线性代数总结

合集下载

大二线性代数知识点总结

大二线性代数知识点总结

大二线性代数知识点总结线性代数是数学中的一个重要分支,是大二学生必修的一门课程。

它涉及了许多基本概念和理论,对于理解和解决各种实际问题具有重要意义。

本文将对大二线性代数的主要知识点进行总结。

1. 向量和矩阵向量是线性代数中最基本的概念之一,可以用于表示空间中的点、矢量和函数等。

向量可以进行加法和数乘等运算,同时具有长度和方向。

矩阵是由若干行和若干列组成的矩形阵列,通常用方括号表示。

矩阵可以进行加法、数乘和矩阵乘法等运算。

矩阵可以表示线性变换和线性方程组等。

2. 行列式行列式是一个数值,它是矩阵中元素的一种特殊组合。

行列式的计算可以用于求解线性方程组、判断矩阵的可逆性和计算变换的缩放因子等。

3. 线性方程组线性方程组是由一组线性方程组成的方程组。

线性方程组的解可以通过高斯消元法、矩阵运算和行列式的方法进行求解。

线性方程组的求解在实际问题中具有广泛的应用,比如求解电路问题、求解物理问题等。

4. 特征值和特征向量矩阵的特征值和特征向量是线性代数中重要的概念。

特征值表示线性变换过程中的缩放因子,特征向量表示在该缩放过程中保持不变的方向。

求解特征值和特征向量可以用于分析矩阵的性质和解决实际问题。

5. 向量空间和线性变换向量空间是由一组向量和定义在其上的运算构成的数学结构。

线性变换是向量空间之间的一种映射关系,它保持向量运算和标量乘法等性质。

向量空间和线性变换是研究线性代数的重要内容,对于分析和解决实际问题具有重要意义。

6. 正交性和内积空间正交性是指向量之间的垂直关系,内积空间是具有内积运算的向量空间。

正交性和内积空间在物理学、工程学和信号处理等领域有广泛的应用,比如信号的傅里叶变换、正交编码等。

以上是大二线性代数的主要知识点总结。

线性代数的应用非常广泛,几乎涉及到所有科学和工程领域。

为了更好地理解和应用线性代数,我们需要通过练习和实践来加深对这些知识点的理解。

希望通过本文的总结,能够对大二线性代数的学习有所帮助。

线性代数行列式计算方法总结

线性代数行列式计算方法总结

线性代数行列式计算方法总结在线性代数中,行列式是一个非常重要的概念,它在矩阵运算和线性方程组的求解中起着至关重要的作用。

本文将总结一些常见的行列式计算方法,希望能够帮助读者更好地理解和运用线性代数中的行列式。

1. 代数余子式法。

代数余子式法是一种常见的计算行列式的方法。

对于一个n阶矩阵A,它的行列式可以通过以下公式来计算:det(A) = a11A11 + a12A12 + ... + a1nA1n。

其中,a11, a12, ..., a1n是矩阵A的第一行元素,A11, A12, ..., A1n分别是对应元素的代数余子式。

代数余子式的计算方法是先将对应元素所在的行和列去掉,然后计算剩下元素构成的(n-1)阶矩阵的行列式,再乘以对应元素的符号(正负交替)。

通过递归的方式,可以计算出整个矩阵的行列式。

2. 克拉默法则。

克拉默法则是一种用于求解线性方程组的方法,它也可以用来计算行列式。

对于一个n阶方阵A,如果它的行列式不为0,那么可以通过克拉默法则来求解它的逆矩阵。

逆矩阵的元素可以通过矩阵A的各个元素的代数余子式和行列式的比值来计算。

虽然克拉默法则在实际计算中并不常用,但它对于理解行列式的性质和逆矩阵的计算方法有一定的帮助。

3. 初等行变换法。

初等行变换法是一种通过对矩阵进行一系列行变换来简化行列式计算的方法。

这些行变换包括交换两行、某一行乘以一个非零常数、某一行加上另一行的若干倍。

通过这些行变换,可以将一个矩阵化简为上三角形矩阵或者对角矩阵,从而更容易计算它的行列式。

需要注意的是,进行行变换时要保持行列式的值不变,即每一次行变换都要乘以一个相应的系数。

4. 特征值法。

特征值法是一种通过矩阵的特征值和特征向量来计算行列式的方法。

对于一个n阶矩阵A,它的行列式可以表示为其特征值的乘积。

通过计算特征值和特征向量,可以得到矩阵A的行列式的值。

特征值法在实际计算中比较复杂,但它对于理解矩阵的性质和特征值分解有一定的帮助。

线性代数行列式计算方法总结

线性代数行列式计算方法总结

线性代数行列式计算方法总结线性代数是数学的一个重要分支,而行列式是线性代数中的一个重要概念。

行列式计算方法是线性代数的基础知识,掌握好行列式的计算方法对于深入理解线性代数具有重要的意义。

本文将对线性代数中行列式的计算方法进行总结,希望能够帮助读者更好地掌握这一知识点。

1. 行列式的定义。

在开始介绍行列式的计算方法之前,我们先来回顾一下行列式的定义。

对于一个n阶方阵A,它的行列式记作|A|,定义为:|A| = Σ(−1)^σP1,1 P2,2 ... Pn,n。

其中,σ是1到n的一个排列,P1,1 P2,2 ... Pn,n是这个排列的乘积,Σ表示对所有可能的排列求和。

2. 行列式的计算方法。

接下来,我们将介绍几种常见的行列式计算方法。

2.1 余子式法。

余子式法是计算行列式的一种常用方法。

对于一个n阶方阵A,它的行列式可以通过递归的方式计算得到。

具体步骤如下:对于n阶方阵A,选择第i行(或第j列)展开,得到A的余子式Mij;计算Mij的行列式|Aij|,其中Aij是Mij的转置矩阵;根据公式|A| = ai1 |A1| + ai2 |A2| + ... + ain |An|,计算得到行列式|A|。

2.2 克拉默法则。

克拉默法则是一种用于求解n元线性方程组的方法,它也可以用来计算行列式。

对于一个n阶方阵A,它的行列式可以通过克拉默法则计算得到。

具体步骤如下:对于n元线性方程组Ax = b,其中A是系数矩阵,x是未知数向量,b是常数向量,如果A是非奇异矩阵(即|A| ≠ 0),则方程组有唯一解;解出方程组的每个未知数,可以得到方程组的解向量x;根据克拉默法则,方程组的解向量x的每个分量可以表示为xj = |Aj| / |A|,其中Aj是将系数矩阵A的第j列替换为常数向量b得到的矩阵的行列式。

2.3 对角线法则。

对角线法则是一种简单直观的计算行列式的方法。

对于一个n阶方阵A,它的行列式可以通过对角线法则计算得到。

线性代数知识点总结

线性代数知识点总结

向量的模长
• 定义:向量的大小
• 计算公式:|v| = √(x² + y² + ... + n²)
向量的加法运算
向量加法的定义
• 两个向量的和是一个新的向量,其坐标等于两个向量坐标的和
• 向量加法满足交换律和结合律
向量加法的计算
• 直接将两个向量的对应坐标相加
• 可以用坐标法表示向量加法
向量加法的性质
正定二次型
• 二次型的标准化是将二次型表示为标准二次型的形式
• 正定二次型是指二次型对应的矩阵是正定矩阵
• 标准二次型的形式为f(x) = x′Ax + λx′x
• 正定二次型的二次函数在向量空间的原点处取得最小值
08
线性规划
线性规划问题的定义与模型
线性规划问题的定义
• 线性规划问题是一种优化问题,要求求解一组变量的最优值
06
特征值与特征向量
特征值与特征向量的定义与性质
01
特征值的定义
• 特征值是线性变换特征方程的根
• 特征值表示线性变换对向量的放大倍数
02
特征向量的定义
• 特征向量是线性变换特征方程的解向量
• 特征向量表示线性变换对向量的方向
03
特征值与特征向量的性质
• 特征值具有唯一性和稳定性
• 特征向量具有线性无关性
二次型的定义与表示
二次型的定义
二次型的表示
• 二次型是一种二次函数,表示为f(x) = Ax² + Bx + C
• 二次型可以用矩阵表示,为f(x) = x′Ax + x′Bx + x′Cx
• 其中,A、B、C是常数矩阵
• 其中,A、B、C是二次型的系数矩阵

完整版线性代数知识点总结

完整版线性代数知识点总结

完整版线性代数知识点总结线性代数是数学的一个分支,研究向量空间及其上的线性变换。

它在各个领域中都有广泛的应用,包括物理学、计算机科学、工程学等。

以下是线性代数的一些重要知识点总结:1.向量和向量空间:向量是有方向和大小的量,可以用来表示力、速度、位移等。

向量空间是向量的集合,具有加法和标量乘法运算,同时满足一定的性质。

2.线性方程组和矩阵:线性方程组是一组线性方程的集合,研究其解的性质和求解方法。

矩阵是一个由数构成的矩形数组,可以用来表示线性方程组中的系数和常数。

3.矩阵的运算:包括矩阵的加法、减法和乘法运算。

矩阵乘法是一种重要的运算,可以用来表示线性变换和复合变换。

4.行列式和特征值:行列式是一个标量,表示矩阵的一些性质,如可逆性和面积/体积的变换。

特征值是矩阵对应的线性变换中特殊的值,表示该变换在一些方向上的伸缩程度。

5.向量的内积和正交性:向量的内积是一种二元运算,可以用来表示向量之间的夹角和长度。

正交向量是指内积为零的向量,可以用来表示正交补空间等概念。

6.向量的投影和正交分解:向量的投影是一个向量在另一个向量上的投影,可以用来表示向量的分解。

正交分解是将一个向量分解为与另一个向量正交和平行的两个向量之和。

7.线性变换和线性映射:线性变换是指保持向量加法和标量乘法运算的变换。

线性映射是向量空间之间的函数,具有保持线性运算的性质。

8.特征值和特征向量:特征值和特征向量是线性变换或矩阵中一个重要的概念,用于描述变换的性质和方向。

9.正交矩阵和对称矩阵:正交矩阵是一个方阵,其列向量组成的矩阵是正交的。

对称矩阵是一个方阵,其转置等于自身。

10.奇异值分解:奇异值分解(SVD)是一种矩阵的分解方法,用来将一个矩阵分解为三个矩阵的乘积。

SVD在数据压缩、图像处理和机器学习等领域有广泛的应用。

11.最小二乘法:最小二乘法是一种数学优化方法,用来找到一条曲线或超平面,使得这些数据点到该曲线或超平面的距离平方和最小。

线性代数行列式计算方法总结

线性代数行列式计算方法总结

线性代数行列式计算方法总结线性代数是数学的一个分支,研究向量空间与线性映射的代数理论。

行列式是线性代数中重要的概念之一,用于判断线性方程组的解的存在与唯一性,以及计算线性变换的特征值与特征向量等。

本文将介绍线性代数中行列式的计算方法,并总结为以下几种常见的方法。

方法一:定义法行列式的定义是一个很重要的概念,也是计算行列式的基础。

对于一个n阶方阵A,它的行列式表示为|A|或det(A),定义为n个行向量或列向量所组成的n维向量空间的基向量所构成的平行多面体的有向体积。

根据这个定义,我们可以通过构造平行多面体来计算行列式的值,方法即是代数余子式展开法。

方法二:对角线法则对角线法则是计算2阶或3阶方阵行列式的简易方法。

对于2阶方阵A,其行列式的值等于主对角线上元素的乘积减去副对角线上元素的乘积;对于3阶方阵A,其行列式的值等于主对角线上元素的乘积与副对角线上元素的乘积之差。

此方法适用于小规模方阵的计算。

方法三:按行展开法按行展开法是计算n阶方阵行列式的一种常用方法。

对于一个n阶方阵A,选择其中一行(通常选择第一行)展开,即将该行中的元素与所在行和列上排列的剩余元素分别构成n-1阶的方阵,然后将其乘以对应元素的代数余子式,最后再按正负号相间相加得到行列式的值。

按行展开法在计算大规模方阵的行列式时,不仅简化了计算过程,还可以通过递归的方式实现。

方法四:按列展开法按列展开法与按行展开法类似,只是选择展开的对象变为一列。

选择第j列展开,则将该列中的元素与所在行和列上排列的剩余元素分别构成n-1阶的方阵,然后将其乘以对应元素的代数余子式,最后再按正负号相间相加得到行列式的值。

方法五:性质法行列式具有一系列的性质,可以根据这些性质来简化行列式的计算过程。

这些性质包括行列对换,相同行列的元素倍加,行列式放缩等。

利用这些性质,我们可以通过对行列式进行简单的变换,使其更容易计算,例如将行列式转化为上三角形矩阵,然后直接求解主对角线上元素的乘积即可。

线性代数思维导图全6页及其总结


第五章
若k为A的特征值,X为其对应的特征向量, 设有多项式f(x)=a0+a1x+...+am*x(m)次方, 则方阵f(A)=a0E+a1A+...+amA(m次方)的特
征值为f(k),X仍为其相应的特征向量
注意P的逆矩阵在前 A,B为n阶方阵,若存在n阶可逆矩阵P,使 P-1AP=B则称A与B相似,记作A~B,P被称为A
参见P95 例5.8
A为正交矩阵的充要条件是其列(行) 向量组是Rn中的单位正交基
若A为正交矩阵,则A的逆矩阵也为正交矩阵
若A,B为同阶正交矩阵,则AB也为正交矩阵
若A为正交矩阵,则 det(A)=+-1
实对称矩阵的特征值都是实数
实对称矩阵的不同特征值对应的特征向量必定正 交
第一章
若矩阵A可逆,则其转置矩阵也可逆,若矩阵 A,B可逆,则两者乘积也可逆
对角矩阵的逆矩阵为其 对应位置的各数变成其
倒数
都是针对n阶方阵而言
如何求逆矩阵
第三章
对称矩阵:对称位置的元素相等 反对称矩阵:对称位置元素相反,主对角线上元
素全部为零
有一线性方程组,其系数矩阵为A,增广矩阵为 B,其有n条方程
| B)
有向量组A和向量组B
若B可由A线性表示,则 rank(B)小于等于rank(A)
齐次方程组的一个基础解系是由一组线性无关的 向量组成
注意这条例题的思想 相册内有清晰版
有n维向量组A,若它的一个部分向量组A1线性 无关,且A1与A等价,称A1是A的最大线性无关

第四章
先用行初等变换简化系数矩阵 得到同解方程组
将nX2n矩阵(A | E)进行一系 列行初等变换,直到变成( E | A-1),即得方阵A的逆矩阵

线性代数学习心得体会

线性代数学习心得体会篇一:学习线性代数的心得体会学习线性代数的心得体会线代课本的前言上就说:“在现代社会,除了算术以外,线性代数是应用最广泛的数学学科了。

”我们的线代教学的一个很大的问题就是对线性代数的应用涉及太少,课本上涉及最多的只能算解线性方程组了,但这只是线性代数很初级的应用。

我自己对线性代数的应用了解的也不多。

但是,线性代数在计算机数据结构、算法、密码学、对策论等等中都有着相当大的作用。

线性代数被不少同学称为“天书”,足见这门课给同学们造成的困难。

在这门课的学习过程中,很多同学遇到了上课听不懂,一上课就想睡觉,公式定理理解不了,知道了知识但不会做题,记不住等问题。

我认为,每门课程都是有章可循的,线性代也不例外,只要有正确的方法,再加上自己的努力,就可以学好它。

线代是一门比较费脑子的课,所以如果前一天晚上睡得太晚第二天早上的线代课就会变成“催眠课”。

那么,就应该在第二天有线代课时晚上睡得早一点。

如果你觉得上课跟不上老师的思路那么请预习。

这个预习也有学问,预习时要“把更多的麻烦留给自己”,即遇到公式、定理、结论马上把证明部分盖住,自己试着证一下,可以不用写详细的过程,想一下思路即可;还要多猜猜预习的部分会有什么公式、定理、结论;还要想一想预习的内容能应用到什么领域。

当然,这对一些同学有困难,可以根据个人的实际情况适当调整,但要尽量多地自己思考。

一定要重视上课听讲,不能使线代的学习退化为自学。

上课时干别的会受到老师讲课的影响,那为什么不利用好这一小时四十分钟呢?上课时,老师的一句话就可能使你豁然开朗,就可能改变你的学习方法甚至改变你的一生。

上课时一定要“虚心”,即使老师讲的某个题自己会做也要听一下老师的思路。

上完课后不少同学喜欢把上课的内容看一遍再做作业。

实际上应该先试着做题,不会时看书后或做完后看书。

这样,作业可以帮你回忆老师讲的内容,重要的是这些内容是自己回忆起来的,这样能记得更牢,而且可以通过作业发现自己哪些部分还没掌握好。

线性代数总结

1、行列式1.行列式共有个元素,展开后有项,可分解为行列式;2.代数余子式的性质:①、和的大小无关;②、某行(列)的元素乘以其它行(列)元素的代数余子式为0;③、某行(列)的元素乘以该行(列)元素的代数余子式为;3.代数余子式和余子式的关系:4.设行列式:将上、下翻转或左右翻转,所得行列式为,则;将顺时针或逆时针旋转,所得行列式为,则;将主对角线翻转后(转置),所得行列式为,则;将主副角线翻转后,所得行列式为,则;5.行列式的重要公式:①、主对角行列式:主对角元素的乘积;②、副对角行列式:副对角元素的乘积;③、上、下三角行列式():主对角元素的乘积;④、和:副对角元素的乘积;⑤、拉普拉斯展开式:、⑥、范德蒙行列式:大指标减小指标的连乘积;⑦、特征值;6.对于阶行列式,恒有:,其中为阶主子式;7.证明的方法:①、;②、反证法;③、构造齐次方程组,证明其有非零解;④、利用秩,证明;⑤、证明0是其特征值;2、矩阵1.是阶可逆矩阵:(是非奇异矩阵);(是满秩矩阵)的行(列)向量组线性无关;齐次方程组有非零解;,总有唯一解;与等价;可表示成若干个初等矩阵的乘积;的特征值全不为0;是正定矩阵;的行(列)向量组是的一组基;是中某两组基的过渡矩阵;2.对于阶矩阵:无条件恒成立;3.矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;4.关于分块矩阵的重要结论,其中均、可逆:若,则:Ⅰ、;Ⅱ、;②、;(主对角分块)③、;(副对角分块)④、;(拉普拉斯)⑤、;(拉普拉斯)3、矩阵的初等变换与线性方程组1.一个矩阵,总可经过初等变换化为标准形,其标准形是唯一确定的:;等价类:所有与等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵;对于同型矩阵、,若;2.行最简形矩阵:①、只能通过初等行变换获得;②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;3.初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、若,则可逆,且;②、对矩阵做初等行变化,当变为时,就变成,即:;③、求解线形方程组:对于个未知数个方程,如果,则可逆,且;4.初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;②、,左乘矩阵,乘的各行元素;右乘,乘的各列元素;③、对调两行或两列,符号,且,例如:;④、倍乘某行或某列,符号,且,例如:;⑤、倍加某行或某列,符号,且,如:;5.矩阵秩的基本性质:①、;②、;③、若,则;④、若、可逆,则;(可逆矩阵不影响矩阵的秩)⑤、;(※)⑥、;(※)⑦、;(※)⑧、如果是矩阵,是矩阵,且,则:(※)Ⅰ、的列向量全部是齐次方程组解(转置运算后的结论);Ⅱ、⑨、若、均为阶方阵,则;6.三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)行矩阵(向量)的形式,再采用结合律;②、型如的矩阵:利用二项展开式;二项展开式:;注:Ⅰ、展开后有项;Ⅱ、Ⅲ、组合的性质:;③、利用特征值和相似对角化:7.伴随矩阵:①、伴随矩阵的秩:;②、伴随矩阵的特征值:;③、、8.关于矩阵秩的描述:①、,中有阶子式不为0,阶子式全部为0;(两句话)②、,中有阶子式全部为0;③、,中有阶子式不为0;9.线性方程组:,其中为矩阵,则:①、与方程的个数相同,即方程组有个方程;②、与方程组得未知数个数相同,方程组为元方程;10.线性方程组的求解:①、对增广矩阵进行初等行变换(只能使用初等行变换);②、齐次解为对应齐次方程组的解;③、特解:自由变量赋初值后求得;11.由个未知数个方程的方程组构成元线性方程:①、;②、(向量方程,为矩阵,个方程,个未知数)③、(全部按列分块,其中);④、(线性表出)⑤、有解的充要条件:(为未知数的个数或维数)4、向量组的线性相关性1.个维列向量所组成的向量组:构成矩阵;个维行向量所组成的向量组:构成矩阵;含有有限个向量的有序向量组与矩阵一一对应;2.①、向量组的线性相关、无关有、无非零解;(齐次线性方程组)②、向量的线性表出是否有解;(线性方程组)③、向量组的相互线性表示是否有解;(矩阵方程)3.矩阵与行向量组等价的充分必要条件是:齐次方程组和同解;(例14)4.;(例15)5.维向量线性相关的几何意义:①、线性相关;②、线性相关坐标成比例或共线(平行);③、线性相关共面;6.线性相关与无关的两套定理:若线性相关,则必线性相关;若线性无关,则必线性无关;(向量的个数加加减减,二者为对偶)若维向量组的每个向量上添上个分量,构成维向量组:若线性无关,则也线性无关;反之若线性相关,则也线性相关;(向量组的维数加加减减)简言之:无关组延长后仍无关,反之,不确定;7.向量组(个数为)能由向量组(个数为)线性表示,且线性无关,则(二版定理7);向量组能由向量组线性表示,则;(定理3)向量组能由向量组线性表示有解;(定理2)向量组能由向量组等价(定理2推论)8.方阵可逆存在有限个初等矩阵,使;①、矩阵行等价:(左乘,可逆)与同解②、矩阵列等价:(右乘,可逆);③、矩阵等价:(、可逆);9.对于矩阵与:①、若与行等价,则与的行秩相等;②、若与行等价,则与同解,且与的任何对应的列向量组具有相同的线性相关性;③、矩阵的初等变换不改变矩阵的秩;④、矩阵的行秩等于列秩;10.若,则:①、的列向量组能由的列向量组线性表示,为系数矩阵;②、的行向量组能由的行向量组线性表示,为系数矩阵;(转置)11.齐次方程组的解一定是的解,考试中可以直接作为定理使用,而无需证明;①、只有零解只有零解;②、有非零解一定存在非零解;12.设向量组可由向量组线性表示为:(题19结论)()其中为,且线性无关,则组线性无关;(与的列向量组具有相同线性相关性)(必要性:;充分性:反证法)注:当时,为方阵,可当作定理使用;13.①、对矩阵,存在,、的列向量线性无关;()②、对矩阵,存在,、的行向量线性无关;14.线性相关存在一组不全为0的数,使得成立;(定义)有非零解,即有非零解;,系数矩阵的秩小于未知数的个数;15.设的矩阵的秩为,则元齐次线性方程组的解集的秩为:;16.若为的一个解,为的一个基础解系,则线性无关;(题33结论)5、相似矩阵和二次型1.正交矩阵或(定义),性质:①、的列向量都是单位向量,且两两正交,即;②、若为正交矩阵,则也为正交阵,且;③、若、正交阵,则也是正交阵;注意:求解正交阵,千万不要忘记施密特正交化和单位化;2.施密特正交化:;;3.对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交;4.①、与等价经过初等变换得到;,、可逆;,、同型;②、与合同,其中可逆;与有相同的正、负惯性指数;③、与相似;5.相似一定合同、合同未必相似;若为正交矩阵,则,(合同、相似的约束条件不同,相似的更严格);6.为对称阵,则为二次型矩阵;7.元二次型为正定:的正惯性指数为;与合同,即存在可逆矩阵,使;的所有特征值均为正数;的各阶顺序主子式均大于0;;(必要条件)。

线性代数超强的总结

线性代数超强总结()0A r A n A Ax A A οο⎧⎪<⎪⎪=⇔=⎨⎪⎪⎪⎩不可逆 有非零解是的特征值的列(行)向量线性相关 12()0,,T s i nA r A n Ax A A A A A A A p p p p Ax οββ⎧⎪=⎪⎪=⎪⎪⎪≠⇔⎨⎪⎪⎪⎪=⋅⋅⋅⎪⎪∀∈=⎩可逆 只有零解 的特征值全不为零 的列(行)向量线性无关 是正定矩阵 与同阶单位阵等价 是初等阵总有唯一解R⎫⎪−−−→⎬⎪⎭具有向量组等价相似矩阵反身性、对称性、传递性矩阵合同 √ 关于12,,,n e e e ⋅⋅⋅:①称为n的标准基,n中的自然基,单位坐标向量;②12,,,n e e e ⋅⋅⋅线性无关; ③12,,,1n e e e ⋅⋅⋅=; tr(E )=n n 1e ,2e ,⋅⋅,⋅n e④;⑤任意一个维向量都可以用线性表示.√ 行列式的计算:① 若A B 与都是方阵(不必同阶),则(1)mn A A A A BBBBAA B B οοοοο*===**=-②上三角、下三角行列式等于主对角线上元素的乘积.③关于副对角线:(1)211212112111(1)n n nnn n n n n n n a a a a a a a a a οοο---*==-√ 逆矩阵的求法:①1A A A*-=②1()()A E E A -−−−−→初等行变换③11a b d b c d c a ad bc --⎡⎤⎡⎤=⎢⎥⎢⎥--⎣⎦⎣⎦ TT T TT A B A C C D BD ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦④12111121n aa n a a a a -⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦21111211na a n a a a a -⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⑤11111221n n A A A A A A ----⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦11121211n n A A A A A A ----⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦√ 方阵的幂的性质:m n m n A A A += ()()m n mn A A = √ 设1110()m m m m f x a x a x a x a --=++++,对n 阶矩阵A 规定:1110()m m m m f A a A a A a A a E --=++++为A 的一个多项式. √设,,m n n s A B ⨯⨯A的列向量为12,,,nααα⋅⋅⋅,B 的列向量为12,,,sβββ⋅⋅⋅,AB 为量向列的12,,,s r r r ,1212121122,1,2,,,(,,,)(,,,),(,,,),,,.i i s s T n n n i i i i r A i s A A A A A B b b b A b b b AB i r A AB i r B βββββββββαααβα==⋅⋅⋅=⎫⎪==++⎪⎬⎪⎪⎭则:即 用中简若则 单的一个提即:的第个列向量是的列向量的线性组合组合系数就是的各分量;高运算速度的第个行向量是的行向量的线性组合组合系数就是的各分量 √ 用对角矩阵Λ左乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的行向量; 用对角矩阵Λ右乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的列向量. √ 两个同阶对角矩阵相乘只用把对角线上的对应元素相乘,与分块对角阵相乘类似,即:11112222,kk kk A B A B A B A B οοοο⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦11112222kk kk A B A B AB A B οο⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦√ 矩阵方程的解法:设法化成AX B XA B ==(I) 或 (II) 当0A ≠时,,B A B E X −−−−→初等行变换(当为一列时(I)的解法:构造()()即为克莱姆法则) T T T TA XB X X =(II)的解法:将等式两边转置化为,用(I)的方法求出,再转置得√ Ax ο=和Bx ο=同解(,A B 列向量个数相同),则:① 它们的极大无关组相对应,从而秩相等; ② 它们对应的部分组有一样的线性相关性; ③ 它们有相同的内在线性关系.√ 判断12,,,s ηηη是0Ax =的基础解系的条件:① 12,,,s ηηη线性无关; ② 12,,,s ηηη是0Ax =的解;③ ()s n r A =-=每个解向量中自由变量的个数.① 零向量是任何向量的线性组合,零向量与任何同维实向量正交. ② 单个零向量线性相关;单个非零向量线性无关. ③ 部分相关,整体必相关;整体无关,部分必无关.④ 原向量组无关,接长向量组无关;接长向量组相关,原向量组相关. ⑤ 两个向量线性相关⇔对应元素成比例;两两正交的非零向量组线性无关. ⑥ 向量组12,,,n ααα⋅⋅⋅中任一向量i α(1≤i ≤)n 都是此向量组的线性组合.⑦ 向量组12,,,n ααα⋅⋅⋅线性相关⇔向量组中至少有一个向量可由其余1n -个向量线性表示. 向量组12,,,n ααα⋅⋅⋅线性无关⇔向量组中每一个向量i α都不能由其余1n -个向量线性表示. ⑧ m 维列向量组12,,,n ααα⋅⋅⋅线性相关()r A n ⇔<; m 维列向量组12,,,n ααα⋅⋅⋅线性无关()r A n ⇔=. ⑨ ()0r A A ο=⇔=.⑩ 若12,,,n ααα⋅⋅⋅线性无关,而12,,,,n αααβ⋅⋅⋅线性相关,则β可由12,,,n ααα⋅⋅⋅线性表示,且表示法惟一. ⑪ 矩阵的行向量组的秩等于列向量组的秩. 阶梯形矩阵的秩等于它的非零行的个数.⑫ 矩阵的行初等变换不改变矩阵的秩,且不改变列向量间的线性关系. 矩阵的列初等变换不改变矩阵的秩,且不改变行向量间的线性关系.12,,,n ααα⋅⋅⋅和12,,,n βββ⋅⋅⋅可以相互线性表示. 记作:{}{}1212,,,,,,n n αααβββ⋅⋅⋅=⋅⋅⋅A 经过有限次初等变换化为B . 记作:A B =⑬ 矩阵A 与B 等价⇔()(),r A r B A B =≠>作为向量组等价,即:秩相等的向量组不一定等价. 矩阵A 与B 作为向量组等价⇔1212(,,,)(,,,)n n r r αααβββ⋅⋅⋅=⋅⋅⋅=1212(,,,,,,)n n r αααβββ⋅⋅⋅⋅⋅⋅⇒ 矩阵A 与B 等价.⑭ 向量组12,,,s βββ⋅⋅⋅可由向量组12,,,n ααα⋅⋅⋅线性表示⇔1212(,,,,,,)n s r αααβββ⋅⋅⋅⋅⋅⋅12(,,,)n r ααα=⋅⋅⋅⇒12(,,,)s r βββ⋅⋅⋅≤12(,,,)n r ααα⋅⋅⋅. ⑮ 向量组12,,,s βββ⋅⋅⋅可由向量组12,,,n ααα⋅⋅⋅线性表示,且s n >,则12,,,s βββ⋅⋅⋅线性相关.向量组12,,,s βββ⋅⋅⋅线性无关,且可由12,,,n ααα⋅⋅⋅线性表示,则s ≤n .⑯ 向量组12,,,s βββ⋅⋅⋅可由向量组12,,,n ααα⋅⋅⋅线性表示,且12(,,,)s r βββ⋅⋅⋅12(,,,)n r ααα=⋅⋅⋅,则两向量组等价; ⑰ 任一向量组和它的极大无关组等价.⑱ 向量组的任意两个极大无关组等价,且这两个组所含向量的个数相等. ⑲ 若两个线性无关的向量组等价,则它们包含的向量个数相等.⑳ 若A 是m n ⨯矩阵,则{}()min ,r A m n ≤,若()r A m =,A 的行向量线性无关; 若()r A n =,A 的列向量线性无关,即:12,,,n ααα⋅⋅⋅线性无关.Ax β=1122n n x x x αααβ+++=1112111212222212,,n n m m mn n m a a a x b a a a x b A x a a a x b β⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ 12,1,2,,j j jmj j n αααα⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦1212120,,,0,,,()(),,,A n A n n Ax Ax A nAx Ax A Ax r A r A n βοαααβοβαααββααα⇒⇔==−−−−−→=<<≠⇒⇒⇔==−−−−−→≠⇔=⇔=<≠=⇒当为方阵时当为方阵时有无穷多解有非零解线性相关 有唯一组解只有零解可由线性表示有解线性无关 12()(),,,()()()1()A n r A r A Ax r A r A r A r A ββαααβββ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪−−−−−→⎪⎩⇔≠⎧⎪⇔=⇔<⎨⎪⇔+=⎩当为方阵时 克莱姆法则 不可由线性表示无解线性方程组解的性质:1212121211221212(1),0,(2)0,,(3),,,0,,,,,(4),0,(5),,0(6)k k k k Ax Ax k k Ax k Ax Ax Ax Ax Ax ηηηηηηηηηλλλληληληγβηγηβηηβηη=+⎫⎪=⎪⎬=⎪⎪++⎭==+==-= 是的解也是它的解 是的解对任意也是它的解齐次方程组 是的解对任意个常数 也是它的解 是的解是其导出组的解是的解 是的两个解是其导出组的解211212112212112212,0(7),,,,100k k k kk k k Ax Ax Ax Ax Ax ηβηηηηηηβληληληβλλλληληληλλλ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪=⇔-=⎪=⎪⎪++=⇔++=⎪⎪++=⇔++=⎩ 是的解则也是它的解是其导出组的解 是的解则也是的解 是的解√ 设A 为m n ⨯矩阵,若()r A m =,则()()r A r A β=,从而Ax β=一定有解. 当m n <时,一定不是唯一解.⇒<方程个数未知数的个数向量维数向量个数,则该向量组线性相关. m 是()()r A r A β和的上限. √ 矩阵的秩的性质:① ()()()T T r A r A r A A == ② ()r A B ±≤()()r A r B + ③ ()r AB ≤{}min (),()r A r B④ ()0()00r A k r kA k ≠⎧=⎨=⎩ 若 若⑤ ()()A r r A r B B οο⎡⎤=+⎢⎥⎣⎦⑥0,()A r A ≠若则≥1⑦ ,,()0,()()m n n s A B r AB r A r B ⨯⨯=+若且则≤n ⑧ ,()()()P Q r PA r AQ r A ==若可逆,则 ⑨ ,()()A r AB r B =若可逆则,()()B r AB r A =若可逆则⑩ (),()(),r A n r AB r B ==若则且A 在矩阵乘法中有左消去律:0AB B AB AC B Cο=⇒==⇒=n 个n 维线性无关的向量,两两正交,每个向量长度为1.(,)0αβ=.1α==.√ 内积的性质: ① 正定性:(,)0,(,)0αααααο≥=⇔=且 ② 对称性:(,)(,)αββα=③ 双线性:1212(,)(,)(,)αββαβαβ+=+ 1212(,)(,)(,)ααβαβαβ+=+ (,)(,)(,)cc c αβαβαβ==123,,ααα线性无关,112122111313233121122(,)()(,)(,)()()βααββαβββαβαββαββββββ=⎧⎪⎪⎪=-⎨⎪⎪=--⎪⎩正交化单位化:111βηβ= 222βηβ= 333βηβ= T AA E =.√ A 是正交矩阵的充要条件:A 的n 个行(列)向量构成n的一组标准正交基.√ 正交矩阵的性质:① 1T A A -=;② T T AA A A E ==;③ A 是正交阵,则T A (或1A -)也是正交阵; ④ 两个正交阵之积仍是正交阵; ⑤ 正交阵的行列式等于1或-1.E A λ-.()E A f λλ-=.0E A λ-=. Ax x Ax x λ=→ 与线性相关 √ 上三角阵、下三角阵、对角阵的特征值就是主对角线上的n 各元素.√ 若0A =,则0λ=为A 的特征值,且0Ax =的基础解系即为属于0λ=的线性无关的特征向量. √ 12n A λλλ= 1ni A λ=∑tr√ 若()1r A =,则A 一定可分解为A =[]1212,,,n n a a b b b a ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦、21122()n n A a b a b a b A =+++,从而A的特征值为:11122n n A a b a b a b λ==+++tr , 230n λλλ====.√ 若A 的全部特征值12,,,n λλλ,()f x 是多项式,则:① ()f A 的全部特征值为12(),(),,()n f f f λλλ;② 当A 可逆时,1A -的全部特征值为12111,,,n λλλ,A *的全部特征值为12,,,n A AAλλλ.√ 1122,.m m Ak kAa b aA bEAA AA A λλλλλλλ-*⎧⎪++⎪⎪⎪⎨⎪⎪⎪⎪⎩是的特征值则:分别有特征值 √ 1122,m m Ak kAa b aA bEAx A x A A A λλλλλλλ-*⎧⎪++⎪⎪⎪⎨⎪⎪⎪⎪⎩是关于的特征向量则也是关于的特征向量. 1B P AP -= (P 为可逆阵) 记为:AB√ A 相似于对角阵的充要条件:A 恰有n 个线性无关的特征向量. 这时,P 为A 的特征向量拼成1112的矩阵,1P AP -为对角阵,主对角线上的元素为A 的特征值. √ A 可对角化的充要条件:()i i n r E A k λ--= i k 为i λ的重数. √ 若n 阶矩阵A 有n 个互异的特征值,则A 与对角阵相似.1B P AP -= (P 为正交矩阵) √ 相似矩阵的性质:① 11A B -- 若,A B 均可逆 ② T T A B③ kk A B (k 为整数)④ E A E B λλ-=-,从而,A B 有相同的特征值,但特征向量不一定相同.即:x 是A 关于0λ的特征向量,1P x -是B 关于0λ的特征向量. ⑤ A B = 从而,A B 同时可逆或不可逆 ⑥ ()()r A r B = ⑦ ()()A B =tr tr√ 数量矩阵只与自己相似. √ 对称矩阵的性质:① 特征值全是实数,特征向量是实向量; ② 与对角矩阵合同;③ 不同特征值的特征向量必定正交;④ k 重特征值必定有k 个线性无关的特征向量;⑤ 必可用正交矩阵相似对角化(一定有n 个线性无关的特征向量,A 可能有重的特征值,重数=()n r E A λ--).A 与对角阵Λ相似. 记为:AΛ (称Λ是A √ 若A 为可对角化矩阵,则其非零特征值的个数(重数重复计算)()r A =. √ 设i α为对应于i λ的线性无关的特征向量,则有:更多学习资源欢迎关注微信公众号:大学资源库;知乎:大学资源;QQ空间:835159973[]121212112212(,,,)(,,,)(,,,),,,n n n n n n PA A A A λλααααααλαλαλααααλΛ⎡⎤⎢⎥⎢⎥===⎢⎥⎢⎥⎣⎦. √ 若A B , CD ,则:A B C D οοοο⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦. √ 若AB ,则()()f A f B ,()()f A f B =.12(,,,)T n f x x x X AX = A 为对称矩阵 12(,,,)T n X x x x =T B C AC =. 记作:A B (,,A B C 为对称阵为可逆阵) √ 两个矩阵合同的充分必要条件是:它们有相同的正负惯性指数. √ 两个矩阵合同的充分条件是:AB√ 两个矩阵合同的必要条件是:()()r A r B =√ 12(,,,)Tn f x x x X AX =经过正交变换合同变换可逆线性变换X CY =化为2121(,,,)nn i i f x xx d y =∑标准型.√ 二次型的标准型不是惟一的,与所作的正交变换有关,但系数不为零的个数是由()r A +正惯性指数负惯性指数惟一确定的.√ 当标准型中的系数i d 为1,-1或0时,√ 实对称矩阵的正(负)惯性指数等于它的正(负)特征值的个数.√ 任一实对称矩阵A 与惟一对角阵11110⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦合同.13√ 用正交变换法化二次型为标准形:① 求出A 的特征值、特征向量; ② 对n 个特征向量单位化、正交化; ③ 构造C (正交矩阵),1C AC -=Λ; ④ 作变换X CY =,新的二次型为2121(,,,)nn i i f x x x d y =∑,Λ的主对角上的元素i d 即为A 的特征值.12,,,n x x x 不全为零,12(,,,)0n f x x x >.正定二次型对应的矩阵. √ 合同变换不改变二次型的正定性. √ 成为正定矩阵的充要条件(之一成立):① 正惯性指数为n ; ② A 的特征值全大于0; ③ A 的所有顺序主子式全大于0;④ A 合同于E ,即存在可逆矩阵Q 使T Q AQ E =; ⑤ 存在可逆矩阵P ,使T A P P = (从而0A >);⑥ 存在正交矩阵,使121T n C AC C AC λλλ-⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎣⎦(iλ大于0).√ 成为正定矩阵的必要条件:0ii a > ; 0A >.14。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

┏━━━━━━━━━━━━━━━━━━━━━━┓
┠——※—◆—☆—★—目录—★—☆—◆—※——┨
┠※※※※※※※※※※※※※※※※※※※※※※┨
┠———————-第一章:行列式-———————┨
┃ §1.1 二阶、三阶行列式 ┃
┃ §1.2 n阶行列式 ┃
┃ §1.3 行列式的性质 ┃
┃ §1.4 行列式按行、列展开 ┃
┃ §1.5 克莱姆法则 ┃
┠※※※※※※※※※※※※※※※※※※※※※※┨
┠————————第二章:矩阵————————┨
┃ §2.1 矩阵的概念 ┃
┃ §2.2 矩阵的运算 ┃
┃ §2.3 几种特殊的矩阵 ┃
┃ §2.4 分块矩阵 ┃
┃ §2.5 逆矩阵 ┃
┃ §2.6 矩阵的初等变换 ┃
┃ §2.7 矩阵的秩 ┃
┠※※※※※※※※※※※※※※※※※※※※※※┨
┠—————-第三章:线性方程组-———————┨
┃ §3.1 线性方程组的消元解法 ┃
┃ §3.2 n维向量空间 ┃
┃ §3.3 向量间的线性关系 ┃
┃ §3.4 线性方程组解的结构 ┃
┃ §3.5 投入产出数学模型 ┃
┠※※※※※※※※※※※※※※※※※※※※※※┨
┠——————第四章:矩阵的特征值——————┨
┃ §4.1 矩阵的特征值和特征向量 ┃
┃ §4.2 相似矩阵 ┃
┃ §4.3 实对称矩阵的特征值和特征向量 ┃
┃ *§4.4 矩阵初级的收敛性 ┃
┠※※※※※※※※※※※※※※※※※※※※※※┨
┠——————— *第五章:二次项———————┨
┃ §5.1 二次项与对称矩阵 ┃
┃ §5.2 二次项与对称矩阵的标准形 ┃
┃ §5.3 二次项与对称矩阵的有定性 ┃
┃ §5.4 正定和负定性的一个应用 ┃
┗━━━━━━━━━━━━━━━━━━━━━━┛

线性代数学习心得
各位学友好!

首先让我们分析一下线性代数考试卷(本人以1999年上半年和下半年为例)
我个人让为,先做计算题,填空题,然后证明题,选择题等(一定要坚持先易后难的原则,一定要。旁边有某些同志说:“这些都是
屁话,我们都知的快快转入正题吧!”)

把选择题第8题拉出来让大家看看
n(n>1)阶实对矩阵A是正定矩阵的充份必要条件是()
A.A是正定二次型f(x)=x(A)x的矩阵
B.A是各阶顺序主子式均大于等于零(书本的p231定5.9知,大于零就可以了,明显也是错的)
C.二次型f(x)=xTAx的负惯性指数为零
D.存在n阶矩阵C,使得A=CTC(由书本的P230知,存在非奇异N阶矩阵C,使A=CTC)很明显,这个选择是错了)
各位学友在做选择题时要仔细呀!
证明题
先讲1999年下半年
设A,B,C均为n阶矩阵,若ABC=I,这里I为单位矩阵,求证:B为可逆矩阵,且写出的逆矩阵?
证的过程:己知ABC=I,|ABC|=|I|不等于零,|A|*|B|*|C|不等于零,得出|B|不等于零。所以B是可逆矩阵。
求其逆矩阵,ABC=I,两边同时右乘C-1得AB=C-1,接下来左乘以A-1得B=A-1C-1,最后BC=A-1,BCA=I,于是得B-1=CA(不知各
位学友有没有更简便的方法谢谢告之)

对这题做后的心得,本人认为一定要记得,a逆阵可逆的充分必要条件是行列式|a|不等零(切记,还有如ab=i,那么a-1=b)
对了还有,在求解逆矩阵,最简单方法是用初等行变换
公式法吗!容易出错,只适合求解比较特殊的
下面这些是相关的证明题
设B矩阵可逆,A矩阵与B矩阵同阶。且满足A2+AB+B2=O,证明A和A+B都是可逆矩阵?(相信大家都能做出)
己知i+ab可逆,试证I+BA也可逆?
接下来看看1999年上半年的
设n阶方阵A与B相似,证明:A和B有相同的特征多项式?
应搞清楚下面的概念
什么是特征多项式呢(1)
什么是特征值呢(2)
什么还有特征向量(3)
什么是相似矩阵(4)
λI-A称为A的特征矩阵;|λI-A|称为A的特征多项式;|λI-A|=0称为A的特征矩阵,而由些求出的全部根,即为A的全部特征值。
对每一个求出特征值λ,求出齐次方程组(λI-A)x=o的基础解是&1,&2,&3...&s,则k1&1+k2&2+...ks&s即是A对应于 λ的全部特征向
量(其中,k1...ks不全为零)

相似矩阵:设A,B都是n阶方阵,若存在n阶可逆阵p,使得p-1ap=b,则称A相似于B,记为A~B(相拟矩阵有相同的行列式,相
同的秩,相同的特征值)

我觉得有这么一题使终我还是一知半解的,拉出来让大家看看:
设A为4阶方阵,A*为A的伴随矩阵,若|A|=3,则|A*|=?,|2A*|=?
这题答案是27,432
怎么算的呢?这个具体我也不太清楚,我是用自己的方法,|A|N-1=|A*|,这个N代表多少阶,如是4阶那么3^3=27,后面那个,切记:
把2提出行列式以外,看A是几阶行列式,4阶就提4次,2^4*3^3=432(可能书上不是这样的,我只是根据其习题答案推论出来的)

应注意的问题:区为行列式和矩阵之间的区别,特别是用一个不为零的数K乘以行列式或矩阵,前者只是乘以某一行或列,后者则
是每一个元素都要乘!

很容易搞不零清的:线性相关或无关和什么情况下线性方程组有解或无解,还有什么极大无关组,基础解系,特征值,多项式,特
征向量,相似矩阵有哪些性质, 正交矩阵的充分心要条件,二次型化成标准型。

相关文档
最新文档