正(余)弦序列x(n)=cos(wn+θ)的生成函数cosswq,即Function[x,n]=cosseq(w,ns,nf,sita)n=[ns:nf];x=cos(w*n+sita);输入参数:cosseq,0,9,30)——连续信号0123456789-0.2-0.15-0.1-0.0500.050.10.150.2输入参数:cosseq,0,9,30)——离散信号0123456789实验三信号的运算【实验目的】了解信号处理的基本操作。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 HUNAN UNIVERSITY 信号与系统课程 实验报告

题 目 信号与系统 学生姓名

学生学号 专业班级 完 成 日 期 2013.12.11

2

实验内容: 1)信号的描述 ............................................................................................... 错误!未定义书签。 连续时间信号 ......................................................................................... 错误!未定义书签。 a>指数信号 ..................................................................................... 错误!未定义书签。 b>正弦信号 .................................................................................... 错误!未定义书签。 c>阶跃信号 ..................................................................................... 错误!未定义书签。 d>抽样信号 .................................................................................... 错误!未定义书签。 e>矩形脉冲信号 ............................................................................. 错误!未定义书签。 f>冲激信号 ..................................................................................... 错误!未定义书签。 离散时间信号 ......................................................................................... 错误!未定义书签。 a>离散阶跃信号 ............................................................................. 错误!未定义书签。 2)卷积........................................................................................................... 错误!未定义书签。 3)吉布斯现象 ............................................................................................... 错误!未定义书签。 4)常见信号的傅里叶变换 ........................................................................... 错误!未定义书签。 a>冲激信号 ............................................................................................. 错误!未定义书签。 b>周期矩形信号 .................................................................................... 错误!未定义书签。 5)傅里叶变换的基本性质 ........................................................................... 错误!未定义书签。 a>时移性质 ............................................................................................. 错误!未定义书签。 b>频移性质 ............................................................................................ 错误!未定义书签。 c>尺度变换性质 ..................................................................................... 错误!未定义书签。 d>时域卷积特性 .................................................................................... 错误!未定义书签。 6)抽样信号 ................................................................................................... 错误!未定义书签。 3

1)信号的描述 连续时间信号 a>指数信号

t=0:0.01:10; ft=exp(t); plot(t,ft); title('指数信号'); grid on; 4

b>正弦信号 k=2;w=2*pi;phi=pi/4; t=0:0.01:3; ft=k*sin(w*t+phi); plot(t,ft),grid on; axis([0,3,-2.2,2.2]) title('正弦信号') 5

c>阶跃信号 t=-1:0.01:3; f= (t>=0); plot(t,f) axis([-1,3,-0.2,1.2]) title('单位阶跃信号') 6

d>抽样信号 t=-3*pi:pi/100:3*pi; ft=sinc(t/pi); plot(t,ft); axis([-10,10,-0.5,1.2]); title('抽样信号'); %grid on; 7

e>矩形脉冲信号 t=-2:0.01:2; width=1; ft=rectpuls(t,width); plot(t,ft); axis([-2,2,-2,2]); title('矩形脉冲信号'); grid on; 8

f>冲激信号 dt=0.001 t=-5:0.001:5; delta=(t==0)*1/dt %ft=rectpuls(t,width); plot(t,delta); axis([-5,5,-2,2]); title('冲激信号'); grid on; 9

离散时间信号 a>离散阶跃信号

k=[-5,-4,-3,-2,-1,0,1,2,3,4,5]; f=[0,0,0,0,0,1,1,1,1,1,1]; stem(k,f,'filled'); axis([-5,5,-2,2]); grid on; 10

2)卷积 p=0.01; t1=0:p:1; f1=ones(size(t1)); t2=1:p:3; f2=t2; f=conv(f1,f2); %计算序列x与h的卷积和f f=f*p; t0=t1(1)+t2(1); %计算序列f非零样值的起点位置 t3=length(f1)+length(f2)-2; %计算卷积和f的非零样值的宽度 t=t0:p:(t3*p+t0); %确定卷积和f非零样值的时间向量 subplot(2,2,1) plot(t1,f1) %在子图1绘x(t)时域波形图 title('x(t)') xlabel('t1') ylabel('x(t)') subplot(2,2,2) plot(t2,f2) %在子图2绘h(t)时波形图 11

title('h(t)') xlabel('t2') ylabel('h(t)') subplot(2,2,3) plot(t,f); %画卷积y(t)的时域波形 h=get(gca,'position'); %获取坐标轴的未知属性 h(3)=2.5*h(3); set(gca,'position',h) %将第三个子图的横坐标范围扩为原来的2.5倍 title('y(t)=x(t)*h(t)') xlabel('t') ylabel('y(t)')

3)吉布斯现象

clear all clc x0=-pi:0.01:pi; sum=0.0; 12

for(n0=1:1:5) p0=4*sin(n0*pi/2)*cos(n0*x0)/(n0*pi); sum=sum+p0; end plot(x0,sum,'b') text(2.1,-1.2,'n=5') hold on; x1=-pi:0.01:pi; sum=0.0; for(n1=1:1:20) p1=4*sin(n1*pi/2)*cos(n1*x1)/(n1*pi); sum=sum+p1; end plot(x1,sum,'r') text(3.1,-1.2,'n=20') hold on; x2=-pi:0.01:pi; sum=0.0; for(n2=1:1:150) p2=4*sin(n2*pi/2)*cos(n2*x2)/(n2*pi); sum=sum+p2; end plot(x2,sum,'y') text(1.6,1.3,'n=150') hold on; x3=-pi:0.01:pi; sum=0.0; for(n3=1) p3=4*sin(n3*pi/2)*cos(n3*x3)/(n3*pi); sum=sum+p3; end plot(x3,sum,'g') text(2,-0.5,'n=1') hold on; x4=-pi:0.01:pi/2; y1=-1; plot(x4,y1,'g') hold on x5=-pi/2:0.01:pi/2; y2=2; plot(x5,y2,'g') hold on x6=pi/2:0.01:pi; y3=-1;

相关文档
最新文档